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End-to-End Joint Intention Estimation
for Shared Control Personal Mobility Navigation
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Abstract— Advancements in technology propose a future
where systems work collaboratively sharing the same workspace
as humans. Navigation is one such crucial aspect of daily life
where collaborative technologies can offer major assistance.
Ageing population dictates a likely increase in personal mobility
devices (PMDs), whilst autonomous cars are bringing intelligent
vehicles to the road today. However, in such scenarios the
expected assistance can only be given if the device is aware
of its user’s intention, so that controls can be applied in a
tightly collaborative manner. Moreover, they should be robust
to different environments, users and mobile platforms. A user
driven navigation framework is proposed in this work to com-
plement end-to-end sensing-only solutions to estimate controls
as joint intention from vehicle states and user inputs. The
solution is proven to be an improvement over similar strategies
that rely on exteroceptive data and omit inputs from the driving
agent. Furthermore, the developed framework is proven capable
of transferring the learning into different environments and
mobility platforms using a small amount of training data. Data
from the autonomous driving community (Udacity dataset) and
other obtained in-house with an instrumented power wheelchair
are given to demonstrate the validity of the proposed approach.

I. INTRODUCTION

The discipline of Human Robot Interaction (HRI) is con-
cerned with the understanding and shaping of the interactions
between human and robotic agents [1]. Human Robot Col-
laboration (HRC) is generally regarded as the subset of HRI
where the aim is to achieve a common goal through tight,
shared interactions between human and machine [2]. It is an
interdisciplinary research field, sitting at the intersection of
classical robotics, cognitive sciences, and psychology. This
shared control framework is often referred to as autonomy
or arbitration [3], and has a significant constituent design
impact in the overall HRI problem [1]. The authors of [3]
have proposed a taxonomy on levels of autonomy based on
the level of human-robot intervention in the sense, plan, and
act phases, defining autonomy as the extent that a robot
can sense, plan and act to reach a goal without an external
control. The level of autonomy required in a situation is
however highly specific to both application and user, and
can extend across the full spectrum between fully manual
and fully autonomous control. Recent examples of these can
be found in the autonomous driving and driver-assistance
systems, which have been active ares of research for the
past two decades, to varying degrees of commercial success.

In the proposed work, examples from these fields are
employed, and learnings are transferred to the personal
mobility space to depict the paramount role that HRC plays
in generating safe navigational paths that conform to the
driver’s intentions and expectations, and those around them.
With the advent of increasingly advanced PMDs, be that to
mitigate traffic congestion and pollution through reduction
of road vehicle usage in the “first and last mile” of city
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Fig. 1: The HRC learning framework and the instrumented
power wheelchair used for testing.

travel [4], or as power mobility aids to promote independence
and self-esteem for the differently-abled and frail users in an
ever increasing globally aging population [5], [6], there is a
strong motivation to develop user intention estimations and
collaborative strategies suitable to integrate seamlessly with
vehicle controls.

User intention can be interpreted in numerous ways and
is not always straightforward to estimate. User intention
has been formally defined as the combination of states of
different subsystems in the body, namely: i) central nervous
system (CNS), ii) peripheral nervous system (PNS), iii)
musculoskeletal system, and iv) the controls generated for
environmental interactions [7]. In this work the focus is on
the latter, with the goal of HRC maneuvering of mobility
devices, such as the motorised wheelchair shown in Fig. 1.
In this regard, user intention can be broadly confined to the
immediate controls of the vehicle, longer-horizon trajectory
control, or the actual goal destination (e.g. map-based). The
aim hereby is the consideration of immediate shared controls
- steering and speed of the mobility device - at the next time
instance.

In typical HRC research scenarios, a framework infers the
agent’s input controls based on the sensory and/or vehicle
state inputs, to be then compared with the inferred user
intention (e.g. steering angles from on-board car images [8]).
In others, actual controls are exerted from the joint intention
deduced from both agents, whereby the autonomous agent
has been equipped with some autonomous map-based path



planning capabilities. This is often based on some pre-
defined weighted function (e.g. “efficiency” [9]), which not
only requires tuning depending on the scenario, but also
offers limited applicability to larger, or map-less situations.

In this work a learning network is proposed to provide
controls (immediate speed and steering) for shared naviga-
tion based on joint intention estimation, and prove that the
developed framework is capable of transferring into different
environments (indoor, outdoors), and platforms (cars and
PMDs). The framework is extendable to any situation where
tight human-robot driving collaboration is assumed, e.g.
warehouse management with instrumented forklifts, museum
tours or grocery shopping with mobility scooters, or added
independence for the differently-abled with PMDs.

The paper is organized as follows: Section II summarises
relevant work from the literature. Section III describes the
proposed framework. Section IV describes the experiments
carried out and Section V summarizes the result. Discussion,
future work and conclusion are given in Section VI.

II. RELATED WORK

There are two widely used tools for changing roles in the
shared control space: i. machine learning, and ii. performance
metric based [7].

A large volume of work stems from user intention-
aware for the differently-abled, largely aligned with smart
wheelchairs [10], which are invariably driven by performance
metric based controls. Early work like NavChair [11] have
different modes of navigation which are triggered by pre-
defined values such as stimulus response. [12] proposed a
shared control system which gives necessary assistance based
on the user ability. In more recent work, the decision of
autonomy in control is based on a dynamic value based
on risk of collision and the risk of disturbance to other
humans [13].

The main drawback in a performance metric based role
allocation is that the switching mechanism becomes an
autonomous entity, which tend to leave users confused and
somewhat apprehensive about its behaviour. On the other
hand, when triggered by a human operator, the framework
lacks the ability to identify user’s intention and act accord-
ingly. Additionally, for the case of differently-abled users,
they learn to rely more on the framework and lose residual
capabilities [12].

On the other hand, the advent of research in the space of
autonomous cars have leaned strongly on machine learning
architectures for role changing. During the past two decades,
the advancements in hardware (sensors and actuators) and
software (advanced algorithms, deep neural networks) have
led to the rapid developments in the field. Steering control
is a crucial aspect of autonomous navigation. Much work
has been done in the field of steering angle prediction and
companies like Udacity [14] have even released challenges
based on this to make the research community more engaged.
[15] provides a literature review in this regard.

A steering angle prediction framework has been recently
proposed in [8] where the authors address issues over-
looked in previous research work by encoding spatiotemporal

features at different layers. Their results rank best when
predicting the current steering angle in comparison to the
existing methods. Their work is predicated on using only
images as input. [16] integrates speed, wheel angle and
torque in addition to the images and prove that the: i. addition
of extra information, ii. having residual aggregation, and iii.
having ConvLSTM, improve the accuracy in steering angle
prediction. The major drawback in this work is that even
though they integrate additional information, this information
is predicted from the system itself. Neither the real user input
nor the vehicle state is considered in their work. In contrast,
our proposed framework considers the user in the prediction
and control loop.

The network proposed by [17] integrates images and past
10 speeds to predict the immediate steering and speed. Their
framework too does not consider the user input. [18] and [19]
consider the user input in their developed frameworks.
[19] uses three modes: i. direct, ii. follow, and iii. fugitive
mode as the modal information; while in [18], the user
commands are a limited vocabulary consisting of phrases
like “keep straight”, “turn right”. The major difference our
work has from theirs is that their user commands (intentions)
are given explicitly while in ours it is inferred.

In the proposed framework there is no explicit role change,
advocating instead for shared controls predicted based on
joint intention estimates implicitly by a machine learning
paradigm, with perceptual information from cameras, vehicle
state, and user commands ( joystick or steering wheel angles)
used as inputs.

III. PROPOSED FRAMEWORK

This work aims to develop a shared navigation framework
for action planning and execution based on inferred joint
intention. At one end of the spectrum of systems developed to
enable autonomous driving are methodologies behaving in an
end-to-end manner, where sensor inputs are directly mapped
to actions using various function approximators [18]. Deep
Neural Networks have become widely used and have been
proven successful non-linear function estimators, and have
thus been employed in this work as the learning module for
the proposed joint intention estimation HRC framework. An
overview of the framework in depicted in Fig. 1, whereby
the joint intention is inferred based on muti-modal inputs,
namely past and current user inputs, vehicle states and
environmental observations. For the purpose of this research
steering angle and speed of the mobility device at time ¢+ 1
(predicted at t) are considered as the joint intention. Three
frameworks are considered to achieve this purpose.

1) Network Architecture I: Image Only Input: The inputs
of this network are the past n (¢t — n + 1 to ¢) images and
it predicts steering angle at ¢ + 1. This was implemented
based on the network proposed by [8] and the details of the
implementation are given in Section I'V-.1.

2) Network Architecture II: UDM (User Driven Multi-
Modal): The inputs consist of past n (¢t —n+ 1 to t) images,
vehicle speed and user steering angle and the output is the
steering at ¢t + 1. The linear vehicle speed is the vehicle’s
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Fig. 2: Proposed Framework. UDMT and UDM (with and without the dashed black line branch in the output respectively).

state input and the steering angle is the user input. The
best place to add the user input and the vehicle state to the
Implementation I network is described in Section I'V-.2.

3) Network Architecture Ill: UDMT (User Driven Multi-
Modal Multi-Task): As before, input to this framework are
the past n (t —n + 1 to t) images, vehicle speed and user
steering angle, but it now predicts steering plus speed at ¢+ 1.
The rationale is that in order to control the vehicle, speed
may be as important as steering, so the network is setup to
also predict speed. The modified framework is described in
Section I'V-3.

A. Intuition Behind the Proposed Framework

The optimisation of the set of parameters 6 that define
the deep neural network trained with images only can be
described by

9* = arg H%in zt: MSE(Fémage(On,t), [¢1¢+1D (1)

where an input sample at time ¢ consists of a history of the
past n observation images o, ;. The network tries to find
the set of parameters of the function approximator F,™&
which minimizes the mean squared error (MSE) between
the predicted and the actual steering angle at ¢t + 1 (¢¢+1).

This has the implicit assumption that the steering angle
is a function of only the images and the parameters of the
network. However, it is evident that this is not the case.
Consider a case where the user is at a four-way junction. The
steering angle at this point, can have three different values
which are equally probable. The image only network will
arbitrarily choose a direction based on the learning which
might not be the intended direction of the user. Such a
network, even if it avoids collision and take human-like turns
at intersections, ignores the desire of the rider in the vehicle.

The proposed framework attempts to correct this draw-
back. If the user intention can be better inferred from the data
provided, the ambiguity in steering of the car is mitigated.
The framework is built on the assumption that the joint
intention of both user and agent can be estimated more

accurately by including past speed and steering in addition
to the observation images, as given by function F,

Joint Intentiony 1 = E(ont, Pn t, Un.t) 2)

In this equation, the user and agent intentions can be thought
of as latent variables. From the joint intention, shared-control
actions are estimated through function G:

[$1 441, v1.¢+1) = G(Joint Intention; ;1) (3)

The joint intention is mapped to the immediate future
steering angle and speed (control actions). As our model
is trained end-to-end, the learned function Fy combines the
joint intention estimation £ and shared-control prediction G
functions. Thus, equations (2) and (3) can be reduced to Fj.

Fy=GoFE (G))
The final objective function of the network is written as

0* = arg minZMSE(FgDMT(On,n Gnts Un,t)v
- (5

[f1,641,v1,041])

where 6 is the set of parameters of the trained network. Here,
an input sample at time ¢ consists of a history of the past n
observation images oy, steering angles ¢, ., and vehicle
speeds vy, ¢, from ¢ —n + 1 to t. The network tries to find
the set of parameters of the function approximator FyPMT
which minimizes the mean squared error (MSE) between the
predicted and the actual ¢,y and v;q.

During the testing phase, the same input modalities are
used and inference is done based on the knowledge database
created from learning as shown in Fig. 1.

IV. IMPLEMENTATION

1) Network I: Input Images Only: It was decided to use
the network proposed in [8] to detect features as authors
claim their network to outperform other existing networks in
terms of network accuracy. In order to replicate the above
network, kernel sizes of 3 and 5 were used with different



TABLE I: Details of the network

Layer Name [ Kernel Size [ Stride Size [ Padding

Encoder
Conv 1, Conv 2, Conv 3 5x5 2 none
Conv 4, Conv 5, Conv 6 3x3 2 none
Multi-scale Spatiotemporal Integration (MSI) Module (* = 1,2,3,4)
Conv *-1 3x3 1 1, zeros
Conv-LSTM * 3x3 1 1, zeros
Conv *-3 3x3 2 none
Conv *-4 3x3 1 1, zeros
FC * - - -
Predictor

FC final 1 , FC final 2 | B { _ [-

stride sizes and padding which results in the stated output
sizes of the layers. While there are no specific details about
batch normalization (BN) being used, it is standard practice
and was incorporated after every convolution layer [20].
Leaky-ReLU activation function is used after all layers except
the last fully connected layer, which is linear. Full details of
the network architecture are collected in Table I.

The convolution layers at the end of each Multi-scale
Spatiotemporal Integration (MSI) module was flattened and
concatenated with the previous FC layer.

The input image sequence length n was chosen to be 10,
same as in the [8]. The authors of the paper have trained
different networks configurations with steering angles at t+k,
where £ =1, ..., 4 as future auxiliary labels to predict the
steering at ¢. In the proposed network, auxiliary future labels
are not used for training which is equivalent to their baseline
MSINet. Furthermore, the proposed framework predicts the
next steering (at ¢+ 1) with current and past images (t—n+1
to t) while they predict steering at ¢ with the same input
images.

2) Network II: UDM: In this implementation the state of
the vehicle and the user input is integrated into the image
only network IV-.1. As the state of the vehicle, the current
and past (n = 10) linear speeds are considered. The most
crucial aspect of the framework is the user input, which is
the proposed way of including the user in the control loop.
As the user input, the current and past (n = 10) steering
angles are considered.

Since the proposed framework uses vehicle state and the
user input in addition to images, the best way to integrate
the new inputs has to be selected. According to the authors
of [18], this can be done either using deep autoencoders or
using concatenation. It was decided to use concatenation, and
consider deep autoencoders for future work.

Most work in this field has the vehicle state integrated after
the images’ dimensionality is reduced [16], [17] (eg: The 1D
feature vectors are appended with the vehicle state and fed
into LSTMs). This is not an optimal way of doing it, since
the influence speed has on the feature detection becomes low
at later layers of the deep network.

The best place to concatenate the new inputs was selected
to be at layer 3 (Conv 3) before the branching of the encoder
into MSI modules. This way the first few layers are not
effected by the additional inputs in terms of the features

(a) Image from Bag 4. (b) Image from Bag 6.

Fig. 3: Example images from the Udacity dataset.

(a) Sharp turns, intersections.

(b) Narrow and long corridors.

Fig. 4: Indoor image examples acquired by the PMD.

they select (more generic image features are selected) and
the later features are influenced by the additional inputs.
By concatenating before the LSTM, temporal relation is still
preserved. The speed and the user steering of past n frames,
are reshaped to match the size of the Conv 3. The above is
achieved by tiling a shape of the desired shape (57 x 77) and
concatenating the layers as depicted in Fig. 2.

3) Network IlI: UDMT: To keep the neurons specific to
speed and steering separately, the last 2 layers were branched
with each having 2 fully connected layers of 16 neurons and
1 neuron respectively; one for steering angle prediction and
the other for speed prediction as in Fig. 2.

A. Network Parameters Learning

The loss function used is the mean squared error, which
would result in a higher error if the predictions are further
away from their actual values. Both steering and speed pre-
diction were given equal weights in terms of their contribu-
tion to the final MSE error, unlike other works where special
emphasis was entertained for the steering angle prediction by
using a higher weight for its loss [16].

Different optimisers were considered during training;
the classical stochastic gradient descent (SGD) procedure,
Adadelta, ADAM and AMSGrad. In terms of convergence,
AMSGrad [21] performed best. The convergence aspect of
optimisers is constantly being revisited and it is worth noting
new methods such as AdaMax [22], inspired by AMSGrad.

B. Data

Udacity [14] challenge 2 is a challege launched by Udacity
to predict steering angles from camera images. This dataset
is publicly available and widely referred in the autonomous
driving community. Two sample images from this dataset are
shown in Fig. 3. Even though the ultimate purpose of the
research is to develop a framework for personal mobility,
due to the similarity of the task it was decided to use
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this dataset. Moreover, the trained network can then be
used to infer the steering angle of the wheelchair collected
in a completely different (indoor) environment to deduce
its ability to generalize to unseen scenarios and vehicle
dynamics. Two sample images from this dataset are shown
in Fig. 4.

Since the accuracy of all the three models must be tested
against one dataset for comparison, the general procedure of
using the first five bags Udacity has provided (with a total
of 33808 image frames) for training and using Bag 3 (with
5614 image frames) for testing cannot be done because Bag 3
only supplies images and steering. The proposed framework
requires speed as well. Thus, after analysing the variation
of steering angle in the six bags as in Fig. 5, 10000 -
15000 sample set of Bag 2 was set aside for testing and the
other samples (excluding Bag 3) were used for training and
validation. This resulted in a reduction in the dataset size.
To overcome this, data augmentation was used, a technique

TABLE II: Results on Udacity and PMD test sets

Network | RMSE for Udacity RMSE for PMD
Image Only 0.1171 rad (Fig. 7a) 0.2228 rad (Fig. 8a)
UDM | 0.0507 rad (Fig. 7b) 0.0725 rad (Fig. 8b)

UDMT Steering | 0.0371 rad (Fig. 7c) 0.0555 rad (Fig. 8c)
UDMT Speed | 0.1192 m/s (Fig. 7d) | 0.1079 m/s (Fig. 8d)

widely used in the deep learning community to address
the problem of having less amount of data and to make
the trained network more robust and have generalization
capabilities. Since storing the augmented data would result
in high memory consumption, they were generated on the
fly. Based on a random number generator, the images fed
to the network were augmented to have different brightness
and contrast levels and different noise levels.

V. RESULTS

The network in [8] was replicated on the same dataset
reported by the authors (Udacity bag 3) to establish a
baseline to validate the implementation (see Fig. 6). A root
mean squared error (RMSE) of 0.1079 rad was achieved,
while the authors reported 0.0613 rad. It is worth noting that
beyond details not reported, the authors’ aim is predicting
steering at ¢ based on images from t —n + 1 to ¢, whilst the
present work strives to infer steering at £+ 1 considering the
same sequence of input images. To test the accuracy of the
proposed frameworks, the RMSE of the steering angle and
speed at time ¢ 4 1 of the Udacity test set are considered.
Results are summarised in Table II and graphed in Fig. 7.

In order to test how well the trained UDMT network can
transfer to predict in novel environments and other mobility
platforms, a new dataset was collected using the PMD shown
in Fig 1. An Intel RealSense camera was used to collect the
images. It was driven indoors around a typical office layout
an altogether less dynamic environment consisting of narrow
corridors, sharp turns and intersections (see Fig. 4) for
around 15 minutes. The collected dataset consists of 21605
image frames and joystick command values. The models
previously trained on Udacity data were further trained using
17000 images from the newly collected dataset. The speed
commanded by the user along with the commanded steering
was used as training inputs to the network instead of a car’s
linear speed supplied in the Udacity dataset. Results of the
transfer learnt network are collected in Table II and Fig. 8.

VI. DISCUSSION AND CONCLUSION

A shared navigation framework to act based on inferred
joint driver-machine intention has been presented in this
work. It has been shown how adding user input and vehicle
state to the image-only network improved the accuracy of
steering angle prediction at time ¢ + 1 by nearly 57%.
Moreover, prediction of both steering and speed in the
UDMT framework resulted in more accurate predictions. In
terms of steering, speed can be thought of as privileged
information which improves the accuracy of the steering
prediction [23].
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Moreover, the trained network was able to transfer knowl-
edge to a new platform (PMD as opposed to car) and
environment (indoor as opposed to outdoor) with only an
additional small dataset of less than 12 minutes of training
data. The accuracy of steering (and speed in the UDMT case)
increased with the proposed networks, as was observed with
the Udacity dataset. The computational time is proportional
to the length of the input history, but since predictions are
made at each time step, an online implementation gives a
constant time per prediction.

For future work, additional user (accelerator/brake, gear)
and vehicle states (pose of the vehicle) are being considered
as inputs to the UMDT network. A new loss function to
capture the smoothness of the joint control in addition to
the error in prediction is also desirable. Uncertainty of the
predicted joint control action will be estimated for reliability.
Furthermore, the current framework gathers knowledge from
a static database during training; methods to “learn to learn”
such as meta learning will be further explored.
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