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Over the last decade, the long-running endeavour to automate high-level processes in machine learning (ML)
has risen to mainstream prominence, stimulated by advances in optimisation techniques and their impact on
selecting ML models/algorithms. Central to this drive is the appeal of engineering a computational system
that both discovers and deploys high-performance solutions to arbitrary ML problems with minimal human
interaction. Beyond this, an even loftier goal is the pursuit of autonomy, which describes the capability of
the system to independently adjust an ML solution over a lifetime of changing contexts. However, these
ambitions are unlikely to be achieved in a robust manner without the broader synthesis of various mechanisms
and theoretical frameworks, which, at the present time, remain scattered across numerous research threads.
Accordingly, this review seeks to motivate a more expansive perspective on what constitutes an automated/au-
tonomous ML system, alongside consideration of how best to consolidate those elements. In doing so, we
survey developments in the following research areas: hyperparameter optimisation, multi-component models,
neural architecture search, automated feature engineering, meta-learning, multi-level ensembling, dynamic
adaptation, multi-objective evaluation, resource constraints, flexible user involvement, and the principles of
generalisation. We also develop a conceptual framework throughout the review, augmented by each topic, to
illustrate one possible way of fusing high-level mechanisms into an autonomous ML system. Ultimately, we
conclude that the notion of architectural integration deserves more discussion, without which the field of
automated ML risks stifling both its technical advantages and general uptake.

Additional Key Words and Phrases: Automated machine learning (AutoML); Bayesian optimisation; Sequential
model-based optimisation (SMBO); Combined algorithm selection and hyperparameter optimisation (CASH);
Multi-component predictive systems; Predictive services composition; Neural architecture search (NAS); Auto-
mated feature engineering; Meta-learning; Concept drift; Dynamic environments; Multi-objective optimisation;
Resource constraints; Autonomous learning systems; Artificial general intelligence (AGI)

1 INTRODUCTION
The field of data science is primarily concerned with the process of extracting information from
data, often by way of fitting a mathematical model. Data science, as an umbrella term for techniques
drawn from various disciplines, is agnostic as to who or what is driving that extraction. Indeed,
while much effort has been dedicated to codifying effective workflows for data scientists [104],
e.g. the Cross-Industry Standard Process for Data Mining (CRISP-DM) [61] and others [213], there
is no inherent restriction that forces any phase of the process to be manually applied.
Certainly, in the modern era, one element of data mining and analysis is almost ubiquitously

automated:model development, specificallymodel training. At one point in time, this was considered
a novel advance, with computers only just becoming capable of running model-updating algorithms
without human intervention. In fact, this form of automation was considered such a paradigm
shift that it birthed the term ‘machine learning’ (ML) in the 1950s [304], provoked debate on its
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“moral and technical consequences” [305, 360], and merged into the evolution of modern data
analysis [342]. Advances since then, both fundamental and technological, have only cemented
computational dominance of model development.

Now, more than 60 years beyond the dawn of ML, associated techniques and technologies have
diffused through society at large. While advances in graphics processing units (GPUs) and big data
architectures are credited with popularising deep neural networks (DNNs), abundant black-box
implementations of the backpropagation method have also played their part. In effect, the need for
human expertise to train complex inferential models has been lessened, and the last decade has
consequently witnessed data science moving towards democratisation [42]. The 2012 journal article
that is frequently credited with kicking off the DNN era sums it up well: “What many in the vision
research community failed to appreciate was that methods that require careful hand-engineering
by a programmer who understands the domain do not scale as well as methods that replace the
programmer with a powerful general-purpose learning procedure.” [212]
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Fig. 1. Schematic of a predictive ML process, namely supervised learning, with heavy user involvement. Solid
arrows depict dataflow channels. Dashed arrows depict control and feedback signals. Diamond arrow-tails
depict conditional flows, distinguishing between model training and deployment phases.

Despite all this, common practice has not yet seen widespread mechanisation along the rest of
the data science chain [76]. This can be seen by inspecting one typical workflow for running an
ML task, as represented in Fig. 1. For the sake of simplicity, this task is one of supervised learning,
but the depiction is similar for cases of delayed model-performance evaluation, e.g. unsupervised
learning and learning based on reinforcement. In brief, given a specific choice of model, it is routine
to train, validate and deploy the model on clean and informative datasets with ‘fit’ and ‘predict’
functionality that is provided by numerous coding packages. However, the typical data scientist
still has to select a model, an evaluation metric and a training/validation/deployment strategy, all
subject to human bias. As for data preparation, which combines cleaning and feature engineering,
it is a notorious manual time-sink [67, 213].
The field of ‘automated machine learning’ (AutoML) [25, 154, 170, 339, 374, 387] has firmly

established itself in recent years as a response to this; AutoML endeavours to continue mechanising
the workflow of ML-based operations. It is motivated by the idea that reducing dependencies on
human effort and expertise will, as a non-exhaustive list,

• make ML and its benefits more accessible to the general public,
• improve the efficiency and speed of finding ML solutions,
• improve the quality and consistency of ML solutions,
• enforce a systematic application of sound and robust ML methodologies,
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• enable quick deployment and reuse of ML methodologies,
• compartmentalise complexity to reduce the potential for human error, and
• divert human resources to more productive roles.

In fairness, the field as a whole must also grapple with the risks of automation, including
• increased obscuration of ML technical debt [310],
• inappropriate or unethical usage as a result of ML illiteracy [42],
• interpretability issues in high-stakes contexts [293], and
• adverse socio-economic impacts such as job displacement [358].

In this article, we motivate and discuss synthesising major threads of existing AutoML research
into a general integrated framework. Unlike other published reviews, we also broaden the scope to
capture adjacent research that has been, to date, barely or not at all associated with the AutoML
label, particularly in recent scientific literature. In effect, the aim of this review is to help inspire the
evolution of AutoML towards ‘autonomous machine learning’ (AutonoML), where architectures are
able to independently design, construct, deploy, and maintain ML models to solve specific problems,
ideally limiting human involvement to task setup and the provision of expert knowledge.
Importantly, we do not profess the optimality of any architecture. Given the breadth and mal-

leability of the field, it is unlikely that any one framework proposal will perfectly subsume all
existing AutoML systems, let alone future advances. On the other hand, the merits and challenges
of integration are best discussed with reference to concrete schematics. Thus, the literature review
in this article is accompanied by the graduated development of a conceptual framework, exempli-
fying the potential interplay between various elements of AutonoML. As a necessity, Section 2
lays the initial groundwork for this example architecture by considering the fundamentals of ML,
abstracting and encapsulating them as the lowest level of automatic operations.

The survey of AutoML begins in earnest within Section 3, which discusses the role of optimisation
in automating the selection of an ML model/algorithm and associated hyperparameters. Section 4
then discards an assumption that theMLmodel need be monolithic, reviewing optimisation research
for extended pipelines of data operators. This generalisation enables Section 5 to examine the
optimisation of neural architectures specifically, while Section 6 focusses on the pre-processing
elements of anML pipeline, exploring the automation of feature engineering. Subsequently, Section 7
investigates how model search can be upgraded by meta-knowledge, leveraging information from
external ML experiments, while Section 8 identifies the importance of ensembles and discusses
how their management can be mechanised.
The paradigm of AutonoML is finally introduced in Section 9, defined by the ability to adapt

models within dynamic contexts. This stimulates an examination within Section 10 of how the
quality of any one solution should even be determined. Section 11 then examines the challenge
of automating operations in low-resource settings, while Section 12 reviews efforts to reintegrate
expert knowledge and user control back into autonomous systems. The survey ends with an
acknowledgement in Section 13 of the drive towards one-size-fits-all AutonoML, drawing links
to the quest for artificial general intelligence. Finally, Section 14 concludes with a discussion
on the overarching technical challenges of integration, while remaining cognisant of the fact
that understanding and fostering general engagement with resulting technologies are complex
endeavours in their own right.

2 MACHINE LEARNING BASICS
At its core, standard ML is driven by the following premise: given a structured set of possible
‘queries’, Q, and a corresponding space of possible ‘responses’, R, there exists a mapping from one
to the other that is maximally desirable for some intended purpose, i.e. an ML task. For instance,
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one may seek a function from bitmaps to truth values for image classification, a function from
historic arrays to predicted scalar values for time-series forecasting, or a function from sensor data
to control signals for robotic operations. Naturally, for problems of interest, the optimal mapping
is typically unknown across the entire space of Q. Data scientists thus construct an ML model,
𝑀 : Q → R, to approximate this function, generalising where necessary, and then employ an
ML algorithm to configure the model. If the algorithm is any good at its job, it will systematically
acquire experience, learning from interactions with data so that the accuracy of the approximation
improves. This process is called model development.

Importantly, an ML model may exist in one of many operational modes across the duration of its
existence. Terminology and definitions vary greatly, but these include:

• Training – A mode in which the parameters of the ML model, typically in its initial state, are
tuned by its associated ML algorithm. Any data that supports this process is called training
data.

• Validation – A mode in which the accuracy of the ML model, given a selection of parameter
values, is evaluated. TheMLmodel converts incoming queries inQ to corresponding responses
in R, which are compared against expected values. The result is typically used to tune the
‘hyperparameters’ of an ML model/algorithm and estimate predictive performance; see
Sections 3 and 10, respectively. Validation data used in this process must be distinct from
training data and must also be bundled with expected responses.

• Testing – A mode similar to validation, but where evaluated accuracy serves to judge the
performance of a finalised ML model/algorithm for the ML task at hand. Testing data used in
this process must be distinct from training/validation data and must also be bundled with
expected responses.

• Deployment – Amode in which the MLmodel is put to practical use. It converts any incoming
query in Q to a corresponding response in R; these responses are used externally to fulfil the
intended purpose of the ML model, e.g. decision-making.

• Adaptation – A mode in which the parameters of the ML model, previously trained and
typically deployed, are re-tuned by its associated ML algorithm as a reaction to ML-model
quality decreasing over time. This mode requires multiple tests and streamed data; see
Section 9.

As a note, these modes are not necessarily independent. For instance, a rapid-deployment scenario
may begin using an ML model for practical purposes while that model is still being trained.
Regardless, any genuine AutonoML system must facilitate all the above modes of operation.
To exemplify some of these modes, Figure 2 provides an example of how model training and

ensuing model deployment can be managed by an automated system that acts in response to user
requests. In this example, a data scientist is tackling the standard task of linear regression, having
selected the simple linear function 𝑦 = 𝑎𝑥 +𝑏 and a least-squares estimator (LSE) as their ML model
and ML algorithm, respectively. The training of the linear predictor proceeds chronologically as
follows:

(1) The linear model is initialised with default parameters, e.g. (𝑎, 𝑏) = (1, 0).
(2–3) The user imports a training dataset into the ML system, which is collected in an inflow-

data buffer, awaiting further orders. Each data instance contains a model input, 𝑥 , and
an expected output, 𝑌 . As befits a regression task, 𝑌 is a continuous variable.

(4) The user orders the ML system via interface to begin training.
(5–8) The interface directs the LSE to begin training. The LSE signals back its training require-

ments. The interface, processing this, signals the inflow buffer to transmit the training



AutonoML: Towards an Integrated Framework for Autonomous Machine Learning 5

Linear Regression
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Fig. 2. An example of an ML system processing a linear regression task, i.e. training and deploying a linear
model subject to a least-squares estimator (LSE). Steps are numbered chronologically and detailed in Section 2.
Solid arrows depict dataflow channels. Dashed arrows depict control and feedback signals.

dataset to the LSE, which it does so. This is equivalent to calling a ‘fit’ method in a
standard ML coding package.

(9–10) The LSE, according to its internal biases, calculates parameter values corresponding to
the best linear fit for all provided (𝑥,𝑌 ) coordinates. It signals the model to update its
parameters to new values, e.g. (𝑎, 𝑏) = (2, 5).

(11–12) The LSE emits a training completion signal that is passed to the user.
The subsequent deployment and use of the linear predictor proceeds chronologically as follows:

(13) The user now orders the ML system via interface to deploy the trained model.
(14–15) The interface directs the inflow-data buffer to transmit incoming queries of the form 𝑥 to

the linear model. The resulting outputs of the form 𝑦 are allowed to propagate onwards,
e.g. to the user.

(16–18) The user imports a query dataset of 𝑥 values into the ML system, which is directly passed
to the linear model. This is equivalent to calling a ‘predict’ method in a standard ML
coding package.

(19–21) The model calculates and emits associated response values, 𝑦. These are propagated
onwards, e.g. to the user.

Figure 3 depicts a more complicated example of model development for an ML classification task,
still managed by an automated system driven by user requests. Here, a data scientist has selected a
multi-layer perceptron (MLP) as their ML model, training it via genetic algorithm (GA). Unlike the
LSE of the previous example, the GA operates in an iterative manner and requires its parameter
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Multilayer Perceptron (MLP) Classification
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Fig. 3. An example of anML system processing a multi-layer perceptron (MLP) classification task, i.e. updating
a population of MLPs subject to a genetic algorithm (GA). A logistic-loss function is used to evaluate MLP
accuracy. Steps are numbered chronologically and detailed in Section 2. Solid arrows depict dataflow channels.
Dashed arrows depict control and feedback signals.

selections to be evaluated as part of the training process; the user has thus selected a classification-
appropriate logistic-loss evaluator for this purpose. Due to the complexity of portraying a dynamic
process within a static representation of ML architecture, Fig. 3 only shows one iteration of training.
It assumes that the user has already acquired a set of four MLP instances, each with their own
unique values for parameters, i.e. neural connection weights and biases. The update of the MLP
‘population’ proceeds chronologically as follows:

(1–2) The user imports a training dataset into the ML system, which is collected in an inflow-
data buffer, awaiting further orders. Each data instance contains a model input, 𝑥 , and
an expected output, 𝑌 . As befits a classification task, 𝑌 is a categorical variable.

(3) The user orders the ML system via interface to begin updating the model.
(4–5) The interface directs the GA to apply an iteration of training. The GA signals back its

training requirements.
(6–9) The interface directs the inflow buffer to transmit available training inputs, 𝑥 , to the

MLP population. The interface also signals expected and actual MLP outputs, 𝑌 and 𝑦,
respectively, to be sent to the logistic-loss evaluator; 𝑌 is transmitted immediately.

(10–13) For each MLP within the current population, the model transforms input 𝑥 into categori-
cal variable 𝑦, which is then compared against expected output 𝑌 . A logistic-loss score is
determined per MLP.
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(14–17) The GA, registering the parameters and associated accuracy scores of each MLP model,
selects parameters for a new population of MLPs. This selection is driven by elitism,
crossover, mutation, and other principles relevant to the GA.

(18–19) The algorithm emits a feedback signal to the interface, detailing the completed process.
The interface propagates this signal back to the user or any other external ‘listeners’.

It should be noted that standard GA training continues to reiterate steps 4–19 for the same training
inputs and expected outputs until some stopping criterion is met, such as a time limit. Subsequently,
only the best performing model from the population is typically selected for deployment at the
end of training, although an implementation may choose to keep the other models in memory for
various reasons.

These are but two examples among a great diversity of ML tasks, yet they already reveal
commonalities to be incorporated into any inclusive framework. Specifically, an ML model is
essentially a data transformation, whether as complex as an MLP or as simple as a linear function.
Correspondingly, an ML algorithm is a parameter controller for this data transformation; it has
full knowledge of the model and, during a model development phase, can assign values to all of its
parameters.

With these notions in mind, we now introduce the schematic shown in Fig. 4, which we propose
to represent the foundation for an automatedML system: an ‘ML component’. Crucially, this concept
should already be familiar to any AutoML developer, serving as an encapsulation that is amenable
to substitution and, in advanced frameworks, concatenation; see Section 4. For simplicity, we will
currently assume that a predictive system revolves around a solitary ML component. Additionally,
while the schematic may appear complex, much of it is but a wrapper dedicated to providing a
flexible interface for its two central elements: the data transformation and its associated parameter
controller. Certainly, as the aforementioned LSE and GA examples show, not all depicted signals
and dataflow channels are necessary, let alone active, in all contexts. Similarly, it is generality that
motivates the use of a set-based container around the data transformation when coupling to a
parameter controller. This is justified by Fig. 3 demonstrating that some ML algorithms work with
multiple copies of an ML model. In essence, while we do not necessarily advocate Fig. 4 as the
perfect way to structure an ML component, any alternative framework for truly generic AutoML
should facilitate the same depicted processes, communications, and supported scenarios.

We begin detailing Fig. 4 by describing and justifying core interactions. Automated model devel-
opment requires the parameter controller to be cognisant of all transformation properties, as well as
possess the ability to tune parameters and, in some cases, be able to construct/delete transformation
objects. Notably, these qualities are already implicit within many existing ML coding packages that
treat a model object as an output of an algorithm object. However, the Fig. 4 schematic suggests
that a data transformation and parameter controller should inherently be on equal footing; there
is no theoretical reason why an ML model cannot be initialised alongside an ML algorithm using
default values, e.g. the identity function 𝑦 = 1𝑥 +0 for linear regression. Even grown/pruned models
with a variable number of parameters, sometimes called constructivist/selectivist models [119],
have initial states. Default values may not be predictively powerful, but at least this representation
supports the ‘anytime’ validity of an ML model that is required by rapid-deployment AutonoML;
see Section 9.
Now, standard ML assumes that a data scientist is responsible for plugging in a combination

of ML model and ML algorithm that is well suited to their objective and data, before driving the
ML component through the various high-level operating modes described earlier. Each phase of
operation may involve a different way of directing data around the component. For instance, certain
ML algorithms may need to operate on data during initial training, such as the LSE portrayed in
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Fig. 4. A general schematic of an ML component, wrapped around a data transformation and its parameter
controller. A component interface communicates with external systems and the parameter controller, relaying
directions to a pair of data controllers. The data controllers channel inflow and outflow data according to
model development/deployment needs, while an accuracy evaluator assesses transformation quality based
on supervised-learning data. Accuracy evaluations are directed to the parameter controller or the interface
depending on whether they are sought as part of a learning or testing process. Solid arrows depict dataflow
channels; thick arrows denote dataflow during deployment. Dashed arrows depict control and feedback
signals.

Fig. 2, while ML-model outputs may need to be held back from a user prior to a deployment phase,
as exemplified by the GA-based training shown in Fig. 3. The schematic in Fig. 4 therefore includes
an inflow-data controller (IDC) and an outflow-data controller (ODC) to disallow or distribute
dataflow as required. In turn, these requirements are dictated by a component interface, which
interprets instructions from external systems, or the user, and then translates them into lower-
level directives that are disseminated as control signals. The interface also returns any relevant
operational feedback to the source of external requests.

A generic ML component must additionally support an accuracy evaluator, allowing the quality
of a data transformation to be assessed by comparing its outputs against expectation whenever
available. In the Fig. 4 schematic, this module is wrapped up within the ML component and managed
by the interface. As with the parameter controller and associated transformation, the contents of this
evaluator vary by ML task, e.g. the logistic-loss calculator in Fig. 3. Moreover, it is possible that an
ML component need not always instantiate the accuracy evaluator; certain ML models/algorithms
seek novel patterns in inflow data for which the traditional concept of accuracy makes no sense.
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Returning to the topic of operating modes, what a user wants at a high level may not always
project neatly into the lower level of an ML component. Even variations between ML models/algo-
rithms can result in divergent processes, as demonstrated by the differences in training between
the aforementioned LSE and GA examples; the latter employs calls to an accuracy evaluator as
part of its internal learning procedure. This is why the component interface needs to translate
concepts such as training and deployment, with regard to specific classes of ML model/algorithm,
into combinations of atomic low-level directives. The following is one such proposal:

• ‘Update’ – Request the parameter controller to continually tune the transformation set until
some stopping criteria is reached. Direct the IDC to distribute inflow data in any way that
supports the parameter-controller algorithm.

• ‘Validate’ – Direct the IDC to pass input data to the transformation set, then direct the
IDC and ODC to distribute expected output and actual output, respectively, to the accuracy
evaluator.

• ‘Propagate’ – Direct the IDC to pass input data to the transformation set, then direct the
ODC to propagate the output further downstream.

In any implementation, these calls will likely be paired with further arguments to, for example,
specify which batches of inflow data should be used for each process.
Given this basis set of low-level operations, a high-level request for model deployment is the

most trivial to translate, mapping simply to a ‘propagate’ call. Steps 13–15 for the LSE example in
Fig. 2 demonstrate the relevant signals, while steps 16–21 depict deployed-model dataflow. The
only implementational challenge is ensuring that the IDC can filter inflow data appropriately and,
in the case of transformation plurality, identify the right ML model to feed with input data. All of
this can be handled by the interface relaying signals from the parameter controller over to the IDC,
specifically detailing the properties of the transformation set.

Similarly, high-level desires to validate or test an ML model, usually differing by which subsets of
available data are used in the process, map directly to the ‘validate’ directive. The accuracy evaluator
is responsible for this procedure, comparing transformed inputs with expected outputs. Both higher-
level modes, i.e. validation and testing, usually serve to inform the user about the quality of an
ML model/algorithm, which is why Fig. 4 depicts ‘testing-driven’ evaluations being sent to the
component interface for external dissemination. This contrasts with the case of ‘validate’ calls being
part of model development, wherein accuracy evaluations are ‘learning-driven’ and sent directly to
the parameter controller so as to advise the ML algorithm in tuningML-model parameters. This is an
important nuance; rolling validatorymechanisms into the learning process can result in dramatically
different training runs, even with the same ML model/algorithm/evaluator [117]. Different ways of
mixing the same underlying ML algorithm with learning-driven accuracy evaluation can potentially
be encapsulated by an extra hyperparameter; see Section 3.
As an additional point of note, the high-level validation of an ML model/algorithm is typically

involved, commonly requiring repeat training/validation runs on multiple resamplings of inflow
data. Two examples of this process are k-fold cross-validation and out-of-bootstrap validation.
Alternatively, multiple stochastic iterations can be avoided with methods that construct a represen-
tative sample [50–52], i.e. a subset that preserves the statistics of the superset, but these require
additional dataset analysis. Again, we do not advocate for any particular implementation here;
developers may decide whether responsibility for the management of a cross-validatory process,
for example, falls to the component interface or to a higher level. However, the cleanest delegation
of responsibility suggests that the interface should only direct operations per received data sample,
with the management and aggregation of all resamplings taking place outside of the ML component,
as elaborated in high-level schematics within Section 3.
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Ultimately, operation modes that involve model development, i.e. the ‘update’ directive, are
where complexities truly arise. For a general ML system, the interface must be flexible enough not
just to direct the parameter controller to tune the transformations but also to understand what it
needs for that tuning procedure. This communication via parameter control signals and parameter
controller feedback is demonstrated by steps 5–6 for the LSE example in Fig. 2. In general, training
requirements can vary dramatically, given that numerous parameter selection strategies exist, with
differences depending on the properties of dataflow, selected model and intended task. However,
without any inputs beyond the properties of the ML model itself, an ML algorithm can do nothing
but blindly guess at transformation parameters. Hence, the simplest extension is to allow the IDC
to pass ‘instructional data’ to the parameter controller, as demonstrated by step 8 from the LSE
example. Instructional data can be thought of as training data, but also crucially includes data used
to evolve a model during adaptation, an important concept explored within Section 9. Notably, not
all ML algorithms need instructional data, as the GA example in Fig. 3 demonstrates. However, to
constitute a learning process, random parameter guesses must eventually be improved by some
form of data-driven feedback, whether immediately calculated by an accuracy evaluator or supplied
by a delayed evaluation downstream. This is why the Fig. 4 schematic provides two sources for
learning-driven accuracy evaluations.

Once mechanisms for instructional dataflow and accuracy evaluations are fully incorporated, the
ML component in Fig. 4 becomes capable of encompassing an extensive variety of ML scenarios.
These include the following types of learning:

• Unsupervised Learning – An ML algorithm generates an ML model purely from instructional
data, without being provided any external guidance in the form of an expected Q → R
mapping. The ML model is thus completely subject to the internal biases of the ML algorithm.
Although there are methods to quantify model quality with respect to the intent behind
certain algorithms, there is no intrinsic accuracy to evaluate, i.e. there is no ‘ground truth’.

• Supervised Learning – ML-model inputs arrive packaged with expected outputs, i.e. labels or
target signals. An ML algorithm can learn from these directly, as instructional data, and/or
indirectly, via accuracy evaluations that compare model outputs with expected outputs.

• Reinforcement Learning (RL) – Expected Q → R mappings are not available, but the quality
of different parameter selections are still comparable, with an indirect ‘reward’ metric guiding
improvement. Some RL strategies can derive this heuristic from instructional data, but, more
commonly, model outputs must be assessed downstream with the evaluation then returned
to the algorithm.

Hybrids of these scenarios are also represented, such as semi-supervised learning, for which training
data arrives as a mixture of labelled and unlabelled instances. Semi-supervised learning typically
leverages statistical information from the latter to improve the predictive knowledge afforded by
the former. In all cases, learning procedures are mostly internalised by the parameter controller, if
not entirely, no matter if they formulaically compute ML-model parameters, e.g. the LSE, or do so
in iterative fashion, e.g. k-means clustering.
As a side note, it is worth highlighting that the representational generality provided by the

Fig. 4 schematic does mean that instructional data and transformation-input data can often occupy
different vector spaces. This is obvious in most forms of supervised learning, where ML algorithms
train on Q × R while ML models operate in Q-space. Unsupervised learning algorithms are much
more varied. While k-means clustering may both train and deploy on Q, the Apriori algorithm
used in association learning is a radically contrasting example; the ML algorithm operates on sets
of objects, while the ML model operates on queries depicting implication rules. The two do not
inherently embed within the same vector space. Consequently, within the Fig. 4 representation, the
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interface-supported IDC must be capable of identifying and redirecting heterogeneously structured
data into the appropriate channels.

At this point, there are a few miscellaneous comments to add about the ML component depicted
in Fig. 4. First of all, just as accuracy evaluations can be received from downstream, they can also be
augmented and propagated upstream, hence the inclusion of the ‘propagated accuracy evaluation’
arrow in the schematic. This enables representation of automatic differentiation techniques, such
as backpropagation, but these cannot be discussed until considering multiple components, done
in Section 4. Secondly, the ability to keep multiple ML-model instances within memory via the
transformation set implies that, with appropriate upgrades for the ODC, homogeneous ensembling
could be implemented internally within an ML component. Discussion on ensembles in general
is delayed until Section 8. Finally, closer inspection of the GA example in Fig. 3 suggests that
the deletion/construction of MLP objects in steps 16–17 is superfluous when simply changing
the parameter values of the existing MLP population would be sufficient. However, in so doing,
the example demonstrates via steps 18–19 how an ML component could communicate with an
external resource manager, distributing new model instances across available hardware. Resource
management in the ML context is discussed in Sec. 11.

In summary, the schematic in Fig. 4 broadly captures standard ML operations, including learning
that is unsupervised, supervised, and reinforcement-based. Within this context, automation of
the parameter controller, i.e. model training/development, is essentially what spawned the field
of ML. However, it is important to note that the same ML model can be tuned by many different
ML algorithms. For instance, a linear function may be tuned via formulaic parameter estimation,
e.g. with the LSE or Theil–Sen regression, or via an iterative method, such as is typically done for
training a perceptron. Additionally, with so many forms of data transformation to choose from, the
question arises: given a particular ML task, which ML model/algorithm should a data scientist use?
The attempt to answer this question in a systematic manner is the foundation of AutoML.

3 ALGORITHM SELECTION AND HYPERPARAMETER OPTIMISATION
The modern use of the abbreviation ‘AutoML’ to represent the field of automated machine learning
arguably stems from a 2014 International Conference on Machine Learning (ICML) workshop.
Specifically, while automating high-level ML operations has broad scope and thus an extensive
history, as will be discussed in other sections, it was around this time that, fuelled by a series of
advances in optimisation strategies, it became not just feasible but also effective to leave the selection
of an MLmodel/algorithm up to a computer. Accordingly, with the optimisation community seeding
the modern narrative of automation in ML, this is a logical starting point when discussing the
evolution of standard ML into AutoML.

First, though, a caveat: while we have made an explicit distinction between an ML model and an
ML algorithm, or a parameter controller and data transformation in Fig. 4, scientific literature in
the field of ML can be loose with terminology [316]. Given how closely models are coupled with
their training algorithms, e.g. ‘support vector machine’ (SVM) often referring to both, sections of
the ML community use ‘algorithm selection’ and ‘model selection’ interchangeably. In practice,
model/algorithm selection refers to a data scientist or high-level system swapping out an entire ML
component for another, seeking a pairing of ML model and ML algorithm that is optimal for the
task at hand.

Semantics acknowledged, the algorithm-selection problem is far older than the current wave of
AutoML research, with its conception often attributed to the 1970s [286]. It was originally posed
in fairly abstract terms, seeking a general framework that, given a set of problems and a set of
problem-solving algorithms, could identify an optimal algorithm for each problem, according to
some specified measures of performance. However, at the time and within the ML context, there was
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no feasible procedure to both systematically and efficiently search such an arbitrarily large space.
After all, applying an ML algorithm and training a single ML model could already take significant
time, especially on the hardware of that era. Nonetheless, with theory and technology progressing
over the decades, research attention turned to a limited form of model selection: hyperparameter
optimisation (HPO) [68, 373].

Whereas a parameter of an ML model is a degree-of-freedom tuned by an ML algorithm during
model development, a hyperparameter is a characteristic of either the model or algorithm that
is set to a fixed value at initialisation. For example, with respect to a typical DNN trained via
backpropagation and stochastic gradient descent (SGD), neural connection weights are parameters,
while network size and the SGD learning rate are both hyperparameters. As a side note, distinctions
have occasionally been drawn between model-based and algorithm-based hyperparameters, e.g. the
latter being called ‘training tunables’ [74]. Whatever the case, it is quickly evident that hyperpa-
rameters already define an extensive space of variation within a fixed class of models/algorithms.
Systematically comparing two distinct types of model, like an SVM against anMLP, adds yet another
layer of challenge. It is for this reason that, right up until the dawn of the modern AutoML era,
researchers have sometimes used ‘model selection’ in a more limited sense, i.e. strictly in reference
to tuning hyperparameters for fixed model types [59, 269].

Critically, hyperparameters can have a major effect on the suitability of a data transformation for
any particular dataset. This would seem obvious, andML novices are often taught early on to explore
model performance under hyperparametric variation, yet this lesson remains commonly enough
ignored to justify warnings against the use of default hyperparameter values [20]. Emphasising the
surprising novelty of this point, recent publications in the field of software defect prediction have
likewise announced that default classifier settings can perform poorly [280, 333, 334]. In fairness,
identifying that hyperparameters can define a poor model/algorithm is far easier than finding good
ones; this is the goal of HPO.
Typically, HPO is expressed as a minimisation problem for a loss function, 𝐿, as calculated for

an ML model/algorithm, 𝐴, that is applied to sets of training and validation data, 𝐷train and 𝐷valid,
respectively. Model/algorithm 𝐴 is itself dependent on a set of hyperparameter values drawn from
a structured space, i.e. _ ∈ Λ. Some form of cross-validation is also often involved, drawing 𝐷train
and 𝐷valid 𝑘 times from a larger dataset to statistically average loss. With this notation, HPO is
written as

_∗ ∈ argmin
_∈Λ

1
𝑘

𝑘∑︁
𝑖=1

𝐿(𝐴_, 𝐷
(𝑖)
train, 𝐷

(𝑖)
valid). (1)

The most standard approach to this problem, especially when manually applied, is a grid search
through hyperparameter space. Another relatively simple alternative is random search, which tends
to find more accurate models much more efficiently [31]. Some packages, e.g. H2O AutoML [146],
are content to use grid/random search for model selection on the balance of performance versus
complexity.
The development of HPO algorithms that incorporate exploitation, not just exploration, has

historically been quite gradual. Many attempts would restrict themselves to hyperparameters
with continuity and differentiability conditions; these include gradient-based methods [28] and
bi-level optimisations over combined parameter/hyperparameter spaces [29]. However, among
HPO efforts, Bayesian-based approaches began to appear particularly promising, often assessed
against frequentist methods due to the overlap between ML and the field of statistics [144, 182].
Bayesian optimisation (BO) [314] is usually considered to have been birthed in the 1970s [255],

although foundational concepts were explored much earlier. A core idea behind the approach,
introduced at least a decade earlier [214], is to use stochastic processes to approximate unknown
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functions. These approximators are sometimes called surrogate models or response curves [180].
Plenty of literature has been dedicated to analysing surrogates and their utility [88, 165, 168],
although Gaussian processes remain a traditional standard. Regardless, once a surrogate has been
chosen, BO uses this approximation to drive iterative evaluations of the unknown target function,
with each exploration coincidentally tightening the fit of the surrogate. Technically, each evaluation
is advised by an ‘acquisition function’ based on the surrogate, which estimates the benefit of
evaluating any point along the unknown function. A commonly used metric for this is ‘expected
improvement’, although alternatives have been proposed, such as ‘entropy search’ [156], which
focusses on maximising the information gained about an optimum rather than simply moving
closer towards it. More in-depth details about BO can be found in tutorials elsewhere [48].

In the meantime, in parallel to BO gradually developing as a feasible approach for standard HPO,
the ML community began to return to the question of full model/algorithm selection, with the 2006
Neural Information Processing Systems (NIPS) conference organising an early challenge dedicated
to this topic [145]. As a result, possibly the first method for full model search was published not
long after [99]. It was based on particle swarm optimisation (PSO) and even tackled the more
ambitious problem of multi-component ML models, discussed later in Section 4.
However, from a model-search perspective, the genesis of the modern AutoML era is often

synonymous with crucial advances in BO. Specifically, while some HPO strategies could handle
issues caused by mixing continuous and categorical hyperparameters, conditional values were
more challenging. For instance, if one hyperparameter denotes the kernel that an SVM employs,
a value of ‘polynomial’ requires a polynomial-degree hyperparameter to also be chosen. Simi-
larly, a ‘radial basis function’ value opens up the use of a Gaussian-width hyperparameter. In
effect, the hyperparameter space for many models/algorithms resembles a complex hierarchical
tree. Nonetheless, once these conditional hyperparameters could properly be treated [169], a new
method for generic HPO was published, namely Sequential Model-based Algorithm Configuration
(SMAC) [167], which uses random forests as surrogates for unknown loss functions that operate on
hierarchical domains. Incidentally, the SMAC publication also popularised the phrase ‘sequential
model-based optimisation’ (SMBO) to describe the Bayesian-based procedure. Two search meth-
ods produced soon after, namely the Tree-structured Parzen Estimator (TPE) approach [34] and
Spearmint [318], are both considered to be popular SMBOs, although the latter was notably not
designed to handle conditional parameters.
Full model search was quickly identified as a natural extension of HPO. In 2013, the combined

algorithm selection and hyperparameter optimisation problem (CASH)was formalised [338], written
as

𝐴∗
_∗ ∈ argmin

𝐴( 𝑗 ) ∈A, _∈Λ( 𝑗 )

1
𝑘

𝑘∑︁
𝑖=1

𝐿(𝐴 ( 𝑗)
_

, 𝐷
(𝑖)
train, 𝐷

(𝑖)
valid), (2)

where the optimisation is applied across all ML models/algorithms of interest, 𝐴 ( 𝑗) ∈ A, and their
associated hyperparameter spaces, Λ( 𝑗) . However, the important insight bundled into CASH was
that combinations of ML model and ML algorithm could be described as just another categorical
hyperparameter at the root of a hierarchical tree [35, 338]. This meant that generic SMBO algorithms
like SMAC and TPE could be applied directly to varying model/algorithm types. Accordingly, 2013
marks the release of the first AutoML package based on SMBO, namely Auto-WEKA [338].
Crucially, Auto-WEKA popularised a form of modularity that has essentially been ubiquitous

across AutoML packages, wherein the mechanism for solving HPO/CASH acts as a high-level
wrapper around low-level ML libraries, these often being produced by third-party developers.
Indeed, as the name implies, Auto-WEKA applies its selection method to a pool of classification
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algorithms implemented by the WEKA package. In effect, or at least if implemented well, the
optimisation routine can be abstracted away from ML-model particulars.
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Fig. 5. A high-level schematic of a minimalist AutoML system, demonstrating how a CASH-solver can be
incorporated in place of manual model selection within an ML platform. An interface allows a user to describe
a desired ML task, along with inputs and outputs to the system. Once the task is interpreted, with relevant
constraints passed onwards, a solution planner advises a CASH-solving optimiser in terms of transformation
availability and associated ML-solution search space. The optimiser proceeds to iteratively select candidates
for an ML solution, instructing a factory to instantiate relevant ML components. An evaluator serves to
assess these candidates, while a data distributor feeds training/validation data to the ML components during
assessment. The distributor also propagates queries once optimisation concludes and an ML solution is
deployed. Every ML component contains a data transformation (T), a parameter controller (PC), a component
interface (CI), controllers for inflow/outflow data (IDC/ODC), and an accuracy evaluator (AE). Dashed arrows
depict control and feedback signals. Solid arrows depict dataflow channels. Block arrows depict the transfer
of ML components.

For illustrative purposes, a variant of this design pattern is shown in Fig. 5, applying model
selection via optimisation to a library of transformations and their associated training algorithms.
In this example, a user interface (UI) for the AutoML system fields user requests, such as the desire
to run a classification task. Abstractly put, the user must also link the system to input/output
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(IO) and ensure that this IO is sufficiently described, e.g. where the data sources are, what their
formats are, where model responses should be sent, and so on. This provided context allows
developmental/query data to be propagated as requested by a data-distributor module.

Central to Fig. 5, and any modern AutoML system, is the ML-solution optimiser, e.g. an implemen-
tation of SMAC. Systems vary in how much flexibility a CASH-solver is afforded, so the schematic
includes an ML-task analyser that passes optimisation constraints onwards, e.g. time allowed per
iteration. Often, this analysis can also provide some hard constraints on the ML solution to be
expected, e.g. excluding regression-based models for a classification task. These constraints must
be examined in the light of which data transformations are available to the AutoML system, so an
ML-solution planning module is tasked with actually detailing the search space to the optimiser.

From here, the encapsulation of ML models/algorithms with their low-level control/management
mechanisms, detailed in Section 2, makes HPO convenient to depict. During optimisation, the CASH-
solver iteratively directs a factory to instantiate ML components according to multi-dimensional
hyperparameter guesses, with types of ML model/algorithm included in the selection process. Each
ML component becomes a candidate ML solution, with the optimiser deciding when to delete it.
During each iteration of optimisation, a high-level evaluator is tasked with assessing the candidate;
it directs the ML component via interface to undertake an evaluation procedure, using data that is
simultaneously sent to its IDC. As Section 2 implied, this is where it seems most logical to automate
cross-validatory mechanisms. Finally, when the optimiser hits its stopping criteria, it ensures that
the optimal ML component it found is constructed and then signals it to train on a complete set of
developmental data, requested from the data distributor. When this is finished, it signals the ML
solution to deploy, requesting the data distributor to pass on any incoming queries, and the ODC
of the ML component subsequently outputs all responses.
As before, we do not claim that this is necessarily the best way to partition AutoML processes

into modules and network them up, particularly from an implementational perspective. Deeper
commentary on the challenges of integration is provided in Section 14. Moreover, bespoke frame-
works arguably do not need this level of complexity, e.g. a restrictive transformation library may not
require a planner to constrain search space. However, if the field of AutoML is dedicated towards
automating an increasing spectrum of user-desired ML operations, all concepts depicted in Fig. 5
must be integrated in some fashion.
Returning to SMBO methods in general, research and development continued in the years

following the release of SMAC [240]. One of the earliest aims of the sub-field was to decide whether
some SMBO strategies could find optimal models faster and more accurately than others. As
Eqs (1) and (2) show, this is not a trivial question; a loss function is critically dependent on the
data used to train and validate a model. Thus, Python-based benchmarking library HPOlib was
proposed to standardise this [95]. It was used in conjunction with several search strategies built
around SMBO package Hyperopt [33], which only implements TPE by default, to make preliminary
assessments [32], although these served more as a proof of concept than strong recommendations
for any one SMBO method. Subsequent attempts by the ML community have attempted to mitigate
the resource costs of benchmarking [96], discuss ways of ranking the SMBO methods [79], and
assess strategies within specific contexts such as multi object tracking [243]. Of course, Hyperopt
is only an early entry among several libraries that provide SMBO implementations. For example,
an R-based machine-learning toolbox for model-based optimisation (mlrMBO) extends into multi-
objective optimisation [40], while Python-based Sherpa prioritises parallel computation [157].

Other non-Bayesian strategies have also shown promise for both HPO and CASH. Evolutionary
algorithms such as PSO and GA have been heavily investigated [55, 99, 126], shown to perform
better than gradient-based methods in certain nonlinear contexts [81], although their advantages
are most discernible for multi-component ML models, discussed in Section 4. A lot of recent focus
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has also gone into reinforcement-based strategies. Although RL becomes particularly pertinent
for neural network design [21, 386], discussed in Section 5, the long-studied multi-armed bandit
(MAB) problem [309, 337] has been linked in general fashion to HPO. This has led to a number of
MAB-based solvers being proposed, e.g. the multi-armed simultanous selection of algorithm and its
hyperparameters (MASSAH) method [94] and the more recent Hyperband [230]. Accommodating
the HPO setting does often require certain MAB assumptions to be tweaked, such as treating the
performance ‘reward’ of selecting an ‘arm’, i.e. model, as non-stochastic [174]. Other research has
continued relaxing assumptions, such as exploring nonstationary contexts where the performance
reward may change over time [250]; this is perhaps relevant to the selection of ML models/algo-
rithms in the context of adaptation, discussed in Section 9. Notably, attempts have also been made
to fuse Bayesian theory with MAB strategies, such as using correlations between arms to advise
subsequent arm-pulls [159], and one such culmination of these efforts is the BO-HB method [101],
which aims to balance the exploitation of Bayesian optimisation with the exploration of Hyperband.
Then there are even more exotic variants for CASH, such as combining RL with Monte Carlo tree
search (MCTS) [86].
Regardless of CASH-solver chosen, it is commonly accepted that searching for a task-optimal

ML component, i.e. model/algorithm, is extremely computationally expensive, likely to take hours
if not days on modern hardware. Accordingly, it has been suggested that, even in the more limited
case of HPO, where research once prioritised over-fitting avoidance, the big-data era has shifted
focus to search efficiency [242]. Meta-learning, discussed in Section 7, has been suggested as one
possible way to boost the selection of ML models/algorithms, such as pruning hyperparameter
space based on previous experience [362]. However, in the absence of external information, other
speed-up mechanisms have been sought.
Some researchers have suggested that the easiest way to reduce search space is to simply

design useful ML models/algorithms with fewer hyperparameters [171]. Even decomposing CASH
once more into smaller independent subproblems, as is done via the alternating direction method
of multipliers (ADMM), has had appeal [235]. Others have focussed on the hyperparameters
themselves, assessing their impact on ML models/algorithms either in general [278] or in specific
contexts, such as with random forests [279]. The hope is that identifying ‘tunable’ hyperparameters,
i.e. ones that model performance is particularly sensitive to, will allow other settings to be ignored,
constraining search space. This is also the motivation behind several analysis of variance (ANOVA)
studies [166, 370]. However, all such investigations acknowledge the choice of training datasets as
complicating factors, making it difficult to generalise tunability results.
Complementary to constraining search space is cutting off unpromising forays via early ter-

mination. In simplest form, this is abandoning a search if the performance of an evaluated ML
model/algorithm is not bettered after a subsequent number of selections [370]. A more involved
approach for CASH-solvers that parallelise evaluations is to initially test a large sample of hyperpa-
rameter configurations, maximising exploration, and then gradually decrease the size of subsequent
samplings, thus honing in on the best-performing models [101, 230]. This is often bundled with a
resource allocation strategy, e.g. of training time, so that a fixed budget is spread less thinly across
fewer candidate models when they are expected to be better performing.
Engineering search-boosts can also target lower-level aspects, such as the training/validation

time it takes to evaluate a single candidate model. For instance, in the 1990s, Hoeffding races
were proposed as one way to discard poorly performing models quickly during cross-validation.
Specifically, confidence bounds on model accuracy would be updated per iteration of training/-
validation, with any model being immediately eliminated from contention if its maximum bound
fell below the minimum value of any competitor [247]. Feedback-driven ML algorithms, such as
backpropagation-based SGD, are similarly open to interruptions prior to completion; learning curve
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extrapolations have been explored as quick estimates of final model performance [82], allowing for
early termination.
Naturally, the logical extreme of speeding up training/validation is to constrict the data itself.

Even a small subsample can indicate the expected performance of a fully-trained model [275],
especially if the sample is density-preserving and reflects the characteristics of the full dataset [50–
52] or involves some bootstrapping technique [12, 13]. Hence, similar to a graduated allocation
of training time, some HPO strategies use an increasing amount of training data for sequential
model evaluations, honing in on better performing regions of hyperparameter space after cheap
exploratory estimates [357]. Sometimes, for CASH, this is coupled with other iterative updates,
such as progressively decreasing the pool of ML model/algorithms to explore [240, 381].

Further efficiency upgrades may be possible depending on CASH-solver specifics. For instance,
the acquisition function used by SMBO methods is a prime target for augmentation. Metrics such
as ‘expected improvement per second’ and similar variants have been shown to guide BO away
from regions of hyperparameter space where evaluations are estimated to be time-expensive [317].
A more recent example involving a method called Fast Bayesian Optimisation of Machine Learning
Hyperparameters on Large Datasets (FABOLAS) gives itself the freedom to select how much of
a dataset a model should be trained on; the subsample size is factored into its entropy search
metric, forcing BO to balance the desire for more instructional data against the desire for cheap
model training [202]. Notably, although the idea veers towards meta-learning principles discussed
in Section 7, entropy search has also previously been boosted by factoring correlations between
related tasks [331].
On a final practical note, upon appreciating that the field of HPO is constantly evolving, devel-

opers intent on designing AutoML systems may ask; what CASH-solver should I plug into my
codebase according to the state of knowledge as of 2020? According to recently published com-
prehensive benchmarking, the state-of-the-art answer is BO-HB, assuming well-behaved datasets
where random subsamples are representative of the whole [373]. Alternatively, for ML tasks with
data sources that do not obey those statistics, the same survey advises BO strategies for small
hyperparameter spaces and PSO for large ones. These suggestions appear to be a good rule of thumb,
although the sparsity and limitations of benchmarking studies still preclude any encompassing
conclusions.

In summary, AutoML, as it has been popularised, is inextricably linked to the topic of optimisa-
tion. Whereas standard ML and its search for model parameters can be encapsulated within an
ML component, AutoML has sought ways to automate the selection of an ML component itself.
Accordingly, ML software is rarely considered an AutoML package unless it has implemented
some form of CASH-solver at a high level, and ongoing research continues to seek efficiency gains
in this area. However, in under a decade, AutoML has come to represent ambitions far beyond
CASH. A recent publication has even pointedly suggested that HPO may not be necessary for
high-performance AutoML [98]. In effect, the scope of the field is both fluid and expansive, en-
compassing anything that may benefit the desires of an ML practitioner; this is not limited to
maximising ML-model accuracy and minimising runtime. For instance, some users and ML tasks
may require ML models/algorithms with significant complexity. In these cases, one ML component
may no longer be an effective representation for an entire predictive system.

4 MULTI-COMPONENT PIPELINES
The purpose of ML, as expressed in Section 2, is to algorithmically ingest data in some fashion
to inform the production of a maximally desirable mapping from a query space to a response
space, i.e. 𝑀 : Q → R. While we have thus far implicitly treated 𝑀 as a simple singular object,
the reality is that ML tasks can involve substantially complicated ground-truth functions; users
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may need to employ correspondingly complex ML models to have any reasonable chance at a good
approximation. The problem with this is that arbitrarily general nonlinear mappings are intractable.
Complex ML tasks can only be attacked by chaining together simpler data transformations that
are individually well understood and better behaving, if not outright linear. Of course, it is still a
significant challenge to form an ‘ML pipeline’ of well-tuned components that, when concatenated,
acts as a good ML model for a task at hand. So, with AutoML successful in tackling standard CASH,
the natural extension is to automate the construction of a multi-component predictive system
(MCPS) [300, 303].

However, as before, it is worth highlighting semantic ambiguities first. An example of a standard
three-component ML pipeline is one that transforms data defined in a query space, pre-cleaned for
convenience, through two intermediate ‘feature’ spaces and into the response space, i.e. 𝑃1+2+3 :
Q → F1 → F2 → R. Some data scientists would consider the final segment of this ML pipeline,
sometimes called a predictor, to be an ML model, e.g. an evaluable classifier/regressor, while
the previous two segments would be called pre-processors, e.g. feature engineers. Deep-learning
specialists may alternatively call the entire ML pipeline an ML model, in recognition of feature-
generating layers being internal to a convolutional neural network (CNN), as well as the fact that a
singular backpropagation-based algorithm typically trains all of its layers. We avoid this debate; the
abstract language of ‘ML components’, ‘data transformations’ and ‘parameter controllers’ enables a
conceptual AutoML architecture to represent an encompassing range of ML scenarios.
Indeed, given the ML-component wrapper introduced in Section 2, it is relatively simple to

fashion a higher-level analogue. Specifically, Fig. 6 demonstrates how the ML solution within Fig. 5
can be upgraded into ML-pipeline format. All associated modules in the high-level schematic can
now be presumed to fashion entire pipelines, as opposed to solitary ML components; these include
the planner, optimiser, and factory. As for the suggested design of an ML pipeline, we recommend
similar elements of wrapper-based control to those provided by the ML component. First of all, the
ML pipeline should contain an interface that relays communications between external modules
and individual components. Optimising an ML pipeline becomes a complex balancing task with
respect to the optimisation of individual ML components, and advanced HPO strategies catering
to an MCPS must be actionable. This means individual ML-component evaluations, if available,
should be disseminated to external modules as well. On that note, while the predictive accuracy
of ML pipelines will typically mirror the accuracy of their final component, this is not always the
case, particularly if the ML-pipeline output is an aggregation involving multiple ML components.
Essentially, installing an accuracy evaluator at the pipeline level allows an ML pipeline to be
assessed independently of any ML-component evaluations. Finally, pipeline-specific controllers for
inflow/outflow data are also advised, with the pipeline IDC directing dataflow to all component
IDCs. This allows expected outputs to be shuttled to wherever an accuracy evaluator is in play,
while also allowing each individual ML component to be fine-tuned, assuming that training data
can be provided within its relevant feature space.

In principle, the ML-pipeline paradigm enables arbitrary complexity. An example is provided in
Fig. 7, with most aspects of pipeline control omitted to avoid clutter. Here, each incoming instance
of data, defined in Q-space, is a concatenation of an image in Q1-space and tabular data in Q2-space.
With ML-component IDCs acting as gatekeepers, possibly declaring their permissible inflow spaces
to the ML-pipeline IDC via indirect means, the data is essentially partitioned between parallel
tracks. Each image is passed through a CNN of three layers, i.e. convolutional (CL), max-pooling
(MPL) and output (OL), so as to be classified in a binary response space, R. This net transformation
passes through two intermediate feature spaces, F1 and F2. The tabular data instead takes the
alternate track, being refined by principal component analysis (PCA) and mapped into feature
space F3. A decision tree (DT) makes an early attempt at classification, F3 → R, while k-means
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Fig. 6. A schematic of a two-component ML pipeline acting as an ML solution within an AutoML system, with
immediate modular environment pulled/renamed from Fig. 5. A pipeline interface (PI) relays communications
between external systems and each component interface (CI), which in turn communicates with the parameter
controller (PC) for each data transformation (T). The PI also manages a pipeline-specific inflow-data controller
(IDC), which supplies all the IDCs of individual components, and likewise manages a pipeline-specific outflow-
data controller (ODC), which receives output from the tail end of the ML-component arrangement. The ML
pipeline also maintains its own accuracy evaluator (AE), mimicking the control structure of an ML component.
Dashed arrows depict control and feedback signals. Solid arrows depict dataflow channels. Block arrows
depict the transfer of ML components/pipelines.

clustering tries to generate a new feature in F4-space. These outputs are concatenated with the
original refined data into a new feature space, F5 = F3 × F4 × R; this data is then classified by an
SVM, mapping F5 back to R. A final averaging across the outputs of parallel tracks, i.e. the image
classifier and the tabular-data classifier, results in a final response.

Importantly, this example demonstrates how an ML solution can involve a mix of strategies. For
instance, neural networks can be part of an ML-pipeline search, elaborated in Section 5, if error
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Fig. 7. An example of a complex seven-component ML pipeline, mapping queries of mixed image/tabular
format to a binary classification response. Each ML component is an instantiation of Fig. 4 in compressed
representation, containing a component interface (CI), controllers for inflow/outflow data (IDC/ODC), and
an optional accuracy evaluator (AE). Other ML-component abbreviations denote a convolutional layer (CL),
max-pooling layer (MPL), output layer (OL), stochastic gradient descent (SGD), logistic loss (LL) calculator,
principal-component-analysis transformation/algorithm (PCAT/PCAA), k-means-clustering transformation/al-
gorithm (KCT/KCA), decision tree (DT), genetic algorithm (GA), support vector classifier (SVC), and quadratic
programming (QP). Solid arrows depict dataflow channels; thick arrows denote dataflow during deployment.
Dashed arrows depict control and feedback signals. Labels along component-external dataflow channels
define the spaces that data inhabits at those points; they are detailed in Section 4. The ‘× junction’ concate-
nates data from different spaces. The ‘+ junction’ averages data within the same space. Pipeline-level control
elements, other than query-based dataflow, are omitted from the diagram for clarity.

evaluations are allowed to propagate between ML components, as hinted within Section 2. Simple
versions of ensembling strategies like ‘stacking’ are also possible on this level [64], as shown with
the SVM operating on DT outputs. Moreover, the example represents both algorithms that operate
solely on instructional data and those that tune parameters based on evaluation feedback, e.g. the
quadratically-programmed support-vector-classifier and the CNN trained against logistic loss,
respectively. In contrast, the GA-driven DT can be a fusion of both approaches, using instructional
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data to build up trees and evolutionary tactics advised by accuracy evaluations to prune them.
As for PCA and clustering, they re-emphasise that unsupervised techniques can be combined
with supervised learning. Again, with solid design and implementation on the base level, an ML
pipeline can be endlessly inclusive, whether or not the complexity is justified. At the very least,
shunting pre-processing operations into the ML pipeline enables AutoML to automate feature
engineering [345], discussed further in Section 6.

Turning to a historical perspective, automatically selecting a good ML pipeline for an ML task is
not a new idea. Several recommender systems were developed in the 1990s and 2000s that suggested
streams of data-transforming processes; these were often based on meta-learning, discussed in
Section 7. Likewise, prior to CASH being formalised, there was at least one proposal for an MCPS-
based ML architecture [183].
It is not unexpected then that full-model-search pioneers tackled ML pipelines from the start.

For instance, one PSO-based attempt optimised over a hyperparameter space that encoded whether
or not to use individual pre-processors [99]; this strategy would later be tweaked to divide HPO
and ML-pipeline selection between the PSO and a GA, respectively [326, 327]. Similarly, MLbase, a
contemporary of Auto-WEKA, focussed on constructing and optimising ‘learning plans’ from series
of data operators [211]. Oddly, given that tree-based SMAC can handle ML pipelines natively [106,
107], Auto-WEKA seems almost anomalous in limiting pre-processing to feature selection [208, 338],
but, in fairness, its development may have prioritised ensembling instead, a topic discussed further
in Section 8.

Since those earlier years, AutoML research has definitively expanded from HPO through CASH
to ML-pipeline optimisation [45]. Some coding packages specifically promote these features, such
as AutoWeka4MCPS [298, 301], built directly on top of Auto-WEKA. Notably, appreciating that
complex pipelines can be challenging to interpret for users, AutoWeka4MCPS applies Petri net
representation [346] to a constructed MCPS for the sake of transparency [302]. Then there are
AutoML systems that fully embrace ML pipelines with theoretically arbitrary complexity, such as
the GA-driven Tree-based Pipeline Optimization Tool (TPOT) [267], which has further explored
the parallelisation of feature generation/selection as part of a prostate-cancer case study [268]. The
appeal of such an inclusive approach, as indicated by the Fig. 7 example, comes from the fact that
relaxing ML pipelines from linear chains to general directed acyclic graphs (DAGs) increases their
representative potential. Attempts to generalise backpropagation for arbitrary ML pipelines have
similarly supported DAGs [254].
Nonetheless, designing an MCPS has many challenges. Chief among them is ensuring ML

components can be validly combined together into an ML pipeline. This is less of a problem
when data is clean, numerical and vectorised. Messy real-world data, on the other hand, remains
a challenge for learning systems, both adaptive [383] and otherwise. Indeed, the Challenges in
Machine Learning (ChaLearn) 2015-2016 AutoML competition found that all participants but
one were unable to deal with sparse data [143, 329]. It is then no surprise that folding missing-
value imputation into an ML pipeline requires careful thought, as exemplified by TPOT-based
research [124, 125]. Alternatively, accepting that some pipelines will fail and quickly identifying
them is another tactic, which is employed by the recently published ‘AVATAR’ method [263, 264];
this approach avoids the computational cost of setting up and executing an entire ML pipeline by
evaluating a simpler proxy.
In practice, most AutoML systems avoid ML-pipeline generality from the outset, using hard

constraints to avoid both invalid compositions and unnecessarily bloated search spaces; the planning
module in Fig. 6 enshrines this approach. For instance, if a data scientist faces an ML task involving
image-based inputs, they will probably benefit from using convolutional neural layers. Likewise,
dataset normalisation is likely to be a transformation employed early on within an ML pipeline. In
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fact, forming ontologies of operators and linking them with useful workflows has been a priority of
the data-mining research field even before the current wave of AutoML [199]. Thus, using similar
concepts, MLbase provides one such example in which a ‘logical learning plan’ acts as a template for
a ‘physical learning plan’, i.e. an instantiated ML pipeline [211]. Likewise, whereas TPOT constrains
its pipeline search with a Pareto front that factors in the number of ML components within
a solution [267], an alternative GA-driven AutoML framework named ‘REsilient ClassifIcation
Pipeline Evolution’ (RECIPE) uses a grammar for finer control [77].
Notably, the problem of building optimal ML pipelines within hard constraints shares overlaps

with the field of automated planning [178]. Accordingly, the concept of hierarchical task networks
(HTNs) has been adopted to systematically describe valid ML pipelines, whether in the design of
data-mining tools [199, 200] or more recent AutoML systems like ML-Plan [257, 258]. Researchers
behind ML-Plan imply that, due to the recursive nature of HTNs, it is still possible to explore ML
pipelines with arbitrarily long pre-processing workflows, matching the generality of TPOT without
wasting evaluation time [359].

Whatever the design, the actual optimisation of ML pipelines remains challenging, given that
the typical CASH already corresponds to optimising a one-component pipeline. Genetic program-
ming [209] is one particularly favoured technique in this context as it natively works with ordered
sequences of operators; it is used in TPOT [267] and RECIPE [77] among other AutoML systems.
An asynchronous version of this evolutionary algorithm is implemented by the Genetic Automated
Machine learning Assistant (GAMA) [136]. However, SMBOs remain employed as an alternative,
with Fast LineAr SearcH (FLASH) as a recent attempt to upgrade Bayesian optimisation for ML
pipelines, separating CASH from pipeline search and applying a linear model to error propagation
across ML components [382]. A subsampling method called Bag of Little Bootstraps (BLB) has
likewise been used to speed up BO-based pipeline search [12, 13]. Naturally, as with CASH, there
are also yet other approaches, such as the MCTS used in ML-Plan [258].
However, to date, there is no conclusively best-performing search strategy for ML pipelines.

It is not even clear how an MCPS complicates hyperparameter space, with one exploration of
fitness landscapes finding frequent disperse optima and situations where basic grid/random search
methods are highly competitive [126]. Another investigation supports the multiple-optima finding,
with repeated ML-pipeline optimisations producing inconsistent results depending on how the
search was initialised [303]. This is not entirely unexpected; the multiplicity of distinct but similarly
performing models has attained the nickname of ‘the Rashomon effect’ [47]. Nonetheless, it is still
an open question as to how AutoML should select an MCPS when faced with this conundrum, let
alone whether exhaustive searches are worth the computational resources when an easily found
local optimum is ‘good enough’.
Ultimately, as optimisation strategies for ML pipelines improve, these principles of automa-

tion continue to envelop new settings. For instance, the Hyperopt library has been applied to
signal processing pipelines [148], while causal impact analysis operators have been considered
as extensions to the standard pool of ML components [164]. Finally, a recently published system
named AutoML-Zero has pushed atomicity to the extreme, applying genetic programming to simple
mathematical operators so as to build up predictors and learning algorithms from scratch; this
notably includes a rediscovery of backpropagation driven by gradient descent [282]. Such edge
cases can be challenging to fit within an encompassing framework, such as the illustrative one built
up in this paper, as, despite the pipelining similarities, AutoML-Zero could arguably be described
as a one-component HPO problem, just with an extraordinarily high-dimensional hyperparameter
space. All the same, this indicates how the diversity of modern AutoML systems can blur the lines
of simple categorisation.
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5 NEURAL ARCHITECTURE SEARCH
In the era of DNNs, it was inevitable that the principles of AutoML would be co-opted in automating
deep learning. Indeed, the ‘AutoDL’ abbreviation has already been adopted by the most recent
ChaLearn competition, AutoDL 2019-2020, to draw a symbolic line between the use of tabular data,
i.e. the traditional focus of pioneering AutoML, and data domains that deep learning has excelled
in processing [236], such as images, videos, speech, and text. The process of automatically finding
optimal DNNs and related neural networks for ML tasks has similarly attained the distinct label of
‘neural architecture search’ (NAS) [97, 154, 285, 361].

Neural networks have a special status amongst ML models, in part due to the ‘expressive power’
they are afforded by the universal approximation theorem. A standard feedforward network (FFN)
with unrestricted size and a nonlinear activation function, e.g. the rectified linear unit (ReLU), can
fit a continuous function arbitrarily well. Accordingly, there are claims that the performance of
several state-of-the-art DNNs comes from their capacity for extremely deep representations [153].
The theoretical impact of layer width upon approximating-potential has also been studied [238].
In essence, connectionist models are powerful enough that a deep-learning specialist need not
necessarily interface with adjacent topics.

From a conceptual perspective, however, it is difficult to assess whether NAS is truly a separate
category of AutoML, despite often being treated as its own chapter of the story [170]. For one
thing, society had only just begun to shift its focus to deep learning [212] during the first wave
of AutoML-package releases; it is no surprise that wrappers around ML libraries designed before
2010, e.g. Auto-WEKA [338] and Auto-sklearn [106], treat neural networks in a limited way. In
contrast, AutoML systems that focus on NAS profit off of more recently engineered foundations,
e.g. Auto-Keras [179] and Auto-PyTorch [252]. The distinction between AutoML and AutoDL thus
appears somewhat superficial, even if a DNN, as a self-contained model, typically has a far more
complicated hyperparameter space than any standard alternative, such as an SVM. This is true, but
it unnecessarily confounds reductionist approaches to ML automation.

It is arguable instead that NAS ultimately collapses to the problem of ML-pipeline search. Indeed,
as discussed in Section 4, non-output neural layers can be considered equivalent to standard
ML pre-processors. That is why the schematic of the ML component in Fig. 4 explicitly includes
error propagation signals; this allows a DNN to be broken apart into the pipeline representation
exemplified by Fig. 7. Of course, in fairness, modern neural networks are diverse in nature. Any
encompassing AutoML framework requires careful engineering to represent as many scenarios as
possible, e.g. handling internal state to cater for recurrent neural networks (RNNs). However, these
are mostly matters of implementation.

Notably, while NAS has become a prominent aim of ML research within the last few years, efforts
in neural-network selection stretch back at least two decades earlier. Evolutionary algorithms were
a popular choice for investigating network design, as shown by a survey from 1999 [375], and other
early investigations even explored Bayesian theory for making architectural comparisons [241]. As
for codebases, an ML suite named Learn-O-Matic [311] was described in 2012 as using RL-based
‘policy gradients with parameter based exploration’ (PGPE) [312] to optimise the structure of
feedforward networks. This system, although contemporaneous with Auto-WEKA, appears to have
flown under the radar within the larger ML community. This is not unexpected given the sheer
volume of deep-learning publications; it can be arbitrary as to which advances stick out to the
community and inform best practice, let alone standard practice. Sure enough, in similar fashion to
HPO, both grid search and random search remain default approaches to building neural networks,
with the former demonstrated by a mammogram classification study [111].
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That all acknowledged, 2017 witnessed several conference papers that caught public attention
and have stimulated intensifying interest in NAS. One of these proposed using an RNN ‘controller’
to construct a ‘child’ network, layer after layer, by sequentially recommending values for structural
hyperparameters [386], e.g. filter width/height per CNN layer. The RNN controller is trained via
RL, driven by performance assessments of the resulting child network when applied to an ML task
of choice. In terms of the illustrative framework conceptualised within this paper, specifically the
elements shown in Fig. 6, the child network is essentially an ML pipeline, while the RNN controller
is equivalent to an ML-pipeline optimiser. This kind of approach, searching for an optimal sequence
of building instructions, also inspired the ‘MetaQNN’ strategy [21], which is based on Q-learning
applied to Markov decision processes.
Naturally, numerous other search strategies were quickly applied to NAS. Some of them were

continuations of long-term neuro-evolutionary research; these were shown to produce DNNs
that are highly competitive with other state-of-the-art networks, as judged on typical Canadian
Institute For Advanced Research (CIFAR) benchmarks [283, 325]. Alongside the standard princi-
ples of sampling high-performance candidates from a population, so as to iteratively breed new
generations of neural networks, these mechanisms typically involve encoding networks by some
genetic representation, so that mutation operators are capable of both adding/removing layers and
modifying structural/training hyperparameters. Complementing GAs and RL, another major class
of NAS approaches revolves around gradient optimisation. Differentiable ARchiTecture Search
(DARTS) is an archetype of this strategy [234], which eschews discretisation and aims to relax
network representation into a continuous space. This allows both connection weights and network
architecture to be tuned as part of a single bi-level optimisation problem.

Not unexpectedly, the inevitable alignment of AutoML and NAS also brought BO methods into
the fold. Auto-Net [251] is a SMAC-based AutoML package released before the current upsurge
in NAS interest. Although, in principle, it is capable of searching for fully-connected FFNs of
arbitrary depth, its initial publication limited the number of layers to six for practical reasons.
More recently, other groups of researchers from the same institution that published Auto-Net have
criticised several prominent NAS methods, both RL-based [386] and GA-based [283], for optimising
ML-pipeline structure independently of ML-component hyperparameters [380]. Emphasising that
NAS and CASH should be solved simultaneously, Auto-PyTorch is an upgrade of Auto-Net that
utilises BO-HB instead of SMAC, while also extending configuration search space to include modern
deep-learning techniques and structures [252]. The importance of combined hyperparameter and
architecture search (HAS) has gained traction, with a recent publication of an ‘AutoHAS’ approach
likewise grappling with how to specify configuration space across all levels, albeit for a gradient
descent strategy as opposed to BO [84].

Optimisation approaches aside, the topic of NAS provesmost valuable to general AutoML research
as a case study of an MCPS taken to extremes. Training a single neural network on non-tabular
datasets can be computationally expensive, and this cost can balloon dramatically when reiterated
numerous times throughout an exceedingly complex search space. A 2020 survey of modern NAS
methods lists the number of GPU days each one took to learn from the CIFAR-10 and ImageNet
datasets [285]; values in the hundreds and thousands are not uncommon. Accordingly, as with
the HTNs employed for general ML pipelines, described in Section 4, the obvious approach to
make NAS manageable is to artificially constrain allowable configurations. A popular practice in
recent years is to construct networks with ‘cells’ [361], complex substructures that can be reused
multiple times within larger templates. So, for instance, a CNN may consist of a number of cells
interleaved with input/output and pooling layers; NAS strategies need to decide how many cells to
stack together and what the contents of an individual cell are, but this is a significantly smaller
search space than optimising cells independently. Nonetheless, it is an open question whether the
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simplicity afforded by cell-based search, alternatively called micro-NAS, is worth the loss of layer
diversity afforded by ‘global’ search [163], sometimes called macro-NAS.
Beyond constraining search space, many efficiency-based research threads in NAS relate to

establishing intelligent shortcuts in the ML-pipeline search process, such as recycling architectures
and sharing trained parameter values between candidate networks [285]. Another example is
leveraging functionality-preserving morphisms, implemented by the Auto-Keras package, to iterate
effectively through potential networks [179]. Notably, in return, Auto-Keras seems to require a
decent initial configuration, which will depend on the ML task at hand. In certain cases, it may
be sufficient for a user to suggest this starting point, but other NAS approaches lean heavily into
transfer learning to automate this jump-start. For instance, one proposed extension to the original
RNN-controller scheme [386] is to include an embedding vector that represents a diversity of
ML tasks, such that a fully trained RNN-controller is able to suggest a strong candidate DNN
for any new ML task, based simply on which previously encountered ML task this new one is
similar to [369]. Then there is few-shot learning, an extreme variant of transfer learning, where a
well-performing but generic DNN is sought out to serve as a near-optimal initial configuration for a
NAS attempt [109]. Many of these speed-up mechanisms are based on or adjacent to meta-learning;
see Section 7.

For now, it is too early to make conclusive remarks about NAS as it relates to AutoML as a whole.
While the fine details can vary dramatically, reviewed more broadly/deeply elsewhere [97, 285, 361],
NAS appears to be a subset of ML-pipeline search; its elements are able to be represented by
the abstractions within Fig. 6. However, the research area is constantly evolving, subject to a
lot of attention, and novel network designs are constantly being proposed, with some examples
mentioned in Section 13. At some point, with an ongoing trend towards packaging network design
for biomimetic neurons [90], the principles of NASmay even be extended to spiking neural networks,
although how best to approach such a fusion remains extremely speculative. Regardless, as a nascent
field stimulating unbridled exploration, NAS has shorter-term problems to address. For instance,
robust evaluations of network topology and other NAS outputs [83] are rare. More troublingly,
a recent benchmark comparison of random search with several state-of-the-art NAS strategies
has found no competitive distinction, simultaneously challenging the effectiveness of constrained
search spaces and weight sharing strategies [379]. This result supports a previous assessment,
likewise involving random search, that additionally bemoans a lack of reproducibility within the
field in general [231]. These have accompanied similar criticisms about the lack of ablation studies,
necessary to identify the novel aspects of NAS strategies that truly advance efficiency/performance,
as well as a publication bias that does not highlight important negative results [132]. Hence, while
NAS research shows potential in automating ML-pipeline construction, the field remains far from
fully mature.

6 AUTOMATED FEATURE ENGINEERING
Real-world data for any ML task is rarely structured in an informative and discriminative manner.
One way to face this challenge is to design complex predictors capable of drawing highly nonlinear
classification boundaries or regression slopes within these difficult data spaces, e.g. SVMs with
exotic kernels. Alternatively, one may seek to nonlinearly morph incoming data until it sits within
a feature space that can be mapped to expected outputs in a simple fashion, perhaps even linearly.
This latter approach is called feature engineering (FE), and its automation falls under the scope of
AutoML research.

In principle, like NAS, automated feature engineering (AutoFE) is related to, if not subsumed by,
the topic of ML pipelines examined in Section 4. Any early-stage operation, e.g. outlier handling or
one-hot encoding, can be considered as a data transformation deserving of its own ML component.
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Fig. 8. A demonstration of two different approaches to ML-pipeline search, with Ei and Pj representing pools
of feature-engineering (FE) and predictor ML components, respectively. ML components marked as Pj(+i)
are complex predictors that internalise FE transformation Ei. The left-side approach composes candidate
pipelines freely, preferencing simple predictors. The right-side approach subsections pipelines between FE
components and complex predictors, selecting segments independently. The right-side ML-pipeline optimiser
is provided the feature analysis of data to support ‘filter-type’ AutoFE mechanisms. Dashed arrows depict
control and feedback signals. Solid arrows depict dataflow channels. Block arrows depict the transfer of ML
components/pipelines.

This immediately opens up FE-heavy ML pipelines to optimisation approaches discussed earlier.
However, despite the overlap, there are still important nuances to consider. Broadly speaking, MCPS
studies are motivated by extending HPO to extreme configuration spaces, without fixation on what
those components are. For instance, defining a predictor to be a mapping onto response space R,
and thus being evaluable with respect to expected outputs, an ideal MCPS optimiser would have
no problem searching arbitrary ML pipelines with early-stage predictors, as exemplified by the
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left side of Fig. 8. These candidates are not all invalid or suboptimal either; chaining predictors
into stacked ensembles, as suggested by Fig. 7, may ultimately be the best solution for an ML task.
Admittedly, in practice, a large fraction of MCPS research does deal with structural constraints, but
these are a secondary consideration in service of making optimisation feasible.
In contrast, AutoFE is grounded in structural constraints, accepting the traditional notion that

FE and prediction are unique and well-ordered sections of the data-processing sequence. In light
of how intractable unconstrained ML-pipeline search can be, this attitude is not unreasonable. It
is convenient to clump together both algebraic transformations and an expansive search through
them under one feature-generation banner, just as it is convenient to have one monolithic process
for combinatorial feature-subset selection. In light of this, the AutoFE approach can be described
abstractly as an attempt to subdelegate the responsibility for MCPS optimisation, as demonstrated
by the right side of Fig. 8.
However, because ML-pipeline optimisation is so novel, the concept of partitioning is under-

explored. For example, a CNN is considered a complex predictor, where the initial layers are typically
responsible for identifying features within images. The question arises: should these layers remain
subject to a NAS procedure, or should they be selected/optimised externally as part of an AutoFE
process? Expressed in another way, given three consecutive indivisible operators, i.e. 𝑈 : Q → F1,
𝑉 : F1 → F2 and𝑊 : F2 → R, should 𝑉 be targeted by FE optimiser ΩFE or predictor optimiser
ΩPred? Ideally, there would be no difference, assuming that both optimisers treat 𝑉 as a degree
of freedom, have access to the same CASH-related search space, and have perfect information
regarding the evaluation metrics of the𝑊 ◦ 𝑉 ◦ 𝑈 composition as a whole. In actuality, these
assumptions are rarely true, leading to the following inequality:

ΩPred (𝑊 ◦𝑉 ) ◦ ΩFE (𝑈 ) ≠ ΩPred (𝑊 ) ◦ ΩFE (𝑉 ◦𝑈 ). (3)

In essence, it is not simple to decide whether the onus of wrangling a topological transformation,
F𝑖 → F𝑗 , should fall to AutoFE or predictor design.
Regardless, despite the ambiguities around ML-pipeline segmentation and the generality invited

by the MCPS paradigm, hard boundaries between pre-processors and predictors remain heavily
ingrained within the ML community. Many of the MCPS-based AutoML systems discussed in
Section 4 either implicitly or explicitly subdivide ML-pipeline search, as conceptualised in Fig. 8.
As a result, jointly optimising both segments is considered somewhat novel [343]. Additionally,
with priority focus on selecting classifiers/regressors, many systems also lean towards complex
predictors, where feature transformations are treated as an embedded hyperparameter rather than
a unique and free-floating component. The right side of Fig. 8 implies this; Pj(+i) is a monolithic ML
component, even though it represents Pj learning from a data remapping performed by Ei. This
internalisation of feature-space transformation is not an intrinsic weakness, with the SVM kernel
trick providing a well-known example of where it proves useful.

Notably, although subdividing ML-pipeline search space trades off generality for manageability,
this may not be as limiting to AutoFE as cell-based search may be to NAS. Pre-processing does
tend to have a natural order, with data-cleaning operations typically required at the start of an ML
pipeline. While there are several ways to, for instance, choose how to deal with missing values, with
the options possibly represented by a tunable hyperparameter, there is no point testing ML-pipeline
compositions with a late-stage imputation operator. Their validity, or lack thereof, can be inferred
immediately. Accordingly, AutoFE very much profits from further structural constraints, perhaps in
the form of the HTNs that were introduced in Section 4. In anticipation of ensembled ML pipelines,
discussed in Section 8, it is also worth highlighting that the pre-processing operations chosen
for one composition are unlikely to differ from those for another, at least in relation to cleaning
procedures. Any robust implementation of AutoML should consider working with pointers and



28 Kedziora et al.

ML Pipeline Bundle
Predictor SegmentGen./Sel. Segment

Pi
pe

lin
e 

1
Pi

pe
lin

e 
2

Pi
pe

lin
e 

3

Cleaning Segment

C3 C1

Memory
Address ML Pipeline Segment

S1G6

S5G5

G3G6

P6

P9

P3P1

ML Pipeline 
Factory

M1

M2

M3

M4

M5

M6

M7

M1

M1

M1

M2

M3

M4

M5

M6

M7

Ci

Sl

Pj

Gk
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references, so that, as Fig. 9 demonstrates, the optimisation of one pre-processing segment carries
over to all ML pipelines.

Setting aside the discussion of how it fits within a larger AutoML environment, the automation
of FE has been a research interest for several decades. The concept of deriving new data attributes
from an existing set has taken several names; for instance, alongside ‘feature extraction’ [286], there
was also ‘constructive induction’ [253]. Much of the research associated with this topic, especially
in the late 1980s and 1990s, is couched in the language of logic and expert systems, with feature
transformations often applied in the form of Boolean operators [273]. Even so, several frameworks
were developed early on in this space with the intention of automating feature generation via the
chained application of constructive operators. The CITRE system is one such example, learning
a decision tree from one collection of features to suggest a novel alternative set of logically
compounded attributes, before retraining decision trees from the new feature set and recycling this
process until converging to an optimum [248]. Although some of its contemporary frameworks
would either ask a user to manage or just outright ignore the ballooning of the constructed
feature set, the CITRE system was also among a few that pursued autonomous operations by
ranking/pruning, with judgements of ‘quality’ based on information-theoretic measures, e.g. how
usefully discriminative a new attribute is. This form of AutoFE proved beneficial in both accuracy
gains and structural simplifications for the decision-tree predictors that were worked with.
Naturally, while some efforts focussed on how best to construct new features, optimal subset

selection received its own attention. Central to this is the problem of determining which attributes
of a data instance are most relevant to classification/regression. Excessive numbers of features
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can significantly slow down and worsen ML-model training via the curse of dimensionality, and
correlations/redundancies can outright destroy the performance of certain predictors, e.g. Naive
Bayes classifiers. By the late 1990s, feature-selection methods were roughly categorised under
‘filter’ and ‘wrapper’ approaches [203]. Filters involve determining useful attributes via dataset
analysis, with no regard for the subsequent predictor. The aforementioned CITRE system somewhat
exemplifies this, even though its quality-based filtering is technically embedded into the training
of a decision tree. Not unexpectedly, surveys of the time list and debate many ways to assess the
relevance of a feature, e.g. the degree of unique correlation between class labels and the values of a
feature [41]. In contrast, wrappers evaluate whether a feature is useful based on the error rate of a
subsequent predictor. Thus, feature-selection filters can be considered fast and generic but also hit-
and-miss, while wrappers are slow but accurate. As an aside, the right side of Fig. 8 acknowledges
the filter strategy by allowing advisory feature analysis to be received by the ML-pipeline optimiser.

In any case, while hardware and procedural details have improved over the decades, the overar-
ching concepts of automating FE generation/selection have generally remained the same. Instead,
pools of feature-constructing components have been expanded over time, exemplified by the Fea-
ture Incremental ConstrUction System (FICUS) [246], which applies selection in a filter-based
manner. Similarly, the Feature Discovery algorithm (FEADIS) promotes the inclusion of periodic
functions, also serving as an alternative example of a greedy wrapper-style system, i.e. one that
checks whether each newly proposed feature improves predictor performance [85].
More recently, as of 2015, the Data Science Machine (DSM) and its Deep Feature Synthesis

algorithm have acquired somewhat of a pioneering status in the modern AutoML wave, possibly
due to their performance in several ML competitions [192]. The DSM is presented as an end-to-end
system, thus going beyond AutoFE and also applying Bayesian HPO to a random-forest predictor.
As an AutoML system designed for extracting features from relational databases, it served as
an inspiration for the ‘one-button machine’ (OneBM), which focussed on extending relational
graphs to unstructured data [217]. This thread of research later led to training relational RNNs
rather than searching pools of pre-specified operators for the purpose of representing optimal
feature-generating transformations [216]. The DSM system was also acknowledged in the release
of ExploreKit, which works with non-relational tabular data instead and, reminiscent of wrapper-
based FEADIS, uses a pool of general operators to build up its features [194]. It would, in turn, serve
as a direct inspiration for the ‘Feature Extraction and Selection for Predictive Analytics’ (FESPA)
method, which claims distinctiveness by implementing regression rather than classification, while
also aiming to keep feature generation and selection as well-separated processes [345].
As previously implied, AutoFE is dogged by the computational complexity of searching such a

fine-grained space of operators, especially as most modern systems are wrapper-based and require
significant time to train their predictors per pipeline evaluation. Neural networks have certain go-to
methods, with auto-encoders sometimes employed to find compact feature-space representations
of data instances, e.g. in a competition studying online course dropouts [71]. However, in both
deep-learning and general contexts, research attempts explore optimisation methods to hone
more efficiently onto optimal FE pipelines. Evolutionary algorithms are one such approach for
feature selection [372], with genetic programming being an obvious choice for chains of operators,
in similar fashion to MCPS approaches discussed in Section 4. Example implementations have
been proposed for AutoFE in specific applications, like compiler-based loop unrolling [218], or in
general contexts, like with DNNs [155]. Unsurprisingly, reinforcement-based strategies such as Q-
learning have also been proposed, noting that the DSM and contemporaries are often bogged down
by searching unnecessary portions of feature-transformation space [197]. Beyond optimisation,
other mechanisms have also been explored to boost efficiency. For instance, a tool called Zombie
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groups raw data by similarity prior to processing, so that useful data instances are prioritised by
feature-generation code and, presumably, subsequent incremental learners [14].

To date, AutoFE approaches have been applied in various domains. Natural language processing
(NLP) is often more challenging than tabular data to generate features for, but efforts have been
made to automatically extract features via entity-entity relationships present in semantic knowledge
bases [66]. Similarly dealing with NLP, RaccoonDB is a system that accelerates feature extraction
from social media for nowcasting [14]. These approaches often deal with immense online sources
of data, which are not practical to load into local memory, and it is an open question how best a
general AutoML implementation should interface with these inputs. As for tabular formats, wrapper-
based feature extraction has been explored in the context of condition-based aircraft maintenance,
where GA-based search seemed to be the best performing out of several tested optimisation
routines [134]. In the clinical setting, as part of designing a ‘prediction tool using machine learning’
(PredicT-ML), features have been condensed from datasets via numerous temporal aggregations
and operators, subsequently selected in a filter-based manner with metrics such as information
gain [239]. Elsewhere, a defensive publication has proposed using decision-tree techniques for
feature selection in the context of training neural networks to predict data-centre outages [70].
This diversity of applications suggests that perhaps AutoFE may be more valuable to the broader
community than predictor-specific CASH.
To conclude this section, it is worth mentioning that many modern AutoFE approaches do

not search for an optimal FE pipeline segment from scratch. For instance, the Cognito system, a
framework using greedy exploration to traverse a tree of feature transformations [198], all prior to
adopting an RL-based strategy [197], eventually implemented a ‘learner-predictor’; this module
uses historical datasets to recommend FE transformations [196]. Similarly, ExploreKit [194] and
FESPA [345] both augment their AutoFE processes with prior knowledge, if available. Moreover,
there are recommender systems based on historic datasets that solely target feature generation [260]
or feature selection [272, 356]. This idea of leveraging experience from beyond a current ML task is
an attractive one, its potential benefits not limited to just AutoFE.

7 META-KNOWLEDGE
Thus far, the previous sections have framed AutoML and the search for a task-optimal ML model
as an optimisation problem. Whether in the context of an ML component or the context of an ML
pipeline, whether for NAS or for AutoFE, many fundamental advances of this past decade have
revolved around how to represent complex search spaces, how to constrain them appropriately, and
how to apply search strategies efficiently. This focus is not surprising; optimisation is arguably the
purest mechanism for identifying a good ML solution. It was certainly acknowledged as one way
to approach algorithm selection, back when this problem was posed in the 1970s [286]. However,
even in the modern era, training/testing each iteration of proposed ML model can take substantial
time. So, given the theory/hardware limitations of the intermediate decades, making large-scale
optimisation infeasible beyond ranking small sets of candidate solutions, ML practitioners had to
rely on different tactics. In particular, the concept of meta-learning was popularised, mechanically
leveraging knowledge gained from previous learning processes to support ML-model selection
for a new task [44]. As a form of AutoML before the ‘AutoML’ abbreviation was coined, and
briefly supplanted by communal interests in optimisation, meta-learning has reacquired status as a
potentially empowering upgrade to standard model-searching systems [7, 45].

The core foundations ofmeta-learningweremotivated long before the term itself entered common
parlance. For instance, when algorithm selection was initially codified as a research question, one
proposed angle of attack was to find ways of classifying and categorising ML problems, thus
identifying similarity-based groupings for which ML models/algorithms would be particularly
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effective [286]. This appeared to be a solid strategy; any hope in finding one super-algorithm that
would be maximally performant for all settings was dashed by the publication of the no-free-lunch
theorems in ML [368] and optimisation [367] during the 1990s. In essence, the theorems state that
the average performance of all algorithms across all problem domains are equivalent. Algorithm
selection can only be biased towards high performance by linking both a new ML problem and its
context to prior experience and then acting on this ‘meta-knowledge’. This form of ‘learning to
learn’ appears biologically justified, with studies of pre-schoolers identifying that humans acquire
the capacity to “search for underlying commonalities” at an early age [49].

However, as with previous sections, first a caveat: terminology is in flux and the boundaries of the
meta-learning topic evolve over time. To add to the confusion, ‘meta-learning’ has sometimes been
used to describe ensemble-based approaches, where the ‘meta’ prefix refers to classifiers composed
of classifiers [58]. Even disregarding this obvious semantic discrepancy, multiple communities have
taken the algorithm-selection problem and related meta-learning approaches in different direc-
tions, developing inconsistent terminology and arguably suffering from a lack of interdisciplinary
communication [316]. Fine tweaks to definitions are also not uncommon; whereas meta-learning
has always involved the transfer of meta-knowledge from different domains/problems, learning
from a previous training run on the same dataset is now also considered under the same umbrella
term [45, 223].
As a process, while meta-learning is often employed in one-off research investigations, there

have been several proposals for how to encase its automation within an idealised general archi-
tecture [142, 175, 177, 353]. In similar vein to the illustrative framework developed in this paper,
these architectures aimed to systematise the principles underlying a preceding flurry of published
systems, where the implementations were based on the Knowledge Discovery in Databases (KDD)
process [104], a template for data exploration. Indeed, while KDD is a broad topic and associ-
ated toolkits are varied, many intelligent discovery assistants (IDAs) were designed to support
the construction of data-processing pipelines via meta-learning principles, often providing rec-
ommendations by analysing datasets and relating them to previous experience. They have been
surveyed and reviewed extensively elsewhere [2, 313, 348]. Importantly, several were even capable
of automatically recommending predictors, despite the lack of optimisation, thus acting as AutoML
forerunners. These days, pure IDAs appear to have waned in relative importance, with the role of
meta-learning evolving to, primarily, support CASH [349]. This HPO-driven paradigm shift in the
way AutoML uses meta-learning is made stark when comparing relevant workshops for the 20th
and 21st European Conferences on Artificial Intelligence (ECAI), held in 2012 [350] and 2014 [351],
respectively.
Before discussing meta-learning in depth, we provide an illustration, via Fig. 10, of how the

concept may be integrated into an AutoML framework. In effect, this schematic is another sequential
upgrade of the CASH-focussed system depicted in Fig. 5, expanding beyond the inclusion of ML
pipelines that was shown in Fig. 6. The data-analysis module and its associated feature analysis, as
recommended by Fig. 8 to support subdelegated AutoFE optimisation, are also present. However,
for this upgrade, the proposed analysis modules for ML tasks and data sources have the additional
responsibility to extract metrics for task/dataset similarity. A library of ‘meta-models’ stores the
accumulation of previous experience, and, according to how recognisable the current context is,
can provide an AutoML system with advice. Typically, this comes in one of two forms: solutions
that worked well previously, or ways to find solutions that worked well previously. Logically, these
suggestions are best sent to the ML-pipeline planner or the ML-pipeline optimiser, respectively.
Additionally, an ideal AutoML system should not just leverage meta-knowledge but also contribute
to it. Hence, the optimiser, which has a view of its own performance along with that of any candidate
solution, is charged with passing back results for the sake of development.
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Fig. 10. (Colour online) A high-level schematic of an improved AutoML system that employs meta-learning
for search-strategy and solution recommendation. This architecture is an upgrade to that of Fig. 5, with
blue highlights emphasising the main new additions related to meta-knowledge. Dashed arrows depict
control and feedback signals. Solid arrows depict dataflow channels. Block arrows depict the transfer of ML
components/pipelines.

Naturally, the usual disclaimer applies, in that Fig. 10 does not necessarily represent the only
way to design a functional AutoML system. Critically, though, while CASH is unlikely to vary
dramatically in integration, meta-learning represents a methodology as opposed to a method and
is thus much harder to conclusively encapsulate. Any module, from UI to data distributor, could
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conceivably be designed to improve based on previous experience. Nonetheless, given that the vast
majority of published research examines meta-knowledge in the context of ML-solution search,
Fig. 10 is sufficient to abstractly represent most approaches. Discussion around related limitations
is thus reserved for Section 14.

When it comes to the details of meta-learning, the most common tactic is to seek similarity be-
tween datasets. Characterising them by useful ‘meta-features’ is thus a necessary challenge and has
been extensively explored. Obvious metrics include directly observable descriptors, e.g. the number
of data instances or features, as well as statistical measures, e.g. variances, and information-theoretic
meta-features, e.g. attribute entropy [130]. For supervised-learning classification specifically, com-
plexity measures aim to categorise a dataset by the nature of its separating boundaries, quanti-
fying feature overlap, class separability, and geometries/topologies/densities of class-spanning
manifolds [158]. Analogous complexity measures have been proposed in the context of regression
problems [237]. Naturally, data contexts that contain more structure provide more categorically sup-
portive information, with discriminative characteristics proposed for both time series [114, 225, 226]
and network-oriented datasets [291]. These latter meta-features were later employed in an AutoML
system specifically focussed on biological ecosystem networks [27]. However, it should be noted
that most meta-features described thus far arise from operations on the data itself. One ML-model
recommender named AutoDi explores a different approach [344]; alongside ML algorithms, datasets
are assigned textual descriptors in the form of embedding-vectors that are derived from online
corpora, e.g. academic papers and Wikipedia.
In similar fashion to the filter/wrapper dichotomy in AutoFE, some strands of research have

considered whether a prediction process should be involved in characterising an ML problem. For
instance, several efforts have explored training archetypal predictors such as decision trees on a
dataset, so as to use the model-based properties for dataset characterisation [30]. More recently,
in the context of automating semi-supervised learning, where not all data instances are labelled,
outputs of clustering algorithms serve the same purpose as the aforementioned decision trees;
cluster-based statistics of those resulting models are used as ML-task meta-features [232].

More common than describing a dataset by the properties of a trained ML model is describing it
by the performance of that model. This approach, given the name ‘landmarking’ in 2000 [276], can
be risky if an ML algorithm is overly stochastic in the model it produces. However, it is argued
that simple high-bias learners like linear discriminants or decision stumps are quick and robust
estimates of ML-problem complexity [115]. These landmarkers have thus found use alongside
traditional dataset meta-features within meta-learning systems [54]. It is worth mentioning though
that a ‘sampling-based landmark’, seemingly related, is an alternative that involves training a
non-simplified ML model on a subset of data [319]. In effect, partial learning curves of accuracy
versus sample size for sampling-based landmarkers can be used to further characterise datasets, but
these curves also contain additional information about the relative performance of candidate ML
algorithms, allowing performance estimates for a full dataset [220, 221]. Moreover, knowing how
ML algorithms compare on one dataset can be used to guide ranking strategies on another similar
dataset [222]. This idea has been exploited several times, with one study working to meta-learn
pairwise comparisons of utility between ML algorithms [138]. It is also related to collaborative-
filtering approaches, where patterns of model performance are assumed to correlate between similar
datasets [315, 328].
Once a set of meta-features have been selected for a class of ML problems, with each problem

generally corresponding to an appropriate inflow dataset, a standard practice for meta-learning is
to construct a meta-model, i.e. a function from dataset meta-features to a recommendation variable,
usually trained by ML. The development and use of such meta-models are depicted in Fig. 10. Often,
a k-nearest neighbour (kNN) approach is used to leverage similarity in simple fashion, sometimes
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called an instance-based meta-learner [73], while deriving decision rules is another simple option
for sparse metadata [4]. However, the meta-model can be as sophisticated as desired. An archetypal
example of meta-model construction is depicted within a study that evaluated optimal SVM kernels
for 112 classification problems and subsequently trained a decision tree as a meta-classifier to map
vectors of dataset characteristics to those optimal kernels [10]. Just like a standard ML model, the
meta-model could then be passed a query, i.e. a new dataset transformed into a set of meta-feature
values, and would then calculate a response, i.e. a suggested SVM kernel. In similarly model-specific
contexts, recommenders have been trained for other SVM hyperparameters [139] and for decision
tree induction [141].

In the modern HPO-centred context of MLmodel/algorithm selection, meta-learning is commonly
used to suggest a good initial point to start searching from. This process is called warm-starting,
whereby a systematic start-from-scratch optimisation procedure is boosted by an externally derived
heuristic. It is represented in Fig. 10 by the solution-recommending meta-knowledge signal being
propagated on to the optimiser. This concept of warm-starting is exemplified by a study wherein GA-
based HPO is applied to a meta-learned initial population of hyperparameter values [284]. It has also
occasionally been incorporated within fully implemented AutoML systems, e.g. Auto-sklearn [108].
However, there have been many nonstandard variations on the theme, such as recommending a
warm-start candidate by first minimising across a weighted combination of previously encountered
HPO loss functions [363].
Meta-learning has been leveraged in several other unique ways to support HPO. For instance,

the Automated Data Scientist distinguishes itself from Auto-sklearn by seeking to directly predict
optimal hyperparameters, as opposed to suggesting a warm-starting configuration [265]. Elsewhere,
meta-knowledge has been used to recommend regions of configuration space that should not be
explored [362]. Then there are proposed upgrades to SMBOs in particular, where the underlying
surrogate functions are constructed across all encountered datasets rather than per each new ML
task [26]. The original proposal was later improved upon to deal with a scaling challenge, i.e. the
fact that evaluation metrics are not directly comparable across ML problems [377]. Variants of these
concepts have been developed in an adaptive manner, exploiting external knowledge for SMBO
while a new solution space is unknown, before gradually shifting to an acquisition function based
on local knowledge [364]. Whether the meta-learned surrogate should be shared or ensembled
across all ML tasks has also been debated [366]. Again, all of these variant approaches underscore
how difficult it is for a proposed AutoML framework to encapsulate the full range of meta-learning
approaches, considering that prior knowledge can feed informatively into operations at almost any
level.

Because meta-models have no particular constraint on their recommendation variable, provided
that every ML problem in meta-Q-space maps to an independent response value in meta-R-
space, meta-learning has been used to suggest elements of ML solutions beyond standard sets
of hyperparameters. For instance, recommender systems have been designed for classifiers, both
standard [46] and multi-label [63], as well as regression-based predictors [266]. Admittedly, this is
not a particularly radical extension in light of the CASH paradigm, which treats ML algorithms
as hyperparameters. Regardless, as Section 6 hinted, FE operators are also among meta-learned
ML components [194, 196, 345], whether generative [260] or selective [272, 356]. Certainly, a
recent empirical study espouses the use of a meta-model for pre-processor selection [307], and the
PRESISTANT system is an example of a modern IDA centred around this aspect of AutoML [38, 39].
Moreover, recommender systems can even propose entire ML pipelines; Meta-Miner is one such
system employing a meta-model that maps dataset meta-features to KDD-workflow characteristics,
the latter serving to encode information relating to pipeline structure [262].
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Further emphasising how meta-knowledge can be employed at any level of an AutoML ar-
chitecture, entire ensembles have been recommended based on standard and landmarker meta-
features [207], with the topic of ensembling elaborated in Section 8. Likewise, in the context of
adaptation, further described in Section 9, meta-learning has proved useful in selecting the active
predictor within a heterogenous ensemble [173]. Even the parameters of an optimiser have been
subject to tuning processes; notably, for CASH-solvers, these sit at a higher level than parameter-
s/hyperparameters for ML models/algorithms. While there are direct strategies for automating
optimiser-engineering, such as using RL to learn an update policy while the optimisation is run-
ning [229], there are also approaches based on standard meta-models [3] or trainable neural
architectures, e.g. Long Short-Term Memory (LSTM) networks [15]. These effectively transfer
settings for quickly convergent optimisers across similar problems. Naturally, searching parameters
for parameter-searchers can become a recursive problem, and it is an open question as to how
much of an AutoML system should be automatically tuned.
As a side note, while most meta-models work towards ML model/algorithm selection on the

basis of predictive accuracy, there are other metrics for evaluating ML pipelines; see Section 10.
In particular, the issue of ML-algorithm runtime has been visited several times within the field of
meta-learning. In one direction, runtimes have been folded into meta-features, so that learning
curves [319] become loss-time curves [347]. A ranking scheme for ML algorithms based on these
ideas proved competitive with Auto-WEKA, especially given small time budgets for which the
AutoML system could not fully exploit its optimisation capabilities [53]. Alternatively, in the
opposite direction, meta-knowledge has been deployed to predict runtime [172]. One series of
research efforts has revolved around meta-learning the complexity of Bayesian network-structure
learning (BNSL) problems, which relates to BNSL-solver runtime [245], and has also contributed
to the 2017 Open Algorithm Selection Challenge; the task here was to meta-learn a scheduler to
solve an unseen problem, given the time required to observe features and run solvers on previous
instances [244].
At this point, it is worth discussing transfer learning, given that boundaries between the topic

and meta-learning can be inconsistent and ill-defined in the literature, if not outright nonexis-
tent [271]. Generally, transfer learning does not learn a meta-model mapping of an ML problem to a
recommendation variable; it simply copies the value of a recommendation variable, i.e. knowledge,
from one ML problem to another, e.g. an entire cell of CNN layers. There is an implicit assumption
that the source/target ML problems are similar, but there is no meta-model around to quantify this,
hence why a transferred variable, e.g. the CNN cell, must usually be tuned afterwards, while an ideal
meta-model could theoretically recommend a value that immediately accounts for differences in
setting. Some ML practitioners may discuss semantics further, perhaps constraining the scope of the
knowledge that can be meta-learned or transferred, but we avoid this debate. From the perspective
of architectural design, transferrable knowledge is already contained within the meta-model library
in Fig. 10, offered to the ML-pipeline planner as solution advice in the form of meta-knowledge,
provided that an ML task at hand shares an identical and usually high-level characteristic to one
encountered previously. For example, if two tasks focus on text translation, it is circumstantially
reasonable to copy and paste a neural model from one to the other, essentially as a warm start,
even if the human language involved varies.
Transfer learning is commonly associated with deep learning in the current day and age, often

referring to the practice of using a neural network that is pre-trained for one setting as part of a
new DNN, thus transferring useful feature representations. One study aims to support this domain
adaptation by meta-learning the relation between dataset dissimilarity, based on meta-features, and
the amount of tuning required for a transferred DNN substructure [8]. Transfer learning has also
been proposed to extend RNN-based NAS [386], although the concept is somewhat different and
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involves augmenting the RNN controller with a task-embedding strategy; the similarity of ML tasks
when converted into embedded vectors drives correlated child-network design sequences [369].
For a general AutoML system, it is also of interest whether feature representations, i.e. FE pipeline
segments, can be transferred from unlabelled and even arbitrary data to supervised learning tasks.
This idea has been previously explored under the name of ‘self-taught learning’ [281].

Given the current popularity of DNNs, many novel meta-learning advances are often framed
within such contexts. Model-agnostic meta-learning (MAML) was proposed in 2017, where a
network is trained across a set of similar ML tasks so that, when used to initialise a gradient-based
search for a new ML task, few iterations are required to optimise the model [109]. In effect, good
initial DNN weights are meta-learned for rapid few-shot learning. The utility of MAML has been
demonstrated in several contexts, e.g. efficiently learning an RL policy for robotic control [110].
Ultimately, meta-learning provides sound foundations for upgrading almost any element of a

modern AutoML system, at least in theory. The motivation is that, assuming previous experience is
relevant to an ML task at hand, it would seem beneficial to incorporate meta-knowledge in data-
based predictive/exploratory systems. Unsurprisingly, there is evidential support for this view; one
strand of research involving a ‘meta-mining’ module [262] and an IDA named eProPlan/eIDA [200]
found that the ‘best’ workflows suggested by KDD system RapidMiner, specifically ML pipelines
composed of frequently used operators, were significantly outperformed by workflows ranked and
recommended via meta-models. In effect, automation based on meta-learning generally produces
better ML solutions than those manually selected by human practitioners. Nonetheless, the extent
of its effectiveness cannot be assumed. Leveraging meta-learning requires several unclear design
choices, so much so that meta-model selection has itself been the focus of meta-learned recom-
mendation [73]. Concern has also been raised that standard sets of meta-features cannot seem to
discriminatively subdivide the space of ML tasks according to pre-processing pipelines they should
employ [131]. Then there is the issue that training a recommender system well requires significant
amounts of data and experiments from similar contexts, which may simply not be available in
practice. It is not even clear whether the obvious solution to this, i.e. drawing meta-knowledge
from other domains, is particularly effective [9]. In essence, the promise of meta-learning is there,
but, as with many AutoML research threads, more critical analysis is required to properly evaluate
the benefit of employing these mechanisms.

8 ENSEMBLES AND BUNDLED PIPELINES
Every predictive ML task, i.e. where the response space R is previously defined by a user, must
involve a predictor at some stage, namely a transformation that converts some feature representation
of queries in Q over to responses in R. It can be a weakness, however, for an ML model to rely
on only one predictor. An AutoML system may not have access to a strong enough learner in its
pool of ML components, or, alternatively, perhaps each predictor is too prone to overfitting for a
particular dataset. Worse yet, for continuous streams of data, relying on one predictor is especially
brittle. True AutonoML needs to be efficiently adaptive, easily maintained even when one ML
model fails. Thus, for many reasons, managing a multiplicity of ML pipelines and their ensembles
is an important thread of research.
Aggregating multiple models is a powerful technique for controlling error. One review into

forecast combination provides a Laplace quote to suggest that this was understood in the early
1800s [69]. Thus, in the modern era, a lot of discussion about ensembles is framed within the context
of bias-variance decomposition (BVD), which was introduced to the ML field by the 1990s [129]. In
essence, the theory states that the failure of an ML model to mimic a desired function arises from
three error terms:
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• Bias – The inability of the ML model to fit data due to its simplifying assumptions. High bias
is typically the cause of underfitting and commonly describes weak learners.

• Variance – The inability of the ML model to generalise, given how much its fit changes for
different data samples. High variance is typically the cause of overfitting.

• Noise (or Bayes error) – An irreducible error related to how poorly sampled data represents
the desired function.

Typically, BVD theory is often brought up in the context of ML-model limitations and bias-variance
trade-off, although there is ongoing debate about where exactly this trade-off is applicable [261].

In terms of ensemble methods, there are three common types that find frequent use:
• Boosting – An ensemble is constructed in sequential manner, with each new predictor training
on re-weighted data; these weights prioritise data instances that were poorly modelled by
previous predictors. The output of the ensemble is usually provided as a weighted average
across predictors. This entire process often reduces bias, i.e. underfitting.

• Bagging – An ensemble is constructed in parallel manner, with each predictor training on
data sampled with replacement. The output of the ensemble is usually provided as an average
across predictors. This entire process, also known as bootstrap aggregating, often reduces
variance, i.e. overfitting.

• Stacking – An ensemble is constructed in layered fashion, where the outputs of base predictors
are appended to their inputs. The next layer of predictors trains upon the concatenation
produced by the previous layer.

Many ensemble methods are often homogeneous, i.e. based on one predictor, with boosting/bag-
ging often incorporating weak learners. However, heterogeneous ensembles have been proven
effective in their own right [71], perhaps even more so [127]. Ultimately, the predictive power of an
ensemble is bound very closely to the diversity of its constituent learners. Ensuring independence
between predictors, or even complementarity via negative-correlation learning [91], can have
strong performance impacts.
Notably, ensembling is not a foreign concept to AutoML development, with many systems

being promoted specifically because of these strategies. For example, employing mlrMBO [40] as a
CASH-solver, one effort automates gradient boosting [336]. Given that many AutoML packages
search through a pool of ML models/algorithms, the resulting ‘autoxgboost’ implementation is
relatively unique in focussing on a single learner. Elsewhere, stacking methodologies have seen
considerable uptake, utilised in the BO-based Automatic Frankensteining framework [365] and
the GA-driven Autostacker [64]. Most recently, AutoGluon-Tabular joined this list, suggesting
somewhat counter-intuitively that ensembling techniques could be more important than solving
CASH for achieving state-of-the-art accuracies [98]. Indeed, a common theme within related
publications is that ensemble-based systems frequently appear to outperform their non-ensembled
peers, with the AutoGluon release even providing an ablation study to emphasise the benefits
of multi-layer stacking. However, the ablation study does not seem to account for any possible
advantages afforded bymanuallywell-selected hyperparameters, which could provide other AutoML
systems a commensurate runtime discount. Further analysis with good benchmark design will be
required to settle the debate.
What is clear is that the automation of ensembled ML models cannot succeed without well-

developed strategies for selection and combination. Coalescing results across multiple ML predictors
generally appears more beneficial than arbitrating amongst them [58], although this assumes that
each predictor is still informative in some way regarding the inflow-data distribution. This is not
necessarily true for concept drift; see Section 9. It also remains an open question regarding what
the most effective way to build an ensemble is, with one study suggesting that greedily attaching
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heterogeneous ML models on the basis of individual performances can outperform boosting and
bagging [56]. Unsurprisingly, ensemble selection can also be treated as a variant of the CASH
problem. Certain SMBOs have been updated to automatically produce ensembles [215, 228], with
associated extensions into regression problems and upgrades for dynamic ensemble-sizing [292].
Likewise, GA-based methods have also been explored for ensembles [120]. Genetic programming
has been applied to automatically evolve forecast-combination structures for airline data [227] and
has been further investigated alongside meta-learning strategies [207]. In fact, there exists an entire
genetic-programming framework namedGRAmmar-DrIven ENsemble SysTem (GRADIENT), which
automatically creates combination trees of base-level predictors [340]. A two-tier approach would
later be proposed as an alternative to this, where high-level ensembles act as fuzzy combinations of
low-level ensembles [341].

Two-tier ensembling, alongside its multi-layer generalisation, is worth further discussion. While
a lot of research has traditionally been invested into flat weighted ensembles, certain studies, both
theoretical [294, 295] and empirical [296], have identified that the performance limits of a multi-
classifier model can be stretched by suitably structuring the model into ensembles of ensembles.
The other upside of working with such ‘deeper’ ensembles is the flexibility of delegation that they
possess, promoting ML solutions that leverage specialisation. The idea is that each learner within
a collective, potentially an ensemble of lower-level learners in its own right, can be trained to
specialise on its own non-overlapping selection of data, e.g. by instance or feature [120], according
to the requests that an ensemble manager makes of a data distributor. Multi-level ensembling thus
allows for a much more controlled and targeted synthesis of information. Of course, specialisation
must still be managed carefully, with one word-sense disambiguation study showing that ensemble
accuracy is very sensitive to the optimisation of individual experts [162]. Moreover, designing a
multi-layer MCPS is not trivial, relying on the right approaches for local learning and ensemble
diversity [5]. However, if done right, specialisation can be very powerful. This is evidenced by a series
of publications exploring multi-layer ensemble models applied to airline revenue management [287–
290], which, due to seasonal variations in demand, also investigated the dynamic evolution of these
structures. Adaptation is further discussed in Section 9. Similarly themed considerations likewise
resulted in a generic multi-level predictor system for time series that managed to achieve significant
performance in several contemporary forecasting competitions [297].
In terms of the illustrative AutoML framework developed in this work, many of the elements

discussed thus far already cater to ensembled approaches. Homogeneous ensembles can be con-
structed/aggregated internally within an ML component with little additional effort, as hinted at in
Section 2. Likewise, while heterogeneous methods cannot be represented on the ML-component
level, a simple example of stacking has also been demonstrated, internal to an ML pipeline, within
Fig. 7. However, we emphasise that the intent behind defining ML pipelines is to focus on enabling
complex sequences of data transformations. There is still an implicit assumption that a one-pipeline
ML solution must engage with the entire scope of a data source as part of the learning process,
no matter the branching degree of its internal ML-component DAG. This is a severe limitation, as
a diverse team of learners concentrating on different parts of a problem, i.e. specialisation, may
be much more effective than a single learner with a scattered attention. Now, it is arguable that
heterogeneous boosting, with its sequential nature of having learners clean up the mistakes of other
learners, can still be squeezed into ML-pipeline representation with sufficiently elegant inflow-data
control, i.e. constructing new candidate solutions as extensions of previous ones but training them
on novel samplings. However, heterogeneous bagging relies on the distribution of dissimilar data
samplings across various learners, all potentially working asynchronously.
The upshot is that an ML solution needs a higher level of structure beyond an ML pipeline to

fully support heterogeneity and complex data re-distributions. This is best served by the ability
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to manage multiple ML pipelines simultaneously and even ensemble them together. There is no
consistent name for this specific parallelisation; here, we call the arrangement an ML-pipeline
bundle, demonstrating in Fig. 11 how the structure could be utilised within an AutoML system.
Within this illustration, there is a new module that oversees ML bundles, deciding when to add,
remove, develop or deploy ML pipelines within the arrangement. Only one bundle is ever deployed
though, and this one needs both an aggregator for individual outputs and an associated accuracy
evaluator. The bundle manager controls the aggregator, e.g. weighting the sum of outputs, and
also has access to all evaluations that may assist its prescribed ensembling strategy. However,
while the bundle manager does decide when a new ML pipeline must be added to the deployed ML
bundle, possibly overwriting an underperformer, the pipeline optimiser is tasked with the actual
construction and optimisation thereof, as expected.

Naturally, this division of responsibility does require additional modifications to the architecture.
Data propagation requests are now split between the optimiser and bundle manager by whether an
ML pipeline is under probation, i.e. in the process of being optimised/validated, or under deployment,
respectively. In static ‘one-and-done’ ML processes, the entire ML solution will typically be wholly
in a state of learning followed by wholly in a state of use, but the compartmentalisation depicted in
Fig. 11 becomes important in dynamic ‘long-life’ ML; see Section 9. Furthermore, it is no longer
sufficient to provide optimisation constraints upon interpreting/analysing a new ML task; strategies
for both HPO and pipeline bundling must be determined. Within the illustrative schematic, these
are prescribed by a global strategist. Further commentary on this is provided in Section 14.
Ultimately, choosing when to deploy an ensemble remains debatable. They can often improve

the accuracy of a predictive ML solution markedly, but, as Section 10 discusses, the performance of
an AutoML system cannot be judged on predictive error alone. Ensembles complicate ML models
and become increasingly difficult to interpret, a challenge that regularly faces algorithm design
and selection in the modern era [293]. One way to counter this is to train a simpler interpretable
model to mimic the decisions of a more complex one, or use a more direct process of compression
if available, and this concept of ‘knowledge distillation’ is a research topic in its own right. It has
been heavily investigated, for example, in the context of fuzzy neural networks [92, 116, 117], with
similar approaches tried for decision trees [93]. In relation to AutoML, distillation has also recently
been explored with AutoGluon [100]. In the long run, the procedure may be worth implementing
as one of several high-level processes to enact in the relative downtime of an autonomous system,
i.e. seeking condensed versions of deployed ML pipelines. Regardless, the capacity to build ML-
pipeline bundles/ensembles remains a recommended upgrade for any AutoML system that seeks to
pursue long-term maintenance/adaptation schemes.

9 PERSISTENCE AND ADAPTATION
From here on in, all reviewed research is framed within the context of working towards AutonoML,
not just AutoML. This distinction is drawn because, to date, the vast majority of AutoML research
has focussed on automating the construction of ML models for fixed-term ML tasks. Broadly put, an
AutoML system is engineered to be a powerful tool, turned off after use, whereas we contend that
an AutonoML system should instead be viewed as an artificial brain, continuously developing while
active. Unsurprisingly, many proposed upgrades for ML autonomy are biologically inspired [6].
However, conceptually upgrading AutoML to become self-governing is highly ambitious and
certainly not a direct route. Thus, for practical purposes, we propose a fundamental characteristic
to define an AutonoML system: the capacity to persist and adapt [383].
Persistence is the idea that an AutonoML system should be capable of multi-level operations

in the long term. Technically, keeping a trained ML model under deployment is a trivial form
of persistence that all AutoML systems are capable of. However, support for persistent learning
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is much rarer. Few AutoML systems are designed for the streaming of inflow data, limiting ML
operations to datasets of known finite size. This is understandable, as dealing with data from
dynamic systems upstream of an ML process is very challenging, with the potential to incur a lot
of technical debt [310]. On the other hand, the ‘Internet of Things’ (IOT) is a growing driver of big
data analytics [80]; the need to embed ML systems into long-life dynamic environments is likely to
increase in the coming years.
At a low level, streamed data is nothing new to ML, with varying types of online-learning

algorithms in existence [43]. Moreover, many tunable data transformations that traditionally work
in one-off fashion have incremental variants, such as PCA [147]. For instance, one SMBO proposal
highlights its use of Mondrian forests as an online alternative to random forests [201]. There
is even at least one entire software environment dedicated to supporting ML for streamed data,
e.g. Massive Online Analysis (MOA) [37]. Thus, inevitably, researchers have begun studying the
extension of AutoML processes into streaming contexts. This was the driving motivator for a 2018
NIPS competition into lifelong AutoML, as well as a recently released evaluatory framework named
automl-streams [173].

Importantly, stream-ready AutonoML is not designed to inherently outperform standard AutoML
in stable contexts, i.e. static inflow-data distributions. For this kind of scenario, each incoming
instance of data provides decreasing marginal information about the statistics of its source, obeying
a law of diminishing returns. If the frequency of inflow data is sufficiently high, then buffering a
representative sample becomes cheap enough, in terms of runtime, to annul the headstart advantage
of online learning. In these stable contexts, stream-ready AutonoML instead proves its value for
rapid-deployment operations, where a valid solution must be provided instantly and in the absence
of historical data [187], irrespective of quality. Section 2 supported this idea, proposing that, for a
general implementation, data transformations should be initialised immediately within their ML-
component shells. In fact, we suggest that, given a pool of ML models/algorithms, a solid AutonoML
strategy should bias its initial selections to instance-based incremental learners before exploring
more complex batch-based models, thus maintaining respectable predictors while allowing data to
accumulate. Such strategies work best when ML-pipeline bundles are part of the design, detailed in
Section 8, because one or more ML pipelines can then be developed in parallel to one or more that
are currently deployed; the foreground/background partitioning of these operations resembles the
page-flip method used in computer graphics. Not unexpectedly, this solution-refinement process is
a logical one for user-interactive systems that minimise response latency, e.g. ones where users
may wish to steer data exploration, and is employed by the Northstar data-science system within
its CASH-solving module, Alpine Meadow [210].
Where the AutonoML paradigm becomes critically necessary is for ML tasks applied within

dynamic contexts, specifically scenarios for which ‘concept drift’ occurs [122]. Technically, this
refers to the desirable mapping between query-space Q and response-space R changing over
time, e.g. epidemiological notifications being updated to include asymptomatic cases. Notably,
real concept drift is often conflated with virtual drift, whereby the data distribution that drives
ML-model training changes, e.g. notifications being assessed within a new city. Theoretically,
virtual drift does not affect the ideal mapping. Nonetheless, given that an ML model,𝑀 : Q → R,
is already an imperfect approximation of the maximally desirable mapping, we use ‘concept drift’
here loosely; in practice, both forms of drift require ML models to be re-tuned. Thus, if it is to
persist usefully in these contexts, an AutonoML system should be able to identify any form of drift
and respond appropriately.
On a conceptual level, adaptive strategies can be integrated into an AutoML framework in the

manner shown by Fig. 12. This schematic builds upon the CASH-solving system supported by
meta-learning, as depicted in Fig. 10, albeit with the additional inclusion of the ML-pipeline bundles



42 Kedziora et al.

Data 
Distributor

User 
Interface

User

ML Tasks,
IO Linkage &

Context
Data

Interpretations

Evaluator

ML
Pipeline

Optimiser ML Pipeline
Evaluation Signals

(Probationary)

ML
Pipeline
Factory

Transformation 
Library

Data Sources

ML Task
Interpretations

ML Pipeline 
Specifications

ML Task
Analyser

ML
Pipeline
Planner

Transformation
Availability

ML Pipeline
Search Space

Output Processor

Evaluation 
Procedure

Management 
Signals

Evaluation 
Metrics

Data 
Analyser

Data
Interpretations

Meta 
Knowledge 
(Solutions)

Data
Characteristics

ML Task
Characteristics

Meta 
Knowledge 
(Strategy)

Meta Models

Global
Strategist

ML 
Bundle

Manager

Baseline
Strategy

ML Bundle
Evaluation 

Signals

ML
Solution
Adaptor ML Pipeline

Evaluation Signals
(Deployed)

Adaptation
Instructions

Construction
Signals

HPO
Strategy

Bundling
Strategy

Adaptation
Strategy

Feature 
Analysis

ML Solution 
Constraints

Pr
ob

at
io

na
ry

 
B

un
dl

e

Pipeline M+1

...

Pipeline N

D
ep

lo
ye

d
B

un
dl

e

Pipeline 1

...

Pipeline M

ML Solution

Management 
Signals

Fig. 12. (Colour online) A high-level schematic of a dynamic AutonoML system suited to streamed data, where
an ensemble of deployed pipelines is monitored for concept drift and reactive strategies are enacted. This
architecture is an upgrade to that of Fig. 10, with blue highlights emphasising the main new additions related
to adaptation. Dashed arrows depict control and feedback signals. Solid arrows depict dataflow channels.
Block arrows depict the transfer of ML components/pipelines. Black/white envelope symbols represent data
propagation requests to the data distributor and developmental feedback to the meta-models.



AutonoML: Towards an Integrated Framework for Autonomous Machine Learning 43

introduced by Fig. 11. Here, just as specialisation required an ML-bundle manager to oversee the
ML-pipeline optimiser, a new adaptor module has its own elevated responsibility over the bundle
manager. It primarily monitors the performance of individual deployed ML pipelines, polling the
evaluator with some frequency over the lifetime of the ML solution, and, when the threshold
for drift is passed, it instructs the bundle manager to deal with the failing pipeline accordingly.
Based on the employed strategy, this may involve shifting extant ML pipelines between foreground
deployment and background probation, not just the outright addition/subtraction of individual
learners to/from memory.
As before, this new partitioning of responsibility does require updates to our illustrative ar-

chitecture. Upon encountering a new ML problem, initial task analysis may suggest a baseline
approach, but the global strategist is now responsible for prescribing individual tactics regarding
HPO, pipeline ensembling, and adaptation. To reflect that any of these can be improved by prior
experience, meta-models now feed their strategic knowledge into the global strategist for further
dissemination. In turn, reciprocal meta-model development is extended across both the bundle
manager and solution adaptor. As for dataflow control, the data distributor similarly receives signals
from all three solution-developing modules to support their activities. Given the potential for undue
clutter, Fig. 12 uses shorthand symbols to depict both meta-model feedback and data propagation
requests.
Returning to a survey of academic literature, the topic of adaptation has been a thread of ML

research for decades. For instance, catastrophic interference has long been a challenge for updatable
neural networks [249], in that previously learned knowledge is so easily erased by adjustments to
the trainedMLmodel. As a side note, one way tomitigate this effect is in fact to use the specialisation
techniques introduced in Section 8, so that adjustments in knowledge are well segregated; this was
demonstrated by early adoption of a two-level ensemble within an adaptive monitoring scheme for
a water distribution network [118]. Elsewhere, biological inspirations for adaptive classifiers [103]
managed to spawn an entire sub-field dedicated to artificial immune systems. Amongst all these
investigations, some studies have expressed a recurring principle, that adaptability is the capacity to
cope with uncertainty [6]. This view meshes well with the idea of fuzzy logic, where the rigidity of
decision boundaries is softened, and so, unsurprisingly, the development of neuro-fuzzy theory has
aligned well with researchingML solutions that are robust and easily adaptable. Indeed, fuzzy neural
networks have previously been proposed as the basis for evolving intelligent systems [16, 193], and
their online-learning algorithms continue to be improved [195].
Of course, most ML algorithms do not have in-built mechanisms that differentiate between

contexts. Instance-based incremental learners may evolve as rapidly as possible, closely tracking the
receipt of new data, but even these algorithms are typically incapable of controlled non-catastrophic
forgetting. One approach for designing exceptions to this rule is to include a domain-encoder in
some manner. This is exemplified by a deep-learning architecture that, with some novel gradient-
reversal tweaks, branches off a domain-classifier alongside standard label-predicting layers [123].
Loosely expressed, the domain-classifier serves to absorb the influence of differing contexts during
training, promoting domain-invariant features for label classification. While this domain classifier
arguably internalises only one dimension of concept drift, the more recent Memory-based Parameter
Adaptation (MbPA) method [323] works to embed and save previously encountered labelled data,
potentially capturing multiple contexts. Parameters for an output network are adjusted based on
how embeddings of new instances compare to those that have already been memorised.
From an idealised perspective, the paucity of specialised algorithms is largely irrelevant to

AutonoML, which aims to be universally applicable; any strategist in such a framework should
employ generic adaptation mechanisms that work irrespective of base learner. Dynamic Weighted
Majority (DWM) is one such general method, bundling together an ensemble of experts [204]. If the
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ensemble errs, a new expert is added, training only on subsequent data that ideally encapsulates a
drifted concept. If an expert errs, adhering too rigidly to outdated concepts, its prediction is given
less weight within the ensemble. If confidence in an expert is sufficiently low, it is booted from the
ensemble altogether. Another alternative is the Paired Learners (PL) method, which only requires
two ML-pipelines [18]. Specifically, a stable learner trains on all the data it encounters after its
initialisation, while a reactive learner trains on a moving window of data. If the reactive learner
sufficiently outperforms the stable learner, the latter is reset with a new expert. Beyond this, there
are many more approaches to adaptation that have been reviewed elsewhere, e.g. in the context
of soft sensors [189]. More complex methods include the ‘incremental local-learning soft-sensing
algorithm’ (ILLSA) [188] and its batch-based successor, the Simple Adaptive Batch Local Ensemble
(SABLE) method [22].

The principle behind SABLE is worth calling particular attention to, as the procedure is actually
expressed as a composite of multiple adaptive mechanisms, e.g. batch-based retraining or adding
a new expert. The order of these processes is important in optimising predictive accuracy over
time [23]. Recent experiments with SABLE have been combined with investigations into batched
versions of DWM and PL, similarly decomposed into atomic adaptive mechanisms that could
arguably bemixed andmatched [24]. Given a strong drive towards integrated adaptive systems [119],
this customisation of strategies suits the ethos of AutonoML, although, as with the meta-models
discussed in Section 7, questions remain as to whether automating such a high-level selection
process is tractable.
At the very least, a modular approach for adaptation is appealing; such a philosophy aligns

with the design of a general adaptive MCPS architecture, published in 2009 [183], that serves as
partial inspiration for the illustrative one developed in this paper. This plug-and-play framework
is worth highlighting, as it describes a predictive system operating with constrained ML pipeli-
nes/components, employing a meta-learning module and even catering to both multi-objective
evaluation and expert knowledge; see Sections 10 and 12, respectively. Most pertinently, it is a
system that employs a dynamic and hierarchical aggregation of learners, leveraging lessons from
prior research [287–289] that was detailed in Section 8, and has been successfully instantiated
several times in the context of soft sensors [184–186]. However, its publication preceded the surge
of progress in HPO/CASH over the last decade, resulting in an architecture that is rudimentary in
general purpose HPO, while being sophisticated in both automatic adaptation and the integration of
multiple relevant ML mechanisms into a coherent framework. It is symbolic of the fact that, while
we treat AutonoML as a successor to AutoML, research and development do not obey convenient
orderings.
While devising strategies to maintain ML-model accuracy in shifting contexts is important,

there is another key question to consider: when should an adaptive mechanism be triggered? A
sustained concept drift, whether real or virtual, is different from an anomaly [60]; any detector
should be capable of distinguishing and ignoring the latter. Naturally, there have historically been
many approaches to change detection. The Page-Hinkley test is one such example from the 1950s,
sequentially analysing shifts in the average of a Gaussian signal [270]. It finds frequent use in
adaptive mechanisms, e.g. triggering the pruning of regression-based decision rules based on their
errors [11]. On that note, many detection techniques are model-based, assessing concept drift by
the deterioration of predictor accuracy. For instance, the Drift Detection Method (DDM) essentially
alerts a context change if the error rate of an ML algorithm passes a threshold [121]. The Early
Drift Detection Method (EDDM) is more interested in the distance between errors, thus picking
up on slower drifts more effectively [19]. The downside with such methods is that they can be
computationally expensive, especially in resource-constrained hardware environments. This is
particularly true for many non-incremental ML algorithms, which need to re-process historical
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data just to ingest a new batch of instances. Alternatively, reminiscent of the filter/wrapper duality
of AutoFE, some drift detection methods operate solely on the data, e.g. identifying outliers and
shifts based on local densities [277].
Despite all this research into the triggers and processes of adaptation, it is possible to question

whether it is too speculative to declare AutonoML as the next step in ML automation. This is
certainly open to debate, but the last decade has already teased synergies between the surge in
AutoML developments and the theories of dynamic contexts. For instance, while ensemble-based
strategies such as SABLE are usually homogeneous in terms of predictor type, HPO studies have
considered the feasibility of changing hyperparameters over time [59]. One proposal does this
via the online Nelder-Mead algorithm, triggering the search when a Page-Hinkley test identifies
concept drift [352]. Then there are efficiency-based investigations tailored for the idea of an MCPS.
These include identifying whether segments of a pipeline can be adapted independently [385] and,
if so, how these adjustments must be propagated through the rest of an ML pipeline [300]. The
interplay of meta-learning and adaptation also remains of interest [7], with the former potentially
used to recommend an expert [173] or, at a higher level, an adaptation mechanism.
In any case, it has been the last couple of years that have truly hinted at burgeoning inter-

est in adaptive AutoML. While batch-based and cumulative strategies were evaluated with Au-
toWeka4MCPS for a chemical-processing case study in 2016 [299], at least three publications have
recently been released to push beyond this body of work. One studies the extension of Auto-sklearn
to data streams, complete with drift detection [242], while another examines adaptive mechanisms
more broadly, leveraging both Auto-sklearn and TPOT [173]. A third works towards a more ex-
tensive multi-dataset benchmark, adding H2O AutoML and GAMA to the list, while also using
EDDM to identify concept drift and trigger adaptation [57]. Thus, it appears that the transition
to AutonoML has already begun. Nonetheless, numerous challenges remain [383]. These include
ensuring that adaptive systems are user-friendly, trustworthy, and capable of expert intervention.
They must also scale well to big data that is realistic and messy, and, in the long run, work in
general settings. In practice, adaptation must also be deployed sparingly, perhaps only when a
cost-benefit analysis of an operation identifies a net positive [384]. Intelligent evaluation is key to
optimising all aspects of AutonoML.

10 DEFINITIONS OF MODEL QUALITY
Recalling Section 2, the purpose of ML is to learn a model from data that approximates some
maximally desirable mapping, Q → R. In certain cases, i.e. unsupervised learning and data-
exploratory processes, this ground-truth function can seem arbitrarily subjective and vague; if two
data scientists are scouring data for ‘interesting’ information, would they agree on their criteria for
interest? Would they even know what they are looking for until they find it? Without meta-learning
the brain chemistry of a user, or at least the expression of their preferences, an AutoML system
cannot estimate the quality of an exploratory ML model until it serves a user-defined purpose
elsewhere. Nonetheless, for predictive tasks, e.g. those employing supervised learning, the desired
Q → R mapping is much more objective and immediately discernible from inflow data, e.g. hinted
at by way of class label. Thus, unsurprisingly, there is a tendency across ML research to focus on
the concept of ‘accuracy’. This is understandable, as minimising some metric for the dissimilarity
between model and ground-truth function is a universal goal across all ML tasks. However, the
automation of ML is ultimately in service of human requirement, and AutonoML, as a field, cannot
ignore the many ways by which model quality can be judged.

Conveniently, from a conceptual perspective, broadening the scope of model performance does
not require any major changes in the illustrative architecture developed thus far, i.e. Fig. 12. While
ML components and ML pipelines have all incorporated an accuracy evaluator, the high-level
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evaluator module has been left intentionally abstract from the beginning, linking up with the
interfaces of both. There is no reason why the ML-pipeline bundle cannot be fleshed out as a
proper wrapper either; Fig. 11 only avoided this for the sake of simplicity. Thus, assuming low-level
interfaces have easy access to other model characteristics beyond internally evaluated accuracy,
e.g. runtime or memory footprint, higher-level modules are able to optimise the solution according
to varied objectives. Admittedly, direct assessment in the Fig. 12 schematic does remain limited to
the ML solution, with high-level strategies being only indirectly evaluable. This is likely fine in
practice, although, in theory, perhaps high-level strategies should in fact be directly evaluated and
optimised; see Section 14.

Notably, when the algorithm-selection problem was first codified in the 1970s, various ways of
evaluating models were proposed, including metrics based on complexity and robustness [286].
The vast majority of HPO methods and CASH-solvers over the last decade have disregarded these
concepts, although not without cause; error metrics are, on the whole, easier to standardise and
calculate across different types of ML model. Even so, the idea that model quality could be based on
alternative metrics has persisted throughout the years, with the fusion of multiple criteria likewise
studied at least as early as in the 1970s. For instance, despite describing not-for-profit programmes,
one publication discussing the ‘efficiency’ of decision making units by combined characteristics [62]
is often cited as a forerunner for multi-objective evaluation in KDD systems. Certainly, by the
1990s and the formalisation of KDD, the list of proposed metrics by which to judge an ML-model
was broadening, including attributes such as novelty and interpretability, and it remained an open
research question as to if and how these could be measured and combined in weighted sum [259].
In recent years, with the advent of HPO methods, sections of the ML and ML-adjacent com-

munities have asserted the need for multi-objective optimisation [160]. A thesis on multi-layer
MCPS frameworks explores this topic in depth [5], noting that common approaches may attempt
to linearly combine objectives, hierarchically optimise them, or, in the absence of clear priorities,
seek solutions that are Pareto-optimal, i.e. where the improvement of one criterion necessarily
damages another. In practical terms, the mlrMBO package is one implementation among SMBOs
that caters to multiple criteria [40, 161], while, for evolutionary methods, multi-objective genetic
algorithms have been well established for many years [78].

Returning to evaluation criteria, typically the first extension researchers explore beyond accuracy
is runtime; there is a limit to user patience for any practical ML task, beyond which increased
accuracy is not appreciated. Argued to have been largely ignored until the early 2000s [46], the
gradual inclusion of runtime into model-evaluation schemes [1, 53, 317, 318, 347] may have mir-
rored the development of the user-focussed KDD paradigm and the maturation of HPO, e.g. the
shift of AutoML from lengthy academic experiments to public-use toolkits. Of course, observing
the development time of an ML pipeline and its ML components is trivial, while meta-learning
techniques have been proposed to transfer accumulated knowledge to new estimates [172, 244].

Beyond accuracy and runtime, many performance metrics have been proposed for ML solutions,
although, to date, consolidative surveys are largely absent. In part, this is because many proposals
are only applicable to restrictive subsets of use cases, or have at least been coupled tightly to
particular contexts. For instance, FE transformations can be judged based on associated errors and
tuning time, but optimising feature-selection percentage, i.e. preferencing fewer features [272, 356],
is specific to AutoFE pipeline segments. As another example, an automated learning system for
semi-supervised learning (Auto-SSL) uses SVM-reminiscent ‘large margin separation’ as a criterion
for HPO, where inflow data is mostly unlabelled [232]. Furthermore, as adaptation research into
streaming data and changing contexts continues, it is likely that evolving AutonoML systems will
require new descriptors for the quality of ML solutions, e.g. metrics relating to temporal stability
and robustness.
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For now, research strands into ML performance evaluation remain arguably disorganised, at
least from the perspective of informing high-level control mechanisms for an AutonoML system.
Typical ML benchmarks focus on minimising both loss functions and processing times, which do
not necessarily encapsulate the entirety of human requirement. In fact, in seeming response to
the age of deep learning and extensively layered DNNs, it is a tenable view that model complexity
has recently become a major marker for solution quality, or, more precisely, the lack thereof.
Specifically, while the MCPS paradigm has enabled arbitrarily complicated ML solutions to be
built, discussed in Section 4, there is an implicit understanding in the ML community that no ML
model should be unjustifiably complex. Efforts towards a general meta-learning architecture have
espoused this view [176, 177], and the TPOT package demonstrates a practical Pareto-based method
of controlling ML-pipeline size [267]. From an ideological perspective, complexity is eschewed
by intensifying social desires for explainable/interpretable ML models [132, 293]. Indeed, while
the power of ensembling for maximising predictive accuracy is well evidenced, as discussed in
Section 8, the process of knowledge distillation into simpler models is partially driven by the opaque
nature of these ensembles [100]. However, there are also pragmatic reasons for maintaining simple
models, especially when computational resources are in short supply.

11 RESOURCE MANAGEMENT
All sections up to this point have implicitly discussed AutoML and its extension to dynamic contexts,
AutonoML, as fundamental developments in data science. The emphasis has been on how novel
strategies and theoretical advances in various topics, e.g. optimisation and knowledge transfer, have
enabled or upgraded the automation of workflow operations for an ML task, with special focus on
designing and maintaining high-quality ML pipelines within a diversity of contexts. However, while
the conceptual promise of AutonoML has the potential to revolutionise how society engages with
ML on a day-to-day basis, the present reality suggests that practical application is still far behind
theory. There may be a proliferation of AutoML packages as of the year 2020, both open-source
and commercial, but it is arguable that many lack the application stability to support general
uptake. For instance, several benchmarking studies [25, 98, 387] have, between them, encountered
process failures for the following: Auto-WEKA, Hyperopt-sklearn [205, 206], Auto-sklearn, auto_ml,
TPOT, H2O AutoML, Auto-Tuned Models (ATM) [330], AutoGluon-Tabular, Google Cloud Platform
(GCP) Tables, and Sagemaker AutoPilot. This list is virtually guaranteed to not be exhaustive. Thus,
it is clear that the challenges remaining are not simply theoretical; AutonoML is a problem of
engineering. Managing the automation of ML when subject to resource-constrained hardware is a
research thread of its own.

Naturally, it is challenging to proclaim anything too specific on this topic; hardware particulars,
including layerings and intercommunications, vary greatly from IOT devices to large-scale servers.
However, broadly speaking, an AutonoML system cannot achieve optimal performance without
direct awareness of and influence on its hardware environment. An abstraction of these features
is illustrated by the use of a resource manager in Fig. 13, a schematic that extends the adaptive
AutonoML shown in Fig. 12. In terms of routine operations, this management module is tasked
with connecting requests for resources, e.g. memory allocations for data transformations, to the
hardware that is available. However, it also represents the opportunity to guide the search for ML
solutions, assessing the limitations/benefits of available hardware and evaluating how resources
are used in the process of ML activities. With this knowledge, a well-designed resource manager
can both constrain solution space directly, e.g. restrict ML-pipeline complexity for low-memory
settings, and tailor high-level strategies, e.g. trial DNN candidates only when GPUs are free. This
representation also implies that strategies, e.g. adaptive mechanisms, can themselves be adapted
over the course of an ML task in response to changing resource circumstances. Overall, most recent
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developments in resource-conscious AutoML can be projected in some way onto this conceptual
framework.

Returning to a survey of related research, runtime appears to be the primary focus of efficiency-
based studies in AutoML. While Section 10 discussed runtime as a metric for grading ML models/al-
gorithms, resource-management research is more interested in how the system as a whole should
function around scarce processing time. In particular, ‘anytime algorithms’ are procedures designed
specifically around this concern, providing valid solutions to a problem if interrupted. Incremental
ML algorithms are generally most suitable for anytime-compliance, whereas batch-based learning
has more to lose if cancelled; this idea is related to the discussion of rapid deployment in Section 9.
Importantly, while low-level training processes are good candidates for anytime mechanisms, a
robust AutonoML system should be safely interruptible at all levels. As an example, one proposed
meta-learning framework acquires its meta-model for ML algorithms offline, but then, upon being
applied to a dataset, is able to evaluate an ordered list of recommendations until interrupted,
returning the best solution found thus far [138].
Of course, while resilience against interruption is a necessity, efficient operation within time

constraints is the ideal. For instance, research into fusing BO with MAB approaches was partially
driven by time-budget considerations [101, 159], which is perhaps why some consider BO-HB
to be a state-of-the-art CASH-solver [373]. Even so, working within a budget may still be more
practically challenging than expected, as, curiously, a recent study found circumstances in which
popular AutoML packages, TPOT and H2O AutoML, did not even adhere to user-provided time
limits [98]. Other high-level systems have also been the focus of budget-conscious experimentation,
with, for instance, the economic principle of return on investment (ROI) used to assess adaptive
mechanisms [384]. The ROI in this study retrospectively pits gains in ML-model accuracy against
processing time, additionally including several other costs, e.g. random access memory (RAM) and
cloud-service communication costs.

Excluding rare exception, the earliest years of modern AutoML research appear to avoid serious
discussion about hardware, with efficiency-based developments targeting algorithms in a general
manner. However, given the nature of DNNs, the popularisation of NAS has forced developers to
be conscious about interfacing with hardware. For instance, the Auto-Keras package automatically
limits DNN size based on GPUmemory limits [179]. Furthermore, there has been growing interest in
designing AutoML systems and packages for clusters of machines, despite the typical challenges of
developing distributed ML [89], e.g. designing/using an appropriate ‘programming model’ beyond
MapReduce [191]. For some portions of the ML community, this interest appears to be motivated
by the needs of time-critical big-data biomedical fields [240], as is exemplified by the application of
distributed HPO to a lung-tissue classification problem [306].

Consequently, recent years have witnessed AutoML frameworks being developed for distributed
big-data settings, e.g. KeystoneML [320, 322] and ATM [330]. Notably, an early forerunner of this
movement is MLbase [211], which is supported by a MAB-based CASH-solver called ‘Training
supported Predictive Analytic Queries’ (TuPAQ) [321]. Beyond using a cluster of machines to
evaluate ML models in parallel, TuPAQ is also designed for data-parallel scenarios in which a
dataset is too large to fit on one machine, thus forcing model updates to rely on the fusion of partial
statistics derived from data subsets that are processed on individual worker machines. Accordingly,
many of the design choices behind TuPAQ are geared towards optimising against this engineering
challenge, such as a mechanism to discard unpromising models before they are fully trained. Such
stopping rules are not uncommon, and they are employed, for example, by another cluster-based
hyperparameter optimiser named Sherpa [157].
The recent trend of companies providing AutoML as a cloud-based service only complicates

matters further. In these settings, an AutoML system must run multiple ML tasks across a pool of
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processors in asynchronous fashion. This extension of standard AutoML to multiple devices and
multiple tenants (MDMT) requires novel strategies for resource coordination [378]. The cost of data
transfers between hardware can become significant in such distributed settings, meaning that hy-
perparameter configurations must be allocated intelligently between workers when solving CASH.
Task schedulers based on runtime estimates have been proposed to support this allocation [332].
Beyond model-parallel and data-parallel approaches, certain frameworks like PipeDream have also
explored whether breaking apart an ML pipeline, technically a DNN, may be more efficient, where
individual machines are dedicated to the training of individual ML pipeline segments [150].
A notable extension of distributed ML that has gained attention in the last few years is the

concept of federated learning, where data samples located on local machines cannot be transferred
elsewhere. Because of this restriction, the data may not be independent and identically distributed
either. Any associated research has been attributed to a wave of ‘privacy-aware’ ML [132], on
account of data scientists only having access to locally trained models and not their underlying data.
Recently, the federated-learning community has highlighted a growing need for HPO and other
AutoML processes in this context, albeit stressing that communication and computing efficacy
for mobile devices cannot be overwhelmed by the traditional objective of model accuracy [190].
Consequently, the year 2020 has witnessed the application of NAS to federated learning, with,
for example, the FedNAS framework, which deploys one NAS-solver per local machine and then
coordinates them via a central server [151]. Alternatively, the DecNAS framework targets low-
resource mobile devices, noting the FedNAS assumption that each local machine is GPU-equipped.
In the absence of hardware resources, DecNAS uses subgroups of devices only to train/test candidate
models, while the actual searcher is situated at a higher level, i.e. a central cloud [371].
There are further engineering challenges to consider that are often overlooked in theoretical

investigations of AutoML. For instance, most benchmarks do not consider inference latency, i.e. the
time it takes to convert a query to response. Typically a negligible concern in academic experiments,
inference latency can become significant enough in MDMT settings and industrial applications to
warrant an automated control system of its own, e.g. InferLine [72], which is responsible for query
distribution and provisioningML bundles. Occasionally, this execution lag can be further diminished
by designing and incorporating bespoke hardware, e.g. a Tensor Processing Unit (TPU) [181] or a
Neural Processing Unit (NPU) [112]. In this case, an ideal AutonoML system should be capable of
leveraging optional hardware when appropriate.

On the other end of the spectrum, hardware restrictions can be necessarily severe, such as when
designing ML solutions in IOT settings [80]. In this context, an AutonoML system must decide
whether to centralise its ML model and treat integrated circuits with embedded Wi-Fi as pure
sensors, or whether some ML components should be installed on these limited-memory microchips.
Research into IOT-based AutoML is presently sparse, but this only serves to suggest that many
applications of interest remain for AutonoML research.

12 USER INTERACTIVITY
How should artificial intelligence (AI) be designed to interact with humans? This recurring question
is inherently profound, but, within the AutonoML context, it is a pragmatic one. Traditionally, a core
principle behind AutoML is to reduce manual involvement in all ML processes. Indeed, a long-term
goal of AutonoML is to allow a user to specify a task of interest, hook up relevant data sources, and
then relax; the onus is on the system to generate and maintain a high-quality ML solution. However,
an ideal framework should also facilitate user participation whenever desired and wherever possible.
In fact, a lack of user-friendly control options among contemporary packages may be adversely
affecting AutoML uptake altogether [219].
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Notably, in some scenarios, human interaction is intrinsic to an ML task; these are generally
called human-in-the-loop (HITL). Although this topic is broad, it typically involves a user engaging
with an ML system, either by validating query responses, e.g. confirming the classification of
an email as spam, or by providing data that best serves the learning process, e.g. deciphering
scanned text via ‘Completely Automated Public Turing tests to tell Computers and Humans Apart’
(CAPTCHAs) [354]. The process of an ML system intelligently requesting additional information
from an oracle/teacher is called active learning, and it shares faint similarities with the persistent
learning and adaptive mechanisms discussed in Section 9. Frequently applied to NLP, studies of
active learning have often considered how to optimise the feedback loop between human and AI,
e.g. by seeking the most impactful corrections to a model [75] or by accelerating feature extraction
between requests [14]. Some efforts have even explored using RL to outright learn active-learning
strategies, i.e. tactics for deciding which unlabelled instances of data should form the basis of
annotation requests [102]. Essentially, while reliance on human intelligence in HITL settings may
seem incompatible with the concept of autonomy, progress towards effectively leveraging this
interaction lies firmly within the AutonoML sphere.
More broadly, the design of AutoML systems regularly involves questions about where to link

in human control and expertise. Some ML platforms target the ML pipeline, with, for instance,
the hybrid Flock system embedding a crowd of users as an FE component [65]. This crowd is
asked to nominate and label a feature space for inflow data associated with an ML task, thus
encoding attributes that may be challenging for a machine to extract, e.g. the attitude of a person
within an image. In theory, though, every control element of an AutonoML system could be
influenced by a human expert, as was considered within an adaptive architecture proposed in
2009 [183]. Baking this flexibility into an implementation is an engineering challenge, but it has
been suggested that AutoML uptake would be served well by at least designing a few varying
levels of autonomy, e.g. user-driven, cruise-control, and autopilot [219]. One recent study has even
attempted to systematise which user-driven interactions should be supported; this pool of basic
actions was partially drawn from a decomposition of published scientific analyses [137].
Given the expanding complexity of the illustrative framework developed in this paper, we

avoid presenting another cumulative depiction of AutonoML. However, the salient elements of
advanced user interfacing are shown in Fig. 14. This representation can easily be integrated into
resource-aware AutonoML, portrayed in Fig. 13. Crucially, the diagram emphasises the analogies
between expert knowledge and meta-knowledge, suggesting that there is no conceptual difference
in how prior knowledge is used to tune regular/hyper/system parameters, whether accumulated
manually or automatically. In this paper, we have essentially partitioned preparatory high-level ML
operations into two objectives: determining a solution search space and determining how to search
throughout that space. Within this representation, the analogies are thus reflected by informative
signals being directed to both the ML-pipeline planner and global strategist. This is a consistent
design choice; Section 11 suggested that recommendations based on the practicalities of resource
availability should be likewise distributed. Beyond all that, Fig. 14 also portrays active-learning
processes, with model evaluation exposed to the user. User response may be to tweak either the
model or how a new model is found, but data sources may also be supplemented or adjusted as a
reaction.
Regardless of design, if this growing focus on interactivity appears to contradict the principles

of automation, it is explained by the following: concurrently to the field of AutoML surging in
prominence, the last decade has also witnessed a parallel movement towards AI accountability [132,
293]. A popular idea is that an AutonoML system can be treated as a black box, but, if required,
its processes should also be completely observable and, ideally, comprehensible. For instance,
the Automatic Statistician project merges the philosophies of AutoML and explainable AI by
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aiming to generate human-readable reports from both data and models [324]. Moreover, the idea of
interpretability is appealing even during the development of an ML solution; a recent clinician-
supported study suggests that predictive performance is more effectively fine-tuned by a user if that
user assesses/augments the internal human-understandable rules of a model rather than individual
instances of inflow data [133].
Of course, whether as a black box or with its machinery exposed, facilitating ease-of-use for

an AutonoML system, thereby encouraging lay usage, brings new risks into focus. Specifically,
there are intensifying calls to safeguard users from poor or even dangerous conclusions arising
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from data-science illiteracy [42]. Northstar, an AutoML system motivated by user interactivity and
democratisation, exemplifies consideration of these topics by proposing a module to Quantify the
Uncertainty in Data Exploration (QUDE), which acts as a sophisticated error-detection mechanism
for user interactions [210]. Ultimately, it is evident that, if AutonoML is to be successfully integrated
into society, the design of a UI will need just as much attention as any other subsystem.

13 TOWARDS GENERAL INTELLIGENCE
Over the course of many sections, numerous practical challenges have been raised with respect
to the automation of ML. Most of these stem from limitations in the resources that are presently
available. Without some technological paradigm shift, e.g. quantum computing [36], searching for a
data-transformation pipeline that suits some ML task, particularly a predictive one, will continue to
be typically measured in hours, if not by longer timescales. Nonetheless, with research continuing
to explore and develop this space, evaluating AutoML packages by the quality of their solutions,
i.e. any metric discussed in Section 10, may eventually become less compelling. In the long run, the
utility of AutonoML may be determined by another factor: generalisability.
By and large, most AutoML packages have not been developed with flexible data inflow in

mind. With many data transformations expecting inputs of a consistent size and shape, even
ingesting arbitrary images was considered a significant deep-learning advance, with spatial pyramid
pooling promoted as an effective alternative to substandard cropping/warping processes [152].
Thus, unsurprisingly, extensive manipulations of heterogeneous data do not appear particularly
common in ML. By the time disparate data passes through the pre-processing segments of an ML-
pipeline, it has usually been imputed/concatenated into a uniform vector space for the remaining
FE and predictive segments. The approach is similar even when dealing with time series; several
chemical-processing studies exemplify this by synchronising and combining data streams from
various sensors into vectorised snapshots of an industrial environment [183, 298]. In fairness, this
can occasionally be a design choice, as these same studies do actually involve frameworks capable
of constructing ML-pipeline bundles and partitioning inflow data in sophisticated ways [297],
theoretically enabling the delegation of individual ML experts to distinct sensors.
Regardless of implementation, it is clear that being able to generalise inflow data extends the

power of AutonoML, especially in IOT settings [80]. There is a growing appreciation of this fact,
with, for example, one recently proposed AutoML system promoting its relatively novel ability to
ingest different kinds of data, including tables, text, images, and audio [137]. This is why, from the
very beginning in Section 2, the approach in this paper towards conceptualising AutonoML has
emphasised the need to treat inflow data as generally as possible.

In the long term, though, the ideal AutonoML system is one that does not just cater to generic data
inflow; it is an application that is flexible in the types of tasks it can handle and, as Fig. 14 suggests,
ideally able to operate several at the same time. This means extending beyond the supervised
learning that a vast majority of present AutoML packages focus on. This also means considering
how to contextualise novel ML operations beyond model selection as they arise. Section 8 has
already mentioned knowledge distillation as a potential task worthy of its own module. Another
example is shown in Fig. 14, which attempts to represent one manifestation of the concept recently
termed ‘digital twinning’, heralded at least as early as in the 1990s under the speculative label
of ‘mirror worlds’ [128], whereby high-fidelity simulations of physical systems act as proxies for
reality. In this schematic depiction, ML solutions can be fed consecutive data that is simulated as a
reaction to previous model outputs, where, for various reasons, the acquisition of such data may be
infeasible in the real world.



54 Kedziora et al.

Now, granted, there have been substantial efforts to automate solution search within less typical
ML contexts, particularly recently. For instance, one AutoML framework specifically targets semi-
supervised learning [232]. Another one applies the principles of NAS to the trending topic of
generative adversarial networks (GANs) [140], with related work attempting to automatically distil
a GAN [113]. However, most of these efforts currently appear to be proof-of-principle, constructed
in bespoke manner for the novel contexts, as opposed to extending existing capabilities. Of course,
there is a valid discussion to be had whether attempting to develop a one-size-fits-all system is the
right functional approach, but it must also be acknowledged that the learning machine AutoML is
attempting to support, i.e. the brain of a data scientist, is itself capable of grappling with a diversity
of learning tasks, regardless of human efficiency.

Ultimately, a general-purpose AutonoML implementation may not be as blue-sky as one might
expect. In the years prior to the optimisation community pushing AutoML, KDD researchers
dwelled significantly upon ontologies of ML tasks while devising recommender systems. In essence,
mappings were studied between ML tasks and the structure of ML pipelines [105]. While these
notions of hard constraints have trickled into the AutoML sphere, the technical achievements behind
CASH have yet to be fully explored against the wide-ranging KDD paradigm. It is conceivable
that, with good design of a specification language, an AutonoML system could accommodate a
variety of ML task types, each of which would be translated into ML-pipeline structural constraints
by a KDD approach and then fleshed out by a CASH solver. Naturally, various tasks may require
unique ML components to be imported from distinct ML libraries, but this is not an obstacle; it is
possible to mesh codebases even for disparate programming languages. One recent approach to this
wrapped up environment-specific ML components as web services [256, 257]. Furthermore, with
robust mechanisms for persistent learning and the long-term accumulation of meta-knowledge,
there is potential for long-life AutonoML to become even more adaptive within unfamiliar contexts,
leveraging associations between the meta-features of an ML task and its optimal solution.
Admittedly, the major caveat to the AutonoML paradigm as it currently stands is that it can

only evolve via combinatorial exploration within pre-coded spaces of ML components, adaptive
mechanisms, ML-task types, and so on. This means that the extended generality of a framework like
AutoCompete [335], designed to tackle arbitrary machine learning competitions, remains subject
to the hard limit of ML scenarios that the developers either have experienced or can imagine.
Nonetheless, and this is no foreign idea to the ML community [233], future developments in the
field of AutoML/AutonoML may well have a bearing on the quest for artificial general intelligence
(AGI).

14 DISCUSSION
Each section of this review has honed in on a particular facet of ML, primarily high-level, surveying
the benefits/challenges that its automation may produce/encounter in the pursuit of maximally
desirable data-driven models. However, unlike most contemporary reviews of AutoML, there
has been an intended emphasis on integration woven throughout this work, with a concurrently
designed conceptual illustration demonstrating one way in which to blend these ML mechanisms
together. Unsurprisingly, there is more to discuss regarding the big picture of integration.

The overwhelming majority of existing large-scale AutoML frameworks, if not all, are designed
prescriptively from above. In essence, developers select phenomena they wish to see in the system,
e.g. HPO and meta-learning, and then build around these, often maintaining some sort of modularity.
Inevitably, this approach necessitates design decisions, either implicitly or explicitly, that prompt a
debate about encapsulation and intercommunication. As an example, one may question whether
Fig. 5 actually serves as an authoritative blueprint for a CASH-solving AutoML. For instance, is the
separation between ML-solution planner and optimiser overkill when an MCPS is not involved?
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Should not the evaluator be responsible for some data propagation requests, rather than leaving
them all to the optimiser? Perhaps instantiating an IDC per ML component is too large of a footprint,
and the onus of intra-component data distribution should also be on the high-level distributor?
Ultimately, pragmatics will determine implementational specifics, and a Unified Modeling Language
(UML) diagram of a resulting AutoML codebase may look dramatically different from the networked
abstractions in Fig. 5.
On the other hand, each schematic in this work has been presented as a broad conceptual

depiction of ML/AutoML/AutonoML operations; the demonstrative power of a schematic depends
simply on whether it captures the salient features of the associated mechanisms. By this metric,
Fig. 5 is not expected to be controversial in its depiction of solving CASH, and any legitimate tweaks
to the diagram must maintain the same expression of that process. That raises the question: design
choices aside, do all the diagrams in this review definitively reflect the appropriate application
of an AutoML mechanism? In truth, and this is why the large-scale integration of AutonoML is
deserving of research attention, probably not. The optimal interplay of processes is unknown.
To elaborate on this, it is first worth noting that a fundamental criticism of AutoML is that

automation merely shifts the level at which human involvement is required [233]. Base-level
ML algorithms select the parameters of a model. CASH-solvers select the parameters of an ML
algorithm, i.e. hyperparameters. So then, what selects the parameters of a CASH-solver, i.e. hyper-
hyperparameters? Certainly, each time this search is elevated by a level, the time required to solve
an ML problem balloons out; it may presently be infeasible to optimise the high-level optimisers.
However, relying on user-defined system parameters could face the same negative criticism earned
by the use of default model parameters [20]. There may be an eventual need to discuss telescoping
optimisations and thresholds for diminishing utility.

Crucially, matters are complicated when multiple methodologies interact. The illustrative frame-
work developed in this paper has been grounded in the debatable assumption that HPO, specialisa-
tion and adaptation are best enacted on the same level above the ML model. Indeed, there is a simple
logic to the equal treatment of associated strategies that is depicted in Fig. 12. Yet, perhaps the
parameters of specialisation/adaptation strategies should be optimised. Perhaps HPO/adaptation
strategies should operate differently across a bundle of ML pipelines, i.e. be specialised. Alterna-
tively, perhaps HPO/bundle strategies should be adapted for concept drift. At the moment, beyond
a disinclination for complex architecture, there is no systematic way to determine when any of
these arrangements are worthwhile or not, especially when benchmarking AutoML remains in
its infancy. If, in fact, an AutonoML framework does turn out to involve sophisticated multi-level
networks of mechanisms in order to perform optimally, the field will begin to overlap with the
area of complex systems, insinuating possibilities regarding emergent behaviour and the process of
learning. We defer further speculation on the topic.
Importantly, it must be acknowledged that, irrespective of engineering, certain trade-offs are

likely to remain constants in the design of an ML/AutoML/AutonoML system. These include:

• Speed versus accuracy – Low runtime and low loss are archetypal competing objectives, the
contest of which, given the computationally expensive loop of model/algorithm probation
for CASH, will remain a challenging disincentive for layperson uptake. Having said that, the
incredible improvement in computational power, memory and availability of large amounts
of data means that the computationally hungry AutoML research emerging in recent years
has become tractable, and the speed with which ML models of equivalent accuracy can be
trained has also been dramatically increased over recent years. Naturally, there is an ongoing
need for research in this space to take advantage of inevitably improving computational
power.
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• Stability versus plasticity – Highlighted by the extremes of entrenchment and catastrophic
forgetting [249], any adaptive system faces this dilemma when seeking an equilibrium
between learning new concepts and maintaining extant knowledge. While this classical
dilemma related to learning systems is unlikely to go away, it has been ameliorated by
ongoing progress in the thorough and continuous validation of both acquired knowledge
and the relevance of deployed ML models.

• Control versus security – Given an AutoML package, broadening the scope of user access
and influence is known to improve model performance for a human expert. On the other
hand, the opposing result holds for an amateur [376]. This emphasises just how important the
AutoML/AutonoML research facet of user interactivity is, as discussed in Section 12, along
with, more broadly, the debate around HITL challenges for AI systems in general. These have
not yet been addressed in any significant way.

• Generality versus simplicity – The capacity for one system to tackle any ML task is ap-
pealing. However, without solid design principles to manage model complexity and feature
bloat, the associated codebase can suffer from being too heavyweight for bespoke contexts.
These competing attributes are also related to the tension between the accuracy afforded
by complexity and the requirement for models to be both transparent and interpretable. In
essence, there is a need for progress in both directions. For instance, flexible multi-objective
optimisation approaches are expected to extend AutoML/AutonoML beyond a communally
prevalent focus on predictive accuracy, enhanced in recent years by additional considerations
of model/algorithmic complexity and both runtime and memory usage, but these approaches
must also be robust and easily applicable.

Unsurprisingly, finding the right balance for each of the above trade-offs is a significant research
endeavour in its own right.
As a final comment on integration, it may end up that the ‘prescribed-from-above’ approach

proves entirely inappropriate for AutonoML systems of the future. Admittedly, there is an appeal to
designing an AutonoML framework in a modular manner, insofar as the operation of all desirable
mechanisms is clearly demarcated and interpretable, but, as DNNs have exemplified, sometimes
optimal performance is hidden within obtuse arrangements of granular base elements. If ML
algorithms can be designed from scratch by evolutionary means [282], then perhaps an AutonoML
architecture itself can and should be grown from first principles, where desired mechanisms arise
organically from the pursuit of well-designed objectives. For now, though, this remains a theoretical
curiosity, with pragmatism likely to continue pushing the prevalent top-down approach of AutoML
design. Biomimetics may be an appealing direction for AutonoML [6], but fashioning a tool remains
easier than growing a brain.

Regardless of how the ML community decides to approach the architectural integration, it seems
clear that, in the long term, AutonoML has the potential to revolutionise the way that ML is
practiced, with significant implications for everyday decision-making across diverse facets of the
human experience. That said, history has also witnessed at least two AI winters, primarily on
the back of unmet expectations, and there is debate whether the limitations of deep learning are
severe enough to herald another in the near future [308]. Thus, while crucial advances in HPO,
meta-learning, NAS, adaptation, and so on, are arguably academically impressive, the evolution of
the field is not served by overhype.

Therefore, a standard question to ask is this: has the automation of ML had an impact on society?
This cannot be answered of AutonoML, as, with the exception of early pioneering work on this
subject in 2009–2010 [183, 188], ML-model search in dynamic contexts has only begun garnering
broader attention within the last year or so [57, 173, 242]. However, CASH was formalised in
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2013 [338], meaning that the modern notion of AutoML has now had a while to diffuse through the
data-science community and the mainstream. Certainly, there has been a recent proliferation of
both GitHub repositories and commercial websites touting AutoML services.
As of 2020, the answer to the question on impact remains inconclusive. Notably, while it is

expected that any publication proposing a new AutoML implementation or subsystem will promote
its successes wherever evident, there are likewise strong indications that automation does not
intrinsically improveML outcomes. This has been the case from the beginning, with a 2013 graduate-
school project attempting to apply Auto-WEKA to a Kaggle competition, assuming the perspective
of a layperson, which eventually reached the following conclusion: “The automated procedure is
better than the average human performance, but we do not achieve performance near the top of
the ladder, and we cannot even compete with the single default model trained on all the data.” [17]
Mixed sentiments appear to have persisted to date, reoccurring within the few independent

evaluations of AutoML packages that have been made, even when the results can be spun one way
or another. An example is provided by a 2020 benchmark [149], which uses the performance on
several OpenML datasets to assess the following four systems: Auto-sklearn, TPOT, H2O AutoML,
and AutoGluon. The study positively claims that at least one package performs equal to or better
than humans for seven out of twelve datasets. However, upon excluding three ML tasks where
humans and almost all tested packages are capable of perfect accuracy, the results can also be
interpreted with equal validity to imply that AutoML systems fail to outperform humans in five,
almost six, out of nine contexts.
Conclusions are likewise sparse when solely comparing AutoML packages against each other

rather than against human practitioners. One benchmarking study of seven open-source systems
notes variations in performance, but it also establishes that there is no perfect tool that dominates
all others on a plurality of ML tasks [339]. Proprietary systems are much more difficult to evaluate,
however a 2017 investigation intoML-service providers is likewise unable to identify an outlier [376].
Returning to open-source packages, another comparison of four major systems across thirty-nine
classification tasks [135] found that, after four hours of operation, all could be outperformed by
a random forest for certain problems. The packages also struggled with datasets involving high
dimensionality or numerous classes.
Accordingly, scepticism is warranted with any declaration of a state-of-the-art system. There

are numerous deficiencies in academic culture, with, for instance, publish-or-perish pressures
occasionally leading to shortcuts being taken when making research claims, the generality of
which is sometimes unsupported [132]. Computer science is also a field that moves fast, and
publications are often released without adequate information that would allow results to be easily
reproduced [274].

In fairness, though, AutoML appears most burdened by the fact that there does not yet seem to
be a consensus about where its greatest advantages lie. Of the limited independent benchmarks that
exist, most adhere to traditional evaluations of predictive accuracy after set amounts of processing
time. However, given that a distribution of models engineered by a large crowd of humans on
an ML task is likely to have a strong maximal accuracy, perhaps the role of AutoML is one of
efficiency instead, i.e. achieving a reasonable result in a short time. If so, such an assessment would
mirror conclusions drawn about easy-to-use off-the-shelf forecasting algorithms and their utility for
non-experts [224]. Passing judgement is further complicated by the fact that an AutoML/AutonoML
system effectively involves the interplay of many high-level concepts, some that may not be
shared with other packages. Depending on implementation, these subsystems and constraints
may also be difficult if not impossible to turn off or modify, respectively. One may then ask the
following: on what basis should a one-component system with a warm-start function be compared
against an MCPS without meta-learning? In short, rigorously comprehensive benchmarking is
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substantially less developed than the state of AutoML engineering, making it challenging to verify
that any theoretical claims propagate into real-world problems. Even ablation studies, appropriate
for examining such complex systems, are rare enough to stand out when they arise [98].
The upshot is that, if AutoML is to truly become a disruptive technology, there is more work

to be done beyond just the technical front. Indeed, a recent study of the online OpenML platform
shows that less than 2% of its users and workflows have adopted associated techniques [219].
Some hints of why this is the case are present in interviews with data scientists, which reveal
that, while time-savings resulting from automation are appreciated, there remain several negative
sentiments around AutoML [355]. Concerns include the loss of technical depth for operators, a
focus on performance rather than insight, the inability to infer domain knowledge, and issues of
trust. The authors of the study concluded that, in general, data scientists are open to their work
being augmented, not automated, by AI. Likewise, a deeper study into trust has suggested that users
may be more open to accepting AutoML if visualisations are prioritised for input-data statistics, FE
processes and final model evaluations, although, curiously, the sampled data scientists were less
concerned about the internals of the learning process, including HPO [87]. Of course, these are
but preliminary perspectives from the academic side. An accurate picture of social engagement
with AutoML, along with recommendations to promote it, will require a much broader review of
application and uptake.

15 CONCLUSIONS
In this paper, we have surveyed a series of research threads related to AutoML, both well-established
and prospective. In so doing, we have identified both benefits and obstacles that may arise from
integrating them into one centralised architecture.
To support this review, we have also steadily built up a generic conceptual framework that

illustrates how this integration may be achieved, all with the aim of supporting an effective data-
driven learning system that needs minimal human interaction. The following is a summary of this
process:

• Section 2 introduced a fundamental ‘ML component’, attempting to encapsulate a superset of
low-level processes applicable to any ML task, e.g. the data-driven algorithmic development
of a model.

• Section 3 schematised a component-selection mechanism, identifying that the search for an
optimal ML model/algorithm and associated hyperparameters is the core goal of AutoML.
This section reviewed high-level optimisation strategies.

• Section 4 upgraded the framework to revolve around an ‘ML pipeline’, acknowledging that
an ML model is more accurately described as a composition of transformations. This section
reviewed the management of multi-component ML solutions.

• Section 5 described NAS as a neural-network specialisation of the multi-component frame-
work detailed thus far. This section reviewed NAS.

• Section 6 considered the segmentation of ML pipelines, specifically focussing on optimising
pre-processing transformations. This section reviewed AutoFE.

• Section 7 schematised a meta-learning mechanism, designed to incorporate knowledge from
previous ML experiments. This section reviewed the leveraging of meta-knowledge.

• Section 8 upgraded the framework to revolve around ‘ML-pipeline bundles’, enabling high-
level model combinations and, eventually, the ability to juggle ML pipelines between devel-
opment and deployment. This section reviewed the management of ensembles.
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• Section 9 upgraded the framework to strategise for dynamic contexts, defining persistent
learning and adaptation as core prerequisites for AutonoML. This section reviewed managing
both streamed data and concept drift.

• Section 10 elaborated the evaluation of an ML pipeline and associated mechanisms. This
section reviewed metrics for model quality.

• Section 11 considered framework improvements to manage available hardware. This section
reviewed automating operations subject to limited resources.

• Section 12 considered framework improvements to facilitate the inclusion of expert knowledge
and user control. This section reviewed human-AI interactivity.

• Section 13 emphasised the flexibility of the framework to handle both arbitrary inflow data
and ML tasks. This section reviewed attempts to generalise AutoML.

Finally, Section 14 discussed AutoML/AutonoML from two angles: the overarching challenges of
integration and the current state of mainstream engagement.
As this work is primarily intended to be a review of associated research fields, we have had to

keep the depth of technical discussions balanced. Accordingly, while the illustrative architecture
presented in this work is broadly encompassing and logically motivated, it should not necessarily
be seen as an authoritative blueprint for an automated learning system; it is but a preliminary
attempt to synthesise numerous topics that have not necessarily been previously combined.

Ultimately, our goal has simply been to show that AutonoML is, in principle, a feasible pursuit as of
the current year, provided that a diverse array of concepts are identified and intelligently integrated.
Now, granted, the field of AutoML, like deep learning, is thriving on its own in the modern era,
especially with the availability of computational power, memory, and data. However, identifying
and synthesising these concepts are not trivial; in our view, AutoML cannot properly evolve
towards AutonoML without much deeper thought on this topic. The true challenges of venturing
into the realm of complex adaptive systems, specifically through the development/emergence of
an AutonoML framework as a living and perpetually evolving entity, still lie ahead. This paper
is intended to stimulate discussion on what is required and how we should approach such an
endeavour.
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