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Abstract: Earthquake prediction is currently the most crucial task required for the probability,
hazard, risk mapping, and mitigation purposes. From the last decade, event prediction
has attracted increasing research attention from the academia and industries.
However, deep learning techniques have been rarely tested for earthquake probability
mapping. Therefore, this study developed a convolutional neural network (CNN) model
for earthquake probability assessment and then performed vulnerability, hazard, and
risk mapping. A prediction task, in which the model predicts magnitudes more than 4
Mw, was first abstracted by considering nine indicators. Prediction results and intensity
variation were then used for probability assessment and hazard map production,
respectively. Finally, the risk was produced by multiplying hazard, vulnerability, and
coping capacity. The vulnerability was prepared by using six vulnerable factors, and
the coping capacity was estimated by using the number of hospitals and disaster
budget. This study contributes to addressing the problems in the NE region of India,
which is becoming a high hazard zone. Prediction of events more than 4 Mw using
CNNs is required. The CNN model for a probability distribution is a robust technique
that provides good accuracy. In particular, the proposed model was experimentally
tested on datasets of NE India and achieved good accuracy. Results show that CNN is
superior to the other algorithms, which completed the prediction task with an accuracy
of 0.94, precision of 0.98, recall of 0.85, and F1 score of 0.91. These indicators were
used for probability mapping, and the total area of hazard, vulnerability, and risk was
estimated.
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Abstract 22 

Earthquake prediction is currently the most crucial task required for the probability, hazard, 23 

risk mapping, and mitigation purposes. Earthquake prediction attracts the researchers’ attention 24 

from both academia and industries. Traditionally, the risk assessment approaches have used 25 

various traditional and machine learning models. However, deep learning techniques have been 26 

rarely tested for earthquake probability mapping. Therefore, this study develops a 27 

convolutional neural network (CNN) model for earthquake probability assessment in NE India. 28 

Then conducts vulnerability using analytical hierarchy process (AHP), Venn’s intersection 29 

theory for hazard, and integrated model for risk mapping. A prediction of classification task 30 

was performed in which the model predicts magnitudes more than 4 Mw that considers nine 31 

indicators. Prediction classification results and intensity variation were then used for 32 

probability and hazard mapping, respectively. Finally, earthquake risk map was produced by 33 

multiplying hazard, vulnerability, and coping capacity. The vulnerability was prepared by 34 

using six vulnerable factors, and the coping capacity was estimated by using the number of 35 

hospitals and associated variables, including budget available for disaster management.  The 36 

CNN model for a probability distribution is a robust technique that provides good accuracy. 37 

Results show that CNN is superior to the other algorithms, which completed the classification 38 
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prediction task with an accuracy of 0.94, precision of 0.98, recall of 0.85, and F1 score of 0.91. 39 

These indicators were used for probability mapping, and the total area of hazard (21412.94 40 

Km2), vulnerability (480.98 Km2), and risk (34586.10 Km2) was estimated.  41 

Keywords: earthquake; convolutional neural network; geospatial information systems; hazard; 42 

vulnerability; risk; north-east India 43 

1. Introduction 44 

Seismic hazard estimation is an important research topic that is concentrated on probabilistic 45 

seismic hazard assessment (PSHA) over several countries worldwide. The PSHA estimation 46 

frequently accepts new challenges in enhancing the methodology used for its development 47 

since its formation (Cornell, 1968; Kebede and Van Eck, 1996; Veneziano et al., 1984; Kijko 48 

and Graham, 1999, 2004; Sabetta et al., 2005; Lindholm and Bungum, 2000, 2003). According 49 

to King (1986), radon concentration variation could be regarded as evidence of tectonic 50 

disturbances in the earth’s crust and could be used as precursors for future earthquakes (Kraner 51 

et al., 1968; King and Minissale, 1994; Pearson, 1967; Singh et al., 2014; Virk et al., 2012; 52 

Walia et al., 2005; Zmazek et al., 2003). The aforementioned parameters, which are used in 53 

geophysical processes for seismic hazard assessment, could change the soil characteristics. 54 

Several theoretical and empirical algorithms have been used for seismic hazard assessment to 55 

determine the effects of these parameters (Zmazek et al., 2003; Ramola et al., 2008; Choubey 56 

et al., 2009). Several studies on seismic hazard assessment have been conducted for the Indian 57 

sub-continent using numerous algorithms and techniques (Krishnan, 1959; Guha, 1962; Gubin, 58 

1968; Tandon, 1956). These works were emphasized on the concept of intensity-based zoning 59 

and micro-zonation (Jaiswal and Sinha, 2007; Bansal et al., 2013; Verma et al., 2013). PSHA 60 

is still regarded as a traditional methodology for hazard assessment. Generally, the PSHA 61 

model is based on an inappropriately homogenized catalog of events with many associated 62 

uncertainties. Numerous studies were conducted by (Bhatia et al., 1999; Desai and Choudhury, 63 

2014a, b, c, 2015; Jaiswal and Sinha, 2007; Mahajan et al., 2010; Nath and Thingbaijam, 2011; 64 

Naik and Choudhury, 2015; Parvez et al., 2003; Sharma, 2003; Sharma and Malik, 2006; 65 

Shukla and Choudhury, 2012; Sitharam et al., 2006; Anbazhagan et al., 2016; Rout and Das, 66 

2018; Lindholm et al., 2016) to estimate seismic hazards and continuously improve the 67 

methodology.  68 

Das et al. (2016) developed the uniform hazard spectra for northeast (NE) India using a 69 

probabilistic approach. NE is considered being one of the seismically most active locations 70 
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worldwide together with the other five largest seismic zones: Turkey, Taiwan, Mexico, 71 

California, and Japan. NE India is located at the zone covered by the Burmese arc toward the 72 

east and the Himalayan arc in the northern part (Jaishi et al., 2014; Singh et al., 2014). High 73 

seismicity has been observed in NE India due to the complicated tectonics that originated from 74 

the collision between the Indian and the Eurasian Plates. The subduction zone originated in the 75 

eastern part of India along the Indo-Myanmar Range (Dewey and Bird, 1970). In NE India, the 76 

main earthquake-generating faults are Disang and Naga fault, which are both thrust in nature 77 

(Jaishi et al., 2014). The Bengal Basin seismicity could be generated due to intraplate activities 78 

and events observed in Tripura and Mizoram associated with a plate boundary fold belt. Dauki, 79 

Sylhet, Hail-Hakula, Tista, Mat, and Tuipui faults are also responsible for the occurrence of 80 

several events in E-W, N-E, NE-SW, and NNW. The most prominent fault is Mat fault in 81 

Mizoram state (Jaishi et al., 2014). Hence, they studied the radon anomaly monitoring and 82 

correlation with the possibility of earthquake occurrences (Jaishi et al., 2014). Numerous 83 

authors have predicted earthquakes based on the precursor using primary analysis of soil radon 84 

and thoron anomalies. The multiple regression method was used to differentiate the radon 85 

anomalies caused only by seismic events rather than meteorological parameters. Several 86 

studies on radon anomaly variation were also conducted for monitoring purposes (Jaishi et al., 87 

2014; Singh et al., 2014).  88 

Sitharam et al. (2015) described the surface-level spatial variation of seismic hazard for India 89 

covering the latitude and longitude of 6°–38° N and 68°–98° E, respectively. They claimed that 90 

the most recent seismic activity knowledge was applied in India for hazard estimation, which 91 

is associated with numerous uncertainties along with the seismicity parameters through several 92 

modeling techniques. They also presented the surface level hazard by employing many 93 

site amplification factors associated with VS30 values estimated from the topographic gradient 94 

based on slope values. Furthermore, they estimated the peak horizontal acceleration (PHA) 95 

using surface-level spatial variation for the return periods of 475 and 2475 years. Lindholm et 96 

al. (2016) proposed a novel PSHA approach for the Indian sub-continent. They employed three 97 

different recurrence models, namely, a fault model, a seismic zonation model, and a grid model, 98 

to perform PSHA. They finally observed that the peak ground acceleration for 10% exceedance 99 

in 50 years for Koyna, Kutch, and Gujrat regions are 0.4 and 0.3 g. They also observed higher 100 

ground motion amplitudes in Gujarat than those in the Koyna due to high frequency via 101 

comparison. Nathe et al. (2014) performed the seismic risk assessment in the city of Kolkata 102 

by using vulnerability exposures, such as land use/cover, building typology, population 103 

density, and age. They conducted micro-zonation for the city by integrating geological, 104 
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seismological, and geotechnical thematic layers and vulnerability components following a 105 

logic-tree framework. Finally, they estimated the structural and socioeconomic risks. They 106 

classified the damage probabilities into five classes. 107 

In recent years, machine learning techniques are being implemented in several applications to 108 

solve real-world problems, specifically in earthquake study. Jena et al., (2020a) conducted an 109 

earthquake probability assessment for the Indian subcontinent using deep learning. In a 110 

separate work, Jena et al., (2020b) implemented the recurrent neural network (RNN) for the 111 

earthquake probability estimation in Odisha, India. Alimoradi et al. (2015) analysed ground 112 

motion using machine-learning techniques and achieved excellent results. Schaefer and Wenzel 113 

(2019) implemented the multi-variate machine learning method for megathrust earthquake 114 

hazard assessment. Besides, many machine-learning methods have been used for geotechnical 115 

applications such as landslide susceptibility mapping and other environmental applications 116 

(Chen and Li, 2020); Chen et al., 2020; Zhao and Chen, 2020a; Zhao and Chen, 2020b 117 

(groundwater spring potential mapping); Fanos and Pradhan, 2018, 2019). 118 

Studies on earthquake probability and hazard assessment in NE India are limited, and almost 119 

70% of the assessment is based on traditional techniques. However, researchers have not 120 

performed comprehensive investigations on earthquake probability, hazard, vulnerability, and 121 

risk assessment in the NE region. Few studies have been conducted using deep learning and 122 

geospatial techniques in India however, no comprehensive study in NE India for earthquake 123 

risk assessment. However, for the first time, we conducted a study that will help in mitigation 124 

planning. Because the NE India is characterized by complicated tectonics, where a large 125 

number of events with magnitudes more than five experienced that makes the region a high 126 

hazard zone. Therefore, according to the precursor and probabilistic studies, the seismologist 127 

and researchers expect the probability of events with magnitude more than 5Mw could hit the 128 

NE that could be a disaster. Thus, continuous probability, hazard, vulnerability, and risk, as 129 

well as coping capacity mapping, monitoring, and mitigation planning are required for NE 130 

India. Hence, the CNN and Analytical Hierarchy Process (AHP) approaches are combined to 131 

create an integrated coping capacity risk map followed by probability, hazard, and 132 

vulnerability. This study addresses the following questions: 1) Is it possible to achieve good 133 

accuracy in probability mapping without considering the earthquake precursors; 2) How the 134 

developed model could successfully predict the events and be applied for hazard mapping; 3) 135 

How accurate is the developed risk map and how could it be applied for mitigation planning.  136 

 137 
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2. Data and Methodology 138 

2.1 Study area 139 

NE India is popularly known as a north-eastern region comprising of various states: Arunachal 140 

Pradesh, Meghalaya, Assam, Manipur, Nagaland, Sikkim, Mizoram, and Tripura. The total 141 

area of NE India is approximately 262,230 km2. The total population living in this region is 142 

approximately 45,772,188, and the density is 170/km2 (450/sq. mi). NE of India is divided into 143 

four seismogenic source zones: Eastern Syntaxis (zone I), Arakan-Yoma Subduction Belt (zone 144 

II), Shillong Plateau (zone III), and the two thrusts, namely, Main Central Thrust (MCT) and 145 

Main Boundary Thrust (MBT) (zone IV) (Dutta, 1964). These zones are further divided into 146 

nine zones based on tectonics, geology, focal mechanism, and event characteristics (Angelier 147 

and Baruah, 2009; Das et al., 2016; Jena and Pradhan, 2019). NE India is a mega-earthquake 148 

prone zone due to active faults originating from three major plates, namely, Eurasian, Indian, 149 

and Burma Plates. Assam (1897) and Assam–Tibet (1950) earthquakes experienced in this 150 

region are considered being the two largest earthquakes in the history of (Mw > 8.0) and many 151 

more events with (8.0 > Mw > 7.0), respectively. The Asam-Tibet earthquake is still the largest 152 

in India. This earthquake received increased attention from scientists for seismic hazard and 153 

risk assessments due to its complicated structure and high seismicity. The nine seismic zones 154 

classified for NE India are as follows: North-South Indo Burma fold Belt, NE-SW Indo Burma 155 

fold Belt, Sagging Fault region, NW-SE trending feature, Tibetan Plateau, Eastern MCT, 156 

Shillong Plateau, Sylhet Fault, and NE-SW trending Structure. The lithology of NE India is 157 

characterized by sandstone, shale, limestone, quartzite, conglomerates, phyllites, and volcanic 158 

rocks. The study area map is presented in Figure 1. 159 

 160 

2.2 Data 161 

The basic input data are an appropriate and reliable earthquake catalog for probability 162 

assessment. Wason et al. (2012) proposed a magnitude conversion procedure to convert various 163 

magnitudes to moment magnitude. Earthquake data were collected from various databases, 164 

such as the National Centre for Seismology (NCS), the National Earthquake Information 165 

Center (NEIC), the Global Centroid Moment Tensor (GCMT), and the United States 166 

Geological Survey (USGS) for NE India, for the historical events from 1897 until 2019 and 167 

applied these data for training and validation in the CNN model. In addition, several thematic 168 

indicators were obtained in GIS by creating a database. Some events were also collected from 169 
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seismological bulletins of the Indian Meteorological Department to complete the catalog. 170 

Digital elevation model (DEM), administrative boundary, building information, and land 171 

use/cover data were acquired from the DIVA-GIS (https://www.diva-gis.org/) and IGIS map 172 

site (https://www.igismap.com/).  Hazard, probability, vulnerability, and risk maps were 173 

generated using the created databases in GIS. Different algorithms, such as Inverse Distance 174 

Weighting (IDW), spline, Euclidian distance, kernel density, and buffer, were used to create 175 

several layers for risk assessment. Causal factors and importance of vulnerability layers were 176 

obtained on the basis of the literature using AHP and experts' opinions. The details of the data 177 

sources, raw data, derived data, their importance, and the procedure of layer derivation are 178 

presented in Table 1. 179 

2.2.1 Seismic factors 180 

Magnitude density: The likelihood of occurrence of a specific magnitude earthquake can be 181 

understood through cluster analysis. Therefore, magnitude density can help in identifying the 182 

high probable zone through the probability distribution analysis (Bathrellos et al., 2017). 183 

Epicenter density: Epicenter zone of earthquakes gives a view of the main and several branches 184 

of clusters. Epicenter density can also provide the information of high probable zone 185 

(Zebardast, 2013). Through this study, large earthquake clusters, rifto-genesis of structures and 186 

the propagation of main fractures can be the focus in hazard modeling (Rashed and weeks, 187 

2003). 188 

Distance from epicenter: With the increase in distance from the clustered epicenter zone, the 189 

probability of earthquake occurrence decreases. This gives the information that with an 190 

increase in distance from the epicenters, the interconnection of fractures and faults decreases 191 

(Pourghasemi et al., 2019). 192 

PGA density: Ground motion information can be understood from PGA associated with 193 

tectonic fractures or faults (Kamranzad et al., 2020). This factor provides the information on 194 

ground acceleration linked to the lithology, amplification factor, and source to site distance 195 

including the magnitude size. 196 

2.2.2 Geotechnical factors  197 

Slope and elevation:  Faults are associated with slopes that give fault slip and seismic 198 

information found to be in hilly areas more than the plane lands (Xu et al, 2012; Jena et al., 199 

2020). Similarly, with an increase in elevation complicated structures formed interlinked to 200 

slopes and increases the probability of earthquakes. 201 

Fault density: The main source zone of events can be identified through high fault density that 202 

indicates the complicated tectonic structure (Jena et al., 2020).  203 

https://www.diva-gis.org/
https://www.igismap.com/
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Distance from fault: Generally, spatial probability zones are observed near to active faults and 204 

the probability decreases with an increase in distance. In the current study, all active faults were 205 

included (Alizadeh et al., 2018).  206 

Lithology and amplification factor: Lithology varies in every seismic prone area. Amplification 207 

factor is different for all soil and lithotypes that is associated with grain density, compactness 208 

and thickness (Dhar et al., 2017). Hard rock has less amplification factor than loose 209 

sedimentary rocks. 210 

2.2.3 Exposure factors 211 

Social and structural characteristics: Buildings, transportation nodes and land use areas will be 212 

highly vulnerable if situated near to active faults. Transportation nodes are a key factor in 213 

earthquake vulnerability study (Alizadeh et al., 2018). Lowering down the building heights, 214 

use of good construction materials, land allocation, equally spaced spatial distribution of 215 

buildings and proper development plan can reduce vulnerability. Reinforcement of the old 216 

vulnerable structures should be the focus. The exposures are highly vulnerable due to 217 

earthquakes in NE India. The weights/priority were calculated and presented in Table 2. 218 

2.3 Methodology 219 

The details of the training process of convolutional neural network (CNN) were described 220 

mathematically to explain parameter learning. The description was portrayed using the 221 

artificial neural network (ANN) technique. The details can be found in the work by (Mitchell, 222 

1997; Han et al., 2018). 223 

2.3.1 Forward propagation 224 

Convolutional neural network (CNN) comprises fully connected, pulling, and convolutional 225 

layers and dropouts (Figure 3). However, CNN is quite different from multilayer perceptron 226 

neural network (MLPNN) in terms of architecture. Several convolutional kernels, pooling 227 

layer, and dropout were used to compute various feature maps. However, the feature map (jth) 228 

of convolution kernel (lth), 𝑥𝑗
𝑙𝑥𝑗

𝑙, can be calculated as follows: 229 

𝑎𝑗
𝑙 = ∑ 𝐾𝑖𝑗

𝑙𝑁𝑙−1

𝑖=1 × 𝑋𝑖
𝑙−1 + 𝑏𝑗

𝑙 , 𝑥𝑗
𝑙 = 𝑓(𝑎𝑗

𝑙),            (1) 230 

where 𝑋𝐼
𝐿−1 , (l -1)th layer, and ith feature map could be observed; therefore, 𝑁𝑙−1is the total 231 

number of feature maps for a particular layer. The convolution kernel 𝐾𝑖𝑗
𝑙  is analogous to the 232 

ith map in (l-1)th layer and jth map in lth layer, where𝑏𝑗
𝑙  is considered to be the bias term of 233 

the described kernel, and f (·) introduces non-linearity into the multi-layer networks that 234 
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indicate the element-wise non-linear activation function. Sigmoid, ReLU, and tanh are classic 235 

activation functions (Glorot et al., 2011). The pooling layer, which was placed after a 236 

convolutional layer, aims to reduce parameters, integrate features, and conduct shift invariance 237 

by reducing the resolution of feature maps. The pooling function could be introduced as 238 

downsample (·), where 𝑋𝑗
𝑙 is the feature map, and 𝑆𝑗

𝑙 could be presented as follows: 239 

                                                𝑆𝑗
𝑙 = 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝑋𝑗

𝑙).      (2) 240 

Two typical pooling operations, such as average and max pooling, are generally applied in 241 

CNN (Boureau et al., 2010). The pooling operation works as a k × k matrix and results in a 242 

single value, which could be the max or the mean of that region. Several fully connected layers 243 

were used to focus on mid-level feature map learning after the convolutional layer, followed 244 

by the pooling layers, such as AlexNet, LeNet, and Visual Geometry Group (VGG). However, 245 

these layers require a large number of weight parameters for a full connection. The feed-246 

forward process of CNN is similar to that of the ANN model, which is formulated as: 247 

                                 𝑎𝑗
𝑙 = ∑ 𝑋𝑖

𝑙−1𝑁𝑙−1

𝑖=1 𝑊𝑖𝑗
𝑙 + 𝑏𝑗

𝑙, 𝑥𝑗
𝑙 = 𝑓(𝑎𝑗

𝑙),            (3) 248 

where 𝑊𝑖𝑗
𝑙  denotes weight vector, and 𝑏𝑖𝑗

𝑙  indicates bias term for the l-th layer and i-th filter. In 249 

a neural network, Softmax activation is applied to the last dense layer that converts the last 250 

dense layer output to a probability distribution. Thus, Softmax is used to predict the class if the 251 

target class is two. Let 𝑜𝑖 and 𝑦𝑖 respectively denote the predicted label and the ground-truth 252 

label for input data. The loss function could be calculated by: 253 

                                     𝐸 = 1/2 ∑ ‖𝑦𝑖 − 𝑜𝑖‖2, 𝑜𝑖 = 𝑋𝑖
𝑙𝑁𝐿

𝑖=1 ,       (4) 254 

where Lth and output layer 𝑁𝐿 are the total number of nodes, and E indicates the classification 255 

error of all output nodes. Based on the Euclidian distance, the loss function presented in Eq. 256 

(4) is also called Euclidean loss. Several other loss estimation alternatives, such as hinge, 257 

contrastive, sigmoid cross entropy, information gain, and Softmax losses, are available. 258 

Additional details are provided in the work by (Lowe, 1999). 259 

2.3.2 Backward propagation 260 

The error propagation raised in the output to the input layer could be observed in the backward 261 

propagation for the optimized label prediction result. Therefore, bias term and weight vectors 262 

could be updated again after other layers to reduce these errors (Han et al., 2018; Hecht-263 

Nielsen, 1992). The update of parameters could be formulated as: 264 
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                          𝑊𝑖𝑗
𝑙 = 𝑊𝑖𝑗

𝑙−1 + 𝜂
𝜕𝐸

𝜕𝑊𝑖𝑗
𝑙−1 , 𝑏𝑖

𝑙 = 𝑏𝑖
𝑙−1 + 𝜂

𝜕𝐸

𝜕𝑏𝑖
𝑙−1,      (5) 265 

where learning rate is ηis, and the partial derivatives of the loss functions are  
𝜕𝐸

𝜕𝑊𝑖𝑗
𝑙  and 

𝜕𝐸

𝜕𝑏𝑖
𝑙 266 

considering  𝑊𝑖𝑗
𝑙  and 𝑏𝑖

𝑙, respectively (Han et al., 2018), which can be presented as: 267 

                                            
𝜕𝐸

𝜕𝑊𝑖𝑗
𝑙 =

𝜕𝐸

𝜕𝑎𝑖
𝑙

𝜕𝑎𝑖
𝑙

𝜕𝑊𝑖𝑗
𝑙 ,

𝜕𝐸

𝜕𝑏𝑖
𝑙 =

𝜕𝐸

𝜕𝑎𝑖
𝑙

𝜕𝑎𝑖
𝑙

𝜕𝑏𝑖
𝑙.       (6) 268 

Let 𝛿𝑖
𝑙 indicate error term on the l-th layer in the first part of the right-hand side of Eq. (6), 269 

which combines with the second part result. Eq. (6) could be represented as: 270 

                                   
𝜕𝐸

𝜕𝑊𝑖𝑗
𝑙 = 𝛿𝑖

𝑙+1𝑓′(𝑎𝑖
𝑙)𝑥𝑖

𝑙 ,
𝜕𝐸

𝜕𝑏𝑖
𝑙 = 𝛿𝑖

𝑙+1𝑓′(𝑎𝑖
𝑙).    (7) 271 

If the output layer is l + 1 and the lth layer is fully-connected, then the 𝛿𝑖
𝑙 as the error term can 272 

be computed as follows: 273 

                      𝛿𝑖
𝑙 =

𝜕

𝜕𝑎𝑖
𝑙−1

1

2
∑ ‖𝑦𝑖 − 𝑜𝑖‖

2 =  −(𝑦𝑖 − 𝑋𝑖
𝑙)𝑓′(𝑎𝑖

𝑙−1)𝑁𝑙+1

𝑖=1 ,      (8) 274 

where the derivative of the lth layer activation function is 𝑓′(𝑥𝑖
𝑙). If all the convolution layers 275 

are presented as l and l + 1, then the error term 𝛿𝑖
𝑙 can be computed by following the chain rule 276 

as: 277 

                                 𝛿𝑖
𝑙 = (∑ 𝑊𝑗𝑖

𝑙𝑁𝑙+1

𝑗=1 𝛿𝑗
𝑙+1) 𝑓′(𝑎𝑖

𝑙−1).      (9) 278 

If the pooling layer is the l-th layer and convolution layer is l + 1, then the error 𝛿𝑖
𝑙 can be 279 

computed as (Goh, 1995): 280 

                               𝛿𝑖
𝑙 = (∑ 𝐾𝑗𝑖

𝑁𝑙+1

𝑗=1 × 𝛿𝑗
𝑙+1) 𝑓′(𝑥𝑖

𝑙),        (10) 281 

where the pooling function is f(𝑥𝑖
𝑙) and its derivative is 𝑓′(𝑥𝑖

𝑙); the function is linear. Therefore, 282 

the last term of Eq. (10) will disappear if the derivative 𝑓′(𝑥𝑖
𝑙) is 1. If the pooling layer is l+1 283 

and the l-th layer is a convolutional layer, then the 𝛿𝑖
𝑙 can be computed as: 284 

                                  𝛿𝑖
𝑙 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝛿𝑖

𝑙+1)𝑓′(𝑥𝑗
𝑙),      (11) 285 

where the upsampling operation is represented by upsample(). If the pooling layer in the CNN 286 

model acquires mean pooling, then the error is uniformly distributed among the units through 287 

upsampling (Shen et al., 2016). If the pooling layer adopts max pooling, then the max receives 288 
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all the error.  However, input through the particular unit would result in output with small 289 

changes. The bias term and weight vector can be updated by following the up-down direction 290 

through the previous update. 291 

2.3.3 Performance evaluation 292 

Three-phase procedure for parameter learning involves data point embedding and distant-293 

supervised phase, which is also called a pre-training phase to generate noiseless data and final 294 

supervised phase (Jiang et al., 2019). The distant-supervised phase is necessary to improve the 295 

accuracy of the output prediction classification or the probability distribution. The pre-training 296 

phase for datasets is not mandatory in input embedding and unnecessary if the result obtained 297 

by the CNN is acceptable and good. Final supervised training requires numerous epochs while 298 

the distant phase needs one epoch to train the model on this dataset. Back-propagation is 299 

applied to update the weight vector and bias in distant-supervised and supervised training 300 

phases (Han et al., 2018). 301 

 302 

The classifier’s performance can be presented as accuracy (Chicco and Jurman, 2020): 303 

 304 

                                     Accuracy = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
.     (12) 305 

 306 

From the harmonic mean of precision and recall, F-1 score can be computed as (Chicco and 307 

Jurman, 2020): 308 

                                                    F-1=(
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1+𝑟𝑒𝑐𝑎𝑙𝑙−1

2
)

−1

.                  (13) 309 

 310 

According to the obtained result, the achieved accuracy was 94%. Therefore, the train and test 311 

accuracy and loss values were plotted in figure 4. 312 

3. CNN-AHP model execution 313 

3.1 Probability 314 

A sequential CNN model for earthquake classification prediction and probability distribution 315 

was applied in the current research (Figure 5). This model comprises four convolutional layers, 316 

and each layer comprised a pooling layer and a dropout (Figure 3). The current model shows 317 

that a supervised classifier with 70% (training set) and 30% (testing set) of spectrograms was 318 

randomly applied for training, and the performance accuracy was estimated based on two-class 319 

classification (Gholamy et al., 2018; Chen et al., 2020). The earthquake data were defined as 320 
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those without any specific condition and split of a large dataset using a 70/30 ratio while 75/30 321 

and 80/20 ratios provide low accuracy and useful for small data set (Jena et al., 2020; Chen et 322 

al., 2020). The CNN model was first developed with convolution kernels, pooling layers, and 323 

dropouts in a sequential model to predict earthquake and non-earthquakes as 1 and 0, 324 

respectively. Earthquake catalog was collected from different databases and random points 325 

generated using GIS to train the CNN classifier. Several thematic layers were used to create a 326 

training dataset from DEM, shapefiles, and catalog along with target points. Data splitting was 327 

performed by dividing into train and test sets. Different algorithms were then applied for 328 

normalization, optimization, variable definition, and compilation. A test dataset was applied to 329 

predict the values that can be used for probability assessment. Numerous earthquake events 330 

were reported in NE India. However, the events were filtered based on magnitudes more than 331 

4 (Mw) and then used for training because low-magnitude events have less capacity for 332 

destruction. Proper inspection and data quality assessment facilitated the database creation of 333 

250 earthquakes for two classifications and probability distribution estimation. Adam 334 

optimizer was applied to optimize the output and epochs (10,000); batch size (100), validation 335 

split (0.3), and verbose (1) were implemented to avoid overfitting. However, this model learns 336 

from the data points of indictors associated with earthquake and non-earthquake events. 337 

Digitization could create noise in the multivalued data points derived from thematic layers; 338 

thus, the noise could affect the model performance, which can be improved by noise removal 339 

and pre-processing. Moreover, the model performs well and provides good accuracy in 340 

probability mapping generated from the classification prediction results. Table 3 explains the 341 

characteristics of all the trainable parameters. 342 

3.2 Hazard 343 

Hazard is the term associated with the spatial and temporal probability of the events. In this 344 

work, the hazard map was prepared based on CNN-based probability and intensity level in the 345 

study area (Plaza et al., 2019). The intensity map was created by calculating the intensity values 346 

from magnitudes. Then, IDW interpolation technique was implemented to make the intensity 347 

variation (Bartier and Keller 1996). Next, the Venn-diagram intersection theory was 348 

implemented to find out the very high hazard zones, and the quantile classification technique 349 

was implemented to classify the hazard zones. This hazard assessment using a combined 350 

approach of artificial intelligence with GIS was conducted for the first time in NE India. 351 

                                                             𝑍𝑝 =
∑ (

𝑧𝑖

𝑑
𝑖
𝑝)𝑛

𝑖=1

∑ (
1

𝑑
𝑖
𝑝)𝑛

𝑖=1

       (14) 352 
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where, 𝑍𝑝is the estimation value of variable z, 𝑧𝑖is the sample value in point I, 𝑑𝑖
𝑝
 is the distance 353 

between estimated to sample point and n is the coefficient that determines weight. The 354 

intersection between two layers A (probability) and B (intensity variation), denoted by𝐴 ∩ 𝐵. 355 

                                              𝐴∩𝐵={x: x ∈ A and x ∈ B}         (15) 356 

where x is the element of the intersection and for both layers.  357 

3.3 Vulnerability 358 

Six layers were selected for vulnerability assessment because of data unavailability and 359 

consistency issue in the AHP approach (Jena et al., 2020). The layers were described in the 360 

data section. The relative importance of the factors used for pair-wise comparison is presented 361 

in Table 2. Then, by applying the normalization technique, the weight and rank of all the layers 362 

were evaluated. 363 

𝐴𝑊 = 𝑙𝑚𝑎𝑥𝑊      (16) 364 

The matrix of pair-wise comparison is A and W indicates the Eigen-vector. The largest 365 

Eigenvector is 𝑙𝑚𝑎𝑥 whereas 𝑋 is the eigenvector of 𝐴 can be calculated as mathematically 366 

presented in Eq. (17). In the next step, the weighted sum tool in the GIS is used to make the 367 

vulnerability map. 368 

(𝐴 − 𝑙𝑚𝑎𝑥𝑊) ∗ 𝑋 = 0       (17) 369 

The consistency index can be estimated as CI by the expression presented below: 370 

𝐶𝐼=
(λmax−n)

n−1
        (18) 371 

Where the validation parameter is 𝜆𝑚𝑎𝑥. The consistency index (CI) was used to estimate the 372 

consistency of pairwise comparison. The consistency ratio (CR) that is < 0.1 can be accepted 373 

for the priority evaluation and the equation mathematically as follows: 374 

𝐶𝑅 = 𝐶𝐼/𝑅𝐼          (19) 375 

Vulnerability map was generated in GIS using the priority values of factors derived from AHP 376 

(Table 2).  377 

 378 

3.4 Coping capacity 379 

The coping capacity map was developed by using the following two categories of data: the 380 

number of hospitals and the disaster budget of NE India. Coping capacity was integrated into 381 

the hazard and vulnerability indexes, thereby generating the total risk. Afterward, the integrated 382 

coping capacity risk map was created by the categorization of the five classes described in the 383 

risk section (Figure 10). Based on the experts' opinion weights disaster budget (50%); Mobile 384 
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(20%); district (15%) and sub-divisional hospitals (15%) were implemented in the weighted 385 

sum tool to estimate the total capacity in NE India. 386 

3.5 Risk 387 

Spatio-temporal probability (hazard) and the specific types of elements at risk were considered 388 

to estimate the probability of losses as risk (Jena and Pradhan, 2020). Finally, the risk was 389 

estimated by multiplying hazards derived from probability and intensity with vulnerability. The 390 

final risk will be the coping capacity-based risk. The detailed process is presented in Figure 4. 391 

The expression of risk can be mathematically written as: 392 

𝑅𝑖𝑠𝑘 =
(𝐻𝑎𝑧𝑎𝑟𝑑∗𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑐𝑜𝑝𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
      (20) 393 

 394 

4. Results  395 

4.1 Probability 396 

The CNN model predicted the probability of occurrence based on two-class classification for 397 

future events. The probable areas were estimated and located through GIS, and the percentage 398 

of high probable zones is described in Figure 6. Very high to medium probable zones cover the 399 

entire NE of India and contribute to the active tectonics of that region. The probability zones 400 

were not classified because the probability map indicates that the entire NE India is highly 401 

probable for earthquakes presented as 0-1 (low to high). Arunachal Pradesh is the only state 402 

that comes under low to high probability. The rest of the states (Assam, Meghalaya, Manipur, 403 

Mizoram, Nagaland, and Tripura) fall in high probable zones covering a total population of 404 

approximately 45,588,381 living in these zones as per the recent census data. A total of 95% 405 

of NE India falls in very high probable zones, while 5% of area covers the low probable zones 406 

because of presence of  seismically active faults with many earthquake occurrences. The 407 

prediction accuracy was 0.94. The model achieved a precision rate of 0.98, recall value of 0.85 408 

and F1 score of 0.91. The published earthquake hazard map of India by the Geological Survey 409 

of India (GSI) can be used for validation purpose. 410 

 411 

4.2 Hazard 412 

The degree of spatial variation of earthquake hazard in the NE of India was developed. 413 

Therefore, an intensity level of more than 5 could be regarded as a hazardous zone. The 414 

intensity map is presented in Figure 7. Intensity level is very high in the regions of  Bhutan and 415 

Myanmar, while the NE and central part of the region is under low to medium category. Next, 416 
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the hazard map was categorized into five classes based on intensity: very high (>9), high (8–417 

9), moderate (6–8), low (5–6), and very low (<5). Hazard results indicate that approximately 418 

7.6% (21412.94 km2) of NE India is classified as a very-high hazard zone while 67.37% 419 

(189717.97 km2) is in a high hazard zone (Figure 8) and (Table 4). Conversely, 0.64% (1802.84 420 

km2) and 7.01% (19745.02 km2) of the study region were classified as very-low and low hazard 421 

zones, accordingly. Most of these areas are located in the south- and north-western parts, while 422 

north-eastern parts of NE India are under the very low zone. The entire Manipur state is 423 

classified as a very high hazard zone; Mizoram, Assam, Meghalaya, Nagaland are covered by 424 

a high hazard zone. However, Arunachal Pradesh and Tripura are covered by moderate to very 425 

low hazard zones based on the obtained results. 426 

4.3 Vulnerability 427 

Several criteria were utilized as input data to assess the vulnerability of communities and land 428 

use/cover (Figure 2). An earthquake vulnerability map was developed and categorized into five 429 

classes based on quantile classification technique (Figure 9). The developed map signifies that 430 

approximately 78.57% of the area is under very high to moderate vulnerability, while low and 431 

very low areas covered 21.43% of the region. The vulnerability index was obtained from the 432 

processing of six criteria. Approximately, 22.57% (6358386.73 km2) and 0.2% (48097.91 km2) 433 

of the total area are covered by high and very high vulnerable zones, respectively. However, 434 

55.83% (15,720,551.43 km2), 0.03% (6752.68 km2), and 21.4% (6,027,317.89 km2) of the area 435 

are respectively covered by moderate, very low, and low vulnerable zones as presented in Table 436 

4.  437 

4.4 Coping capacity 438 

Coping capacity varies state wise in NE India. People in these areas have access to hospitals 439 

and are educated in terms of disasters. Some specific states that are under moderate to high 440 

coping capacity are Assam, Sikkim, and Arunachal Pradesh; however, other states fall under 441 

low to very-low coping capacity. By contrast, Manipur state of the entire NE region of India is 442 

characterized by zones of low to very-low coping capacity and falls under a very-high hazard 443 

zone. Thus, assimilating the coping capacity is critical to deriving the real risk scenario. By 444 

contrast, the areas in Tripura and Manipur with low coping capacity and very-high vulnerability 445 

are due to the combined influence of the disaster budget and the total number of hospitals. 446 

Figure 10 demonstrates the coping capacity of NE India. 447 

4.5 Risk 448 
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The earthquake risk was estimated, mapped, and depicted spatially in Figure 11. The risk map 449 

was classified based on quantile classification techniques and presented as very-low, low, 450 

moderate, high, and very-high. Risk results indicate that 15.64% (34586.10 km2) of the area 451 

was regarded as a very-high-risk zone while the high-risk zone comprised 26.15% (57856.74 452 

km2) of the area. The two classes of risk zones are located in the south-eastern and western 453 

parts of the study area. High and very-high earthquake risks could be observed in Mizoram, 454 

Manipur, Nagaland, Meghalaya, and Sikkim states (Table 4). Medium, very-low, and low risk 455 

zones cover approximately 42.40% (9379687.71 km2), 15.82% (3499487.21 km2), and 27.29% 456 

(6037551.23 km2) of area, respectively. Assam state could be regarded as moderate risk zones, 457 

and some parts of Arunachal Pradesh are under moderate and low-risk zones because it is 458 

located in the interior part of the study region. The work of Pandey et al. (2017), which shows 459 

the total events and dense clustering in NE India, is adopted for risk map validation (Figure 460 

12). According to their map and the seismic hazard zonation map of India, the risk result is 461 

accurate. 462 

5. Discussion 463 

The seismicity rate can be the main indicator to estimate the distribution of earthquake 464 

probability. However, the seismicity rate depends on the total number of events in a particular 465 

area for a given time. Toda et al. (2008) proposed a method that assumed a time window of 10 466 

years for seismicity rate in an area of 100 × 100 km2. The current study used a complete 467 

seismicity catalog to train a CNN model to identify the location of earthquake probability based 468 

on nine indicators. The earthquake data were defined as those without any specific condition 469 

of stress disturbance and split of a large dataset using a 70/30 ratio while 75/30 and 80/20 ratios 470 

provide low accuracy and useful for small datasets (Jena et al., 2020; Chen et al., 2020). 471 

According to the probability distribution study, 249070 km2 of the NE region falls under a high 472 

probable zone. The reasons could be high epicenter density with several high magnitude events 473 

and intensity. Specifically, high fault density, along with folds and active faults and 474 

complicated geological structures contribute to the probability of NE region than any other 475 

locations in India (Jena and Pradhan, 2020). These areas fall under the eastern part of the 476 

Himalayan collision zone, generating several strike-slip faults. Therefore, due to high 477 

magnitude events, high intensity events are observed in the central parts and very-high in the 478 

SE parts, characterized by sedimentary rocks, ophiolites and populated areas with low 479 

elevation, high fault density, and frequent events (Rout and Das, 2018). According to the hazard 480 

map, a considerable area in the northern part and coastline of NE India was classified as a very-481 

high hazard zone because of frequent and high-intensity events. The low to very-low classes 482 
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cover the hilly regions with fewer faults and events in the study site. Therefore, the clear view 483 

of some populated locations in the northern part of the region indicates that north-western parts 484 

are under a very-high hazard zone. According to the vulnerability results, south and northern 485 

parts fall near the active faults and are considered being moderate to highly vulnerable to 486 

earthquakes. By contrast, low elevation, high population density, gentle slope, high rail density, 487 

and high land use/cover in these areas are responsible for the very high vulnerability in the 488 

described zones. The highly vulnerable zones are attributed to a high level of dependent 489 

population, high land use density, less distance from land use to the epicenters, unsafe 490 

sanitation systems, and railway-dependent population. Areas with low and very low 491 

vulnerability comprise good socio-economic conditions. They are not closely exposed to the 492 

high magnitude earthquake locations. Nevertheless, coping capacity is a game-changer during 493 

earthquake periods (Hoque et al., 2019). An educated society can effectively cope with 494 

vulnerability. The coping capacity in the Assam, Sikkim and Arunachal Pradesh is high 495 

because of recently established hospitals and mobile hospitals and a good education system 496 

after the devastating effects of several earthquakes and active faults. Therefore, the education 497 

system in NE is superior to that of the previous condition. This superiority is attributed to the 498 

knowledge of the measures that must be taken during and after the events and its application 499 

on coping. Without coping capacity, the risk map can still be produced, but the resulting 500 

outcome will be different. Furthermore, this outcome cannot be considered as the actual risk. 501 

However, low to very-low-risk zones, which have sufficient disaster budgets and hospitals and 502 

mitigation measures, could be found in the northern part of the region. Areas close to Myanmar 503 

should be the focus of earthquake mitigation planning. Consistency was observed in the spatial 504 

distribution of risk assessment results, in which the hazard, vulnerability, and degree of coping 505 

capacity were linked. Locations with dense population and land use, low elevation, steep slope, 506 

high fault density and epicenter, and magnitude distribution with less coping capacity index 507 

fall under high-risk areas in NE India. However, some areas with high risk could be changed 508 

to low because of their status mitigation capacity and proper planning (Hoque et al., 2018; Jena 509 

et al., 2020). Furthermore, the validation approach and the analysis confirm that the developed 510 

model could provide reliable and accurate information on population risk. The coping capacity 511 

was integrated with the vulnerability and hazard to produce the total risk.  512 

The advantages and disadvantages of the proposed integrated model deal with the 513 

implementation, application type, data quality. This regional earthquake study using a robust 514 

technique of CNN model and multi-criteria assessment could provide a detailed and accurate 515 

risk result. This model could provide the knowledge to choose the necessary criteria under each 516 
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component for probability, hazard, vulnerability, and risk assessment through CNN and GIS. 517 

The AHP is applied for vulnerability assessment, which is effective for prioritizing criteria 518 

based on the multi-criteria decision-making process, to calculate the weights. AHP provides 519 

the best solution for priority analysis and the most used multi-criteria decision making 520 

(MCDM) in academia and industries. This study gives evidence of comprehensive risk 521 

assessment using the integrated geospatial and AHP approaches and efficient for risk 522 

assessment at the regional scale to estimate accurate information. However, incorporation of 523 

mitigation measures are required for the development of the actual risk map through a proper 524 

risk assessment procedure.  525 

A certain number of disadvantages are associated with this model. The CNN model requires 526 

large data points for an effective study on earthquake probability distribution. The CNN model 527 

is data-dependent and requires a huge number of data points for training and testing purposes. 528 

Choosing proper parameters for probability mapping is crucial otherwise may lead to a biased 529 

result. The AHP approach is limited to the magic number of 7 (+ or -2) and has consistency 530 

issues. Therefore, more than seven criteria cannot be involved in vulnerability assessment.  531 

6. Conclusion  532 

A deep learning-based integrated earthquake risk-mapping model for NE India using a 533 

complete earthquake catalog, DEM and shapefile data, and spatial analysis is proposed in this 534 

research. The chosen area is NE of India, which is characterized by 262,230 km2 and falls under 535 

the Indian government. This area is selected to test the usefulness and applicability of the 536 

proposed approach. The risk mapping approach is validated using the earthquake hazard map 537 

created by previous researchers. The risk results indicated that 15.64% (34586.10 km2) of the 538 

area was regarded as a very high-risk zone while the high-risk zone comprised 26.15% 539 

(57856.74 km2) of the area falls under SE and SW parts.  540 

The limitations and challenges of this study associated with acquiring data at a regional scale 541 

and processing through deep learning techniques, which is difficult. Therefore, secondary data 542 

was used because of the unavailability of the primary data. In the future, high-resolution DEM 543 

derived from Light Detection and Ranging (LiDAR) data could be generated for earthquake 544 

studies to fulfil the requirement of high-quality data. Curvature is not included in the current 545 

research for probability mapping as a “criteria” due to its less accuracy. Similarly, this research 546 

is limited to earthquake risk assessment without considering liquefaction factors, soil 547 

characteristics, fault characteristics, and precursors due to data unavailability. The 548 

aforementioned criteria could be considered for future earthquake prediction and probability 549 
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assessment. Therefore, future works will be focused on addressing the aforementioned 550 

limitations. Despite the drawbacks presented in this study, the proposed method is still 551 

considered being effective for earthquake risk assessment and could help in efficient disaster 552 

risk reduction measures. This method could also be applied to any other disaster in large-scale 553 

data modification. Criteria selection was based on site-specific data types; thus, this model 554 

could be tested and validated for any other locations in India. The findings of the current 555 

research establish a framework for probability, hazard, vulnerability, coping capacity and risk 556 

mapping. Planners, administrators, and decision-makers could use the developed model for 557 

prevention and mitigation purposes to minimize expected losses for future risk. 558 
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 758 

Figure captions 759 

Figure 1. a) Indian subcontinent b) NE India with districts, c) Location of the NE India showing 760 

the tectonics and detailed geology (JTr: Triassic and Jurassic rocks, Jms: Jurassic metamorphic 761 

and sedimentary rocks, Jks: Jurassic and Cretaceous sedimentary rocks, Ks: Cretaceous 762 

sedimentary rocks, MzPz: Paleozoic and Mesozoic metamorphic rocks, Mzi: Mesozoic 763 

intrusive rocks, N: Neogene sedimentary rocks, Osm: Ordovician metamorphic and 764 

sedimentary rocks, Pg: Paleogene sedimentary rocks, Pr: Permian rocks, Pz: undifferentiated 765 



24 
 

Paleozoic rocks, Pzi: Paleozoic igneous rocks, Pzl: Lower Paleozoic rocks, Pzu: Upper 766 

Paleozoic metamorphic rocks, PzPc: Paleozoic undivided Precambrian rocks, Q: Quaternary 767 

sediments, Qs: Quaternary sand, S: Silurian rocks, TKim: Cretaceous and Tertiary igneous and 768 

metamorphic rocks, TKs: Cretaceous and Tertiary sedimentary rocks, TKv: Cretaceous and 769 

Tertiary volcanic rocks, Ti: Tertiary igneous rocks, TrCs: Upper Caboniferious–Lower Triassic 770 

sedimentary rocks, Trms: Triassic igneous and sedimentary rocks, Ts: Tertiary sedimentary 771 

rocks, and Pc: Precambrian rocks). (Data source: USGS).  772 

Figure 2. Criteria used for earthquake vulnerability map. 773 

Figure 3. Architecture of the proposed CNN model. 774 

Figure 4. Accuracy and loss for training and testing. 775 

Figure 5. Methodological flowchart of the proposed method for earthquake risk assessment. 776 

Figure 6. Earthquake probability map. 777 

Figure 7. Intensity variation in NE India. 778 

Figure 8. Earthquake hazard map of NE India. 779 

Figure 9. Earthquake vulnerability map. 780 

Figure 10. Coping capacity of NE India. 781 

Figure 11. Earthquake risk map. 782 

Figure 12. Correlation between a) earthquake risk in NE India and b) earthquake cluster zones 783 

with large events (Adopted from Pandey et al., 2017). 784 
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Table captions 786 

Table 1. Description of parameters and data source. 787 

Table 2. Priority and rank estimation for all the parameters of vulnerability. 788 

Table 3. Parameters used for CNN method and accuracy in probability mapping. 789 

Table 4. Hazard, vulnerability and risk areas in NE India. 790 
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Parameters Data source
Scale and 

resolution

Slope

Elevation

Fault density

Distance from fault

Magnitude density

Epicentre density

Distance from epicentre

PGA density

Derived from the catalogue using the 

equation: MMI=1/0.3×(LOG 

10(PGA×980)-0.014)

Lithology and amplification factor

Distance from buildings

Land use density

Distance from land use

Distance from railway

Railway density

Geological map of India, GSI

Derived from raster data of DIVA GIS 

and administrative data from shape files. 

Euclidean distance and kernel density 

were applied to estimate several 

parameters.

1:3,000,000 

and (30m)

Earthquake catalogue

Collected from USGS and magnitude 

conversion conducted based on Wason et 

al. (2012)

Derived from SRTM (USGS) 

https://earthexplorer.usgs.gov/

Using digitisation obtained from 

Geological map of India, GSI

Joyner & Boore-1981 and Campbell- 

1981 attenuation equations were 

implemented on collected USGS 

earthquake catalogue 

Table 1

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


1 2 3 4 5 6

1 1 3 2 3 5 4

2 0.33 1 1 1 4 3

3 0.5 1 1 2 4 3

4 0.33 1 0.5 1 3 3

5 0.2 0.25 0.25 0.33 1 2

6 0.25 0.33 0.33 0.33 0.5 1

Priority Rank (+) (-)

1
Building 

density
36.30% 1 9.60% 9.60%

2
Distance from 

buildings
17.10% 3 4.40% 4.40%

3
Land use 

density
20.30% 2 4.70% 4.70%

4
Distance from 

land use
14.40% 4 3.20% 3.20%

5
Distance from 

railway
6.30% 5 2.50% 2.50%

6
Railway 

density
5.70% 6 1.90% 1.90%

iterations, delta = 7.5E-8

Category

Number of comparisons = 15

Consistency Ratio CR = 3.4%

Principal Eigen value = 6.213

Eigenvector solution: 4 

Table 2



Layer
Kernel 

size

Number 

of kernels
Biases Total Activation 

Conv1 3×3 200 200 2000 Relu

Conv2 14×14 200 1000 40200 Relu

Conv3 14×14 200 1000 40200 Relu

Conv4 14 ×14 200 1000 40200 Relu

FCL 14 ×14 2 10 402 Softmax

Kernel_regul

arizer=12(0.

0001)

Total 123,002

Accuracy of 0.94, 

Precision (0.98), 

Recall  (0.85)  

F1 score is (0.91)

Table 3



Hazard

Classes Class no Area(Km
2
) Area (Hectare) Area (%)

Very low 1 19745.02 1974502.28 7.02

Low 2 1802.85 180284.26 0.65

Moderate 3 48932.23 4893222.05 17.38

High 4 189717.97 18971797.23 67.37

Very high 5 21412.94 2141293.84 7.61

Total 28161099.65 100

Vulnerability

Classes Class no Area(Km
2
) Area (Hectare) Area (%)

Very high 1 480.98 48097.92 0.17

High 2 63583.87 6358386.73 22.58

Moderate 3 157205.52 15720551.43 55.82

Low 4 60273.11 6027310.89 21.4

Very low 5 67.53 6752.69 0.02

Total 28161099.65 100

Risk

Classes Class no Area(Km
2
) Area (Hectare) Area (%)

Very low 1 34994.88 3499487.21 15.82

Low 2 60375.51 6037551.23 27.29

Medium 3 93796.88 9379687.71 42.4

High 4 57856.74 5785674.28 26.15

Very high 5 34586.1 3458699.22 15.64

Total 28161099.65 100

Table 4
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