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Abstract 

Accurate prediction of suspended sediment (SS) concentration is a difficult task for water 

resources projects. In recent years, new methodologies such as artificial intelligence (AI) 

algorithms have been applied for sediment load estimation and these models have provided 

efficient results. The present study investigates the abilities of four distinct AI approaches for 

estimating monthly- SS load in Roodak station on Jajrood River, one of the longest waterways in 

the north of Iran, using the combinations of the present and antecedent monthly river flow data. 

This study aims to compare the predictive ability of artificial neural network (ANN), adaptive 

neuro-fuzzy inference systems (ANFIS), group method of data handling (GMDH), and least square 

support vector machines (LS-SVM) applied to predict the SS load. To develop the models, the 

monthly average river flow and the SS data for 50 years were obtained from Tehran regional water 

authority. Data were separated into three subsets (training, validation, and testing) and the SS 

concentration was predicted where the reliability of utilized approaches was assessed by statistical 

criterion including the correlation coefficient (R), mean absolute error (MAE) and root mean 

square error (RMSE). A comparison of the developed models revealed that the use of antecedent 

average river flow is able to enhance the prediction precision of suspended sediment concentration. 

The results indicate that the LS-SVM model generated superior results than the other models in 

terms of the mean error criteria, showing the ability of the model to reasonably predict the observed 

SS load values. 

Keywords: Data-driven methods, Fuzzy logic, Artificial intelligence, Jajrood River, Suspended 

sediment concentration. 
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1. Introduction 1 

The use of water resources for drinking, bathing, industry and agriculture have led such 2 

waters to become widely compromised, and water quality degradation to become an issue of global 3 

concern (Vadiati et al. 2018). Anthropogenic impacts alongside various other ecological 4 

parameters can cause sediment release in riverine waters (Yang et al. 2015). Suspended sediment 5 

load (SSL) is a determining factor in some natural issues, such as designing the reservoirs, dams, 6 

and channels, protecting the aquatic territories, and watershed management (Partal and Cigizoglu 7 

2008; Kisi and Zounemat-Kerman 2016). Sediment yield is also affected by several aspects such 8 

as watershed area, geology, vegetation, and the intensity and duration of precipitation (Heidarnejad 9 

et al. 2006; Zhu and Li 2014; Noori et al. 2016). Suspended sediment (SS) in water river can cause 10 

a degradation of the quality of drinking water, which is likely to impact agriculture activities (Ahn 11 

et al. 2017). Therefore, considering the importance of SSL in river systems and its ecological 12 

effects, the prediction of SSL is expected to be a valuable task for an extensive variety of 13 

engineering design problems (Nourani and Andalib 2015; Afan et al. 2016). 14 

Generally speaking, a number of reviews have been performed in demonstrating the 15 

sediment transport processes. Precise prediction of the sediment content in the river is somewhat 16 

troublesome (Partal and Cigizoglu 2008). Some investigations have been carried out with the aim 17 

to decrease the complexities of the problem (Olyaie et al. 2015). In this regard, mathematical 18 

models including the conventional multiple linear regression (MLR), sediment rating curve (SRC), 19 

and autoregressive-based models have been extensively employed for SS prediction (Rajaee 20 

2011). Cherif et al (2017) predicted the sediment yield in Northwest Algeria, Wadi El Hammam, 21 

at storm period during a 22-year period using SRC method. Also Hassanzadeh et al (2018) 22 

investigated the dam reservoir hydrography to optimize the correction coefficients of SRC in the 23 
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Karkheh dam, west Iran. In another research, the river channel morphology by Biswas et al. (2018) 24 

have studied to evaluate the sediment size alteration and flow behavior after the road bridge 25 

construction.  26 

Recently, the artificial intelligence (AI) methods have been used for forecasting the 27 

hydrological phenomena and estimation of suspended sediment volume (Kişi 2005; Nourani et al. 28 

2012; Zounemat-Kermani et al. 2016; Talebi et al. 2017; Ahn et al. 2017). Various data-driven 29 

models have also been developed for estimating and modeling the sediment load as they can 30 

address nonlinear correlations between input and output dataset (Jha and Bombardelli 2011; Kisi 31 

and Zounemat-Kerman 2016). In this context, among the other models, artificial neural network 32 

(ANN), adaptive neuro-fuzzy inference systems (ANFIS), group method of data handling 33 

(GMDH), least square support vector machine (LS-SVM), and search optimization methods have 34 

been widely applied. In published literature, data-driven methods have been utilized extensively 35 

for estimating the SSL based on stream flow and sediment properties (Alp and Cigizoglu 2007; 36 

Melesse et al. 2011; Zheng et al. 2011; Mustafa et al. 2012; Ebtehaj and Bonakdari 2014; Nourani 37 

and Andalib 2015; Makarynskyy et al. 2015; Hassan et al. 2015; Chen and Chau 2016; Ouellet- 38 

Proulx et al. 2016; Ulke, et al. 2017; Buyukyildiz and Kumcu 2017; ). However, only a few reviews 39 

the SSL simulation problems. 40 

Doğan et al. (2007) found the superiority of artificial intelligence models including ANNs, 41 

NF, MLR, and SRC in time series prediction on the Little Black River gauging stations and Salt 42 

River. Misra et al. (2009) applied the SVM model for runoff and SSL prediction. These researchers 43 

stated that the SVM model was capable of providing significant improvements in training, 44 

calibration, and validation stages, which were distinct from the ANN model. Cobaner et al. (2009) 45 

applied the ANN and ANFIS model to deal with gauge SSL by utilizing hydro-meteorological 46 
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datasets. Melesse et al. (2011) applied the ANN method to estimate the daily SSL. Senthil Kumar 47 

et al. (2011) made an attempt to predict the SSC by employing fuzzy logic (FL), ANN modelsand 48 

decision tree algorithms. Vafakhah (2013) applied the ANN, ANFIS, and two kriging methods for 49 

SS prediction. Azamathulla et al. (2013) have used GEP model to predict SSL three Malaysian 50 

rivers and compared the results with the ANFIS model. Kakaei Lafdani et al. (2013) investigated 51 

the ability of the ANN and the SVM methods to predict the SSL. These authors presented ANN 52 

and SVM methods using Gamma Test to select the ideal input combination. Kitsikoudis et al. 53 

(2014) applied the ANN methods to forecast sediment bed load in Idaho River in the USA by 54 

examining the capacity of several input data set. Hassan et al. (2015) applied an ANN-based 55 

method to predicti the SSL and uncovered the high accuracy of ANN in evaluating the sediment 56 

load values. Also, Olyaie et al. (2015) studied ANNs, ANFIS, and SRC models for SSL forecasting 57 

and found that the neuro-wavelet shows the best estimation among the selected methods. Chen and 58 

Chau (2016) employed an FF neural network model for the estimation of SSL by integrating the 59 

equation of fuzzy pattern recognition and the equation of ANNs. The results of their study revealed 60 

that the outcome is suitable for modeling the SSL. Shamaei and Kaedi (2016) examined the neuro- 61 

fuzzy model and the hybrid wavelet neuro-fuzzy alongside the conventional SRC in SSL 62 

forecasting and found that the wavelet neuro-fuzzy was the best model. Moreover, the study of 63 

Nourani et al. (2016) attempted to show a two-step modeling approach for dealing with the 64 

spatiotemporal variety of SSL. Riahi-Madvar and Seifi (2018) applied the ANN and ANFIS model 65 

to predict bed load transport using the different combination of input parameters. 66 

Despite the prominent increase in the number of studies conducted on hydrological issues 67 

using AI data-driven models, there are still few comprehensive comparisons of models using ANN, 68 

ANFIS, GMDH, and LS-SVM for SS prediction in the literature. To the best of our knowledge, 69 
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this study is the first review to consider the application of GMDH to predict monthly river SSL. 70 

Moreover, the purpose of the present research is also to survey the impact of the monthly average 71 

river flow (Q) on the precision and the accuracy of SSL prediction in the Jajrood River, Iran. 72 

2. Material and methods 73 

2.1. Artificial Neural Networks 74 

ANN models have been broadly used in water resource research as a predicting approach. 75 

ANN, FF, and Back-Propagation networks are common models in water resource research. Three- 76 

layered FF Neural Networks produces a general framework that can represent the nonlinear 77 

mapping between input and output variables (Nourani and Andalib 2015). The multilayer 78 

perceptron (MLPs) ANN (Rumelhart and McClelland, 1986) is the frequently used type of neural 79 

networks (Cauchi et al. 2011; Khalil and Adamowski 2014. In its simplest form, the MLP model 80 

comprises of one input and output layer, and one or more hidden layers (ASCE 2000a,b). One 81 

hidden layer was found sufficient for solving the nonlinear models in hydrology research 82 

(Coulibaly and Anctil 1999). Finding the hidden node size is a key step that is typically done by 83 

the trial and error method. Among the various techniques proposed for the recognition of an ideal 84 

number of nodes in the hidden layer, Eq. 1 has been utilized in the present study to evaluate the 85 

recommended upper limit number of hidden nodes (Maier and Dandy 2001). 86 

𝑁𝐻 =  min (
2𝑁1 + 1; 𝑁𝑇𝑅

𝑁1 + 1
) 

(1) 

where 𝑁𝐻 , 𝑁1, and 𝑁𝑇𝑅 are the number of hidden nodes, input, and the training sample, 87 

respectively. However, in the present research, the number of hidden nodes was identified based 88 

upon the trial-and-error procedure. It has to be noted that the transfer function (also called as 89 

activation function) technically reveals the ability of non-linear approximation of the ANN (Shu 90 
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and Ouarda 2007).Among different learning algorithms such as FF back-propagation, radial basis 91 

function (RBF), gradient descent with momentum, Levenberg-Marquardt (LM), and Bayesian 92 

regularization (ASCE 2000a,b), the LM training algorithm (Hagan and Menhaj 1994) has been 93 

chosen since it is a powerful algorithm for training the ANN models (Burney et al. 2004; Khalil et 94 

al. 2011) For more information, the interested readers are referred to Haykin (1999). 95 

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 96 

The ANFIS technique is able to provide potential advantages of both the ANN and the FL 97 

methods as unified predictive model. Basically, the ANFIS model covers the major problem in the 98 

design of fuzzy if-then rules, by efficiently employing the acquisition capacity of ANN for 99 

generating fuzzy rules and optimizing the parameters (Nayak et al. 2004; Olyaie et al. 2015). The 100 

ANFIS model, as an FF network that maps input variables on an output space, then extracts fuzzy 101 

if-then rules from the data set (Vadiati et al. 2016). 102 

In its original form, the hybrid learning algorithm composed of the ANFIS model was 103 

introduced by Jang (1993). Sugeno approach, which is a specific type of ANFIS model, has been 104 

used in the present study (Sugeno 1985) for estimating the output variables. Several Sugeno 105 

models may be developed using the subtractive clustering (SC), grid partitioning (GP), and Fuzzy 106 

C-Mean Clustering (FCM) methods. In this work, the most broadly used methodologies, SC 107 

model, have been used to produce an initial inference system (El-Shafie et al. 2007).  108 

The hybrid learning algorithmis usually applied in the FISs training to characterize the 109 

improved spreading of the membershp function (MF)s. The hybrid learning algorithm coding, 110 

which is a combination of the least-squares method and the gradient descent, and ANFIS model in 111 

this work were prepared in MATLAB Software (Mathworks 2014). 112 
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2.2.1 Subtractive Clustering 113 

Subtractive clustering (SC) method was developed by merging the ANFIS and the 114 

subtractive clustering algorithms (Sanikhani and Kisi 2012). The merit of the ANFIS-SC technique 115 

is its ability to remove the necessity to define a grid resolution. Basically, the procedure of SC 116 

process presents as follows: 117 

Consider a collection of n data set {𝑥1, 𝑥2, … , 𝑥𝑛} in an 𝑀 dimensional space, which have 118 

been standardized in every dimension. The potential of the data point 𝑥𝑖 to be cluster center is 119 

computed as: 120 

𝑃𝑖 =  ∑ 𝑒−𝛼‖𝑋𝑖−𝑋𝑗‖
2

𝑁

𝑖=1

 

(2) 

where 𝛼 =
4

𝑟𝑎
2 ‖𝑋𝑖 − 𝑋𝑗‖

2
 indicates the Euclidean distance and the positive constant 𝑟𝑎is is 121 

the radius indicating a neighborhood. If 𝑥 1
∗  is the situation of the primary cluster center and 𝑃 1

∗ is 122 

its potential, the following equation is representing the potential of each data point 𝑥𝑖: 123 

𝑃𝑖 =  𝑃𝑖 − 𝑃1
∗𝑒−𝛽‖𝑋𝑖−𝑋1

∗‖2
 (3) 

 Where 𝛽 =
4

𝑟𝑏
2 and 𝑟𝑏is a positive constant. Afterward, the potential of each data point is 124 

decreased based on its distance to the next cluster center. The effective radius is fundamental to 125 

specify the number of the clusters. Selecting a smaller radius causes an excessive number of 126 

smaller clusters and the need for more rules is inevitable and vice versa. As a result, choosing a 127 

proper effective radius and is a critical issue(Sanikhani and Kisi 2012). 128 

2.3. Group Method of Data Handling (GMDH) 129 

GMDH is an example of the self-organizing neural network methods. Self-organizing 130 

neural networks methods are successfully used in a broad range of science and engineering 131 
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disciplines although their application in the field of hydrology is still in its infancy stage (Samsudin 132 

et al. 2010; Bayat et al. 2011; Garg 2014). 133 

The GMDH was introduced by Ivakhnenko (1968) as a heuristic model used to obtain 134 

predictive models of complex systems. This model depends on the regression function and it 135 

derives the complex, high order polynomial models. Originally, the GMDH model was proposed 136 

as a method for dealing with higher order regression polynomials (Samsudin et al. 2010). The main 137 

function of GMDH is related to the principles used in the typical artificial neural networks where 138 

each layer comprises of the some nodes. In this paper, MATLAB ® software was used to generate 139 

the GMDH programs. Basic mathematical equations are provided below and more details on 140 

GMDH can be found in papers such as Farlow (1984) and Nariman-Zadeh et al. (2002). The 141 

relationships between the inputs and output data set can generally be stated using a complex 142 

polynomial Volterra series called the Kolmogorov-Gabor polynomial (Ivakhnenko 1995). 143 

2.4. Least Square Support Vector Machine (LS-SVM) 144 

Suykens and Vandewalle (1999) was introcuded the LS-SVM, which was derived from the 145 

traditional support vector machine (SVM) model, as an effective method to solve the non-linear 146 

classification problems (Kumar and Kar 2009). A learning theory, which operates through the 147 

minimization of structural risk, was applied to develop the SVM model that aims to reduce both 148 

experimental risk and the confidence interval, attaining a good generalization outcome 149 

(Raghavendra and Deka 2014) and as such, this method can ideally be used for the SSL prediction. 150 

Several algorithms have been recommended to solve the optimization equation of the LS- 151 

SVM model (Shevade et al. 2000). It is noteworethy that the algorithms of conventional quadratic 152 

programming need enormous memory for the kernel matrix calculation while they can also have 153 

hitches in their application and may not be appropriate for complicated optimization problems. 154 
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The sequential minimal optimization (SMO) algorithm, introduced by Platt (1999) was employed 155 

in this study. The optimum number of 𝐶 and 𝛾 (kernel width parameters) are determined by the 156 

trial and error. When 𝛾 is very large, the input patterns tend to look very alike, leading to the 157 

underfitting of the function. In contrast, when it is too small, the opposite event is likely to happen 158 

and over-fitting would be possible (Chang et al. 2005). The 𝐶 factor assigns the weights of the 159 

model size (Basak et al. 2007). When 𝐶 is too small, it is implied that the fitting of the data features 160 

was not successful, while an excessively large value of 𝐶 is likely to overfit the input-target data 161 

(Lendasse et al. 2005). The LS-SVM model in the present study was executed by means of the 162 

codes available in the Library for Support Vector Machines (LIBSVM) software (Chang and Lin 163 

2011). 164 

3. Model Development 165 

The monthly average river flow (Q in Lit/S) and SSC (in Mg/L) were combined in several 166 

ways to predict the SSC values in Jajrood River. Considering the SSCt as the SSC at a time t, the 167 

Qs (i.e., Qt, Qt-1 to Qt-3) can be considered as the input data. Generally, the data used in data-driven 168 

models should be normalized equally to all obtained data throughout the training phase. Eq. 4 169 

expresses a simple linear mapping formula for the data normalization (Nourani et al. 2013): 170 

𝑟𝑖 =  
𝐼𝑖 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
 

(4) 

where 𝐼𝑖 is the real value and 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the minimum and maximum of the values, 171 

respectively. Employing normalizing procedure and transferring data between [0, 1] expedites the 172 

training process of the models (Nourani and Fard 2012). 173 

The present study examined different combinations of the Q and SSC as the model’s inputs 174 

to evaluate the effectiveness of each of these input combinations on the SSL prediction accuracy 175 
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using the ANN, ANFIS, GMDH, and LS-SVM models. The following combination of the present 176 

(Qt) and antecedent monthly average river flow (Qt-1, Qt-2, Qt-3) used for SSC prediction were 177 

selected based on the correlations among the inputs and the target (output): 178 

(1) SSC = f (Qt); 179 

(3) SSC = f (Qt, Qt-1); 180 

(3) SSC = f (Qt, Qt-1, Qt-2); 181 

(4) SSC = f (Qt, Qt-1, Qt-2, Qt-3); 182 

In the present study, 50 years data were divided into the training, validation, and test data 183 

set assigned as the initial 30 years (April 1967-March 1997), the following 10 years (April 1997- 184 

March 2007), and the last 10 years (April 2007-March 2017), respectively. The basic statistics of 185 

data sets for the Roodak gauging station are given in Table 1.  186 

It is notable that the high skewness coefficient has a remarkable adverse impact on the 187 

results of the model (Altun et al. 2007; Rajaee et al. 2010). Overall, Table 1 demonstrates 188 

satisfactory features between the training and testing sets, in respect to the values of statistical 189 

parameters. 190 

Table 1. The statistical parameters of data set for the Roodak gauging station, Jajrood River, Iran 191 

3.2. Efficiency Criteria 192 

To evaluate the results of the developed model, statistical criteria including the correlation 193 

coefficient (R), mean absolute error (MAE), and RMSE were chosen: 194 

𝑅 =  
(∑ (𝑆𝑆𝑂𝑖 − 𝑆𝑆𝑂)(𝑆𝑆𝑆𝑖 − 𝑆𝑆𝑆)𝑁

𝑖=1 )2

∑ (𝑆𝑆𝑂𝑖 − 𝑆𝑆𝑂)2𝑁
𝑖=1 ∑ (𝑆𝑆𝑆𝑖 − 𝑆𝑆𝑆)2𝑁

𝑖=1

 
(5) 
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𝑀𝐴𝐸 =  
1

𝑁
∑|𝑆𝑆𝑆𝑖 − 𝑆𝑆𝑂𝑖|

𝑁

𝑖=1

 

(6) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑆𝑆𝑆𝑖 − 𝑆𝑆𝑂𝑖)2𝑁

𝑖=1

𝑁
 

(7) 

where 𝑆𝑆𝑂𝑖 , 𝑆𝑆𝑆𝑖, 𝑆𝑆𝑂, 𝑆𝑆, and 𝑁 are the observed suspended sediment of the 𝑖th data, 195 

predicted suspended sediment of the 𝑖th data, the mean of observed suspended sediment, the mean 196 

of estimated suspended sediment, and the number of observations, respectively. RMSE is a 197 

measure that is often used to find the difference between the values predicted and those that are 198 

observed. The RMSE is a measure of the goodness of fit that refers to a mean error in predicting 199 

the values. The ideal value for MAE and RMSE is zero. The higher values demonstrate higher 200 

quantities of error. 201 

3.3. Study area 202 

Jajrood River is situated in the Karaj-Latian basin, North East of Tehran Province, Iran. 203 

The climate in this region is moderate and annual precipitation ranges from 500 to 1100 mm. The 204 

average annual precipitation and temperature are about 711 mm and 26℃, respectively. Snowmelt 205 

in North mountains causes a noticeable increase in river flow (Razmkhah et al. 2010). The Fasham 206 

and Shemshak rivers form the Jajrood River in Fasham area (Mahjouri and Kerachian 2011). 207 

Finaly, the Jajrood River flows into the Latian dam reservoir, which is the main supplier of 208 

Tehran's domestic water for Tehran (Saeedi et al. 2011; Nikoo et al. 2011). Despite the notable 209 

increase in water quality assessment in Jajrood River due to its key role in supplying Tehran’s 210 

water, to best of our knowledge, there has been no comprehensive study on the SSL prediction in 211 

Jajrood River. 212 
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In the present work, the monthly average streamflow and SSC data were collected at the 213 

Roodak gauging station on Jajrood River (Station Number: 41-101), which was controlled by the 214 

Tehran Regional Water Authority (TRWA). Fig. 1, shows the the SSL data which were measured 215 

by TRWA once and often twice a month. Also, the monthly SSL and average river flow time series 216 

for Roodak gauging station on Jajrood River SSL are represented in Fig. 2. 217 

Fig. 1 Map of the Jajrood River, Iran 218 

Fig. 2 Time series of SSL and River discharge for Roodak gauging station on Jajrood River 219 

4 Results and Discussions 220 

4.1. Results of the ANN Model 221 

Different input combinations for the ANN model (i.e., models denoted as one to four) were 222 

assessed in predicting the sediment concentration SSC in Jajrood River, through appropriate model 223 

steps. As shown in Table 2, which presented the results of the ANN model for all input 224 

combinations in different structures of the ANN model, the ANN model with combination 4 (with 225 

Qt, Qt-1, Qt-2, and Qt-3 as its inputs) was the best model. The input combination 4 had the least RMSE 226 

and MAE while it had the highest R in the validation and test steps. Therefore, it it was evident 227 

that the best-fit model for SSL prediction for the current study. Moreover, the optimmim number 228 

of nodes in hidden layer was considered based on trial and error procedure, same as the earlier 229 

researches (Khalil et al. 2015). The number of nodes was changed from 1 to 10 until the model no 230 

longer showed a significant improvement in the training performance. This yielded the best 231 

architecture of ANN for model combination 4, recognized as 4-2-1, indicating 4 input, 2 hidden 232 

and 1 output nodes (Table 2). Fig. 3 presents the observed and the predicted SS values generated 233 

by the ANN model. 234 
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Table 2. Results of AI models SSL prediction for different input combination in monthly basisin 235 

the validation and test steps for the Roodak gauging station 236 

Fig. 3 A comparison between observed and predicted SSL by ANN model for different input 237 

combination, the whole data set for the Roodak gauging station, Jajrood River, Iran 238 

4.2. Results of the ANFIS Models 239 

The ultimate architecture of the ANFIS methods were identified by a trial and error 240 

procedure. To create the fuzzy rules using the ANFIS-SC model, it is important to define the 241 

appropriate cluster radii (Sanikhani and Kisi 2010). 242 

In the present study, the statistical criteria were applied to determine the optimal radius for 243 

every model structure. Based on Table 2, which the results of the different combinations of model 244 

are presented, ANFIS-GP models with combination 4 that uses Qt, Qt-1, and Qt-2 as inputs is the 245 

best model. Fig. 4 illustrates the observed and predicted SS values using the ANFIS, separately. 246 

Fig. 4 A comparison between observed and predicted SSL by ANFIS-SC model for different 247 

input combinations for whole data set for the Roodak gauging station, Jajrood River, Iran  248 

4.3. Results of the GMDH Model 249 

To the best of the authors’ knowledge, no research has been performed for prediction of 250 

the SSL using the GMDH approach. In a GMDH model, successive layers that have complex 251 

connections are formulated and built by means of second-order polynomial functions. In the 252 

structure of GMDH approach, computing regressions of the input and output variables are 253 

developed to bulid the primary layer and following layer. Afterthat, the best computing regressions 254 

are chosen for each the primary layer and following layer. Finally, the selection process halts when 255 

the stop criteria is found (Samsudin et al. 2010). The achievement and performance of GMDH 256 
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models rely upon the choices of the number of input variables. We assessed the GMDH model 257 

with different combinations based on the SSC in Jajrood River. The results of GMDH model are 258 

presented in Table 2. Fig. 5 presents the observed and predicted SS values, using the GMDH 259 

model. 260 

Fig. 5 A comparison between observed and predicted SSL by GMDH model for different input 261 

combination for the whole data set for the Roodak gauging station, Jajrood River, Iran 262 

4.4. Results of LS-SVM Model 263 

The LS-SVM model was evaluated using different combinations of datasets as the model’s 264 

input. The performance results of different combinations the validation and test steps using LS- 265 

SVM model are provided in Table 2. These result showed that the LS-SVM model with the input 266 

combination 1 as the input had the best RMSE, MAE, and R results in the train and test period. 267 

Therefore, it was chosen as the best model for SS estimation. The RBF was recognized as a proper 268 

kernel function for this study. Different numbers of parameter 𝐶 and kernel function parameter 𝛾 269 

were determined for the LS-SVM based on the trial and error. The ideal number of 𝐶 and 𝛾 for 270 

different combination are 20 and 0.5, respectively (Table. 2). Fig. 6 shows the observed and 271 

predicted SSL values using the LS-SVM model. 272 

Fig. 6 A comparison between observed and predicted SSL by LS-SVM model for different input 273 

combination for the whole data set for the Roodak gauging station, Jajrood River, Iran 274 

4.5. Comparison of the Results of Different Models 275 

To attain a comprehensive assessment of the ANN, ANFIS-SC, GMDH, and LS-SVM 276 

methods, the combination 4 (Qt, Qt-1, Qt-2, Qt-3) was applied as the input to compare the 277 

performance of the ANN, ANFIS-SC, GMDH, and LS-SVM models. Comparing the AI models 278 
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which are presented in Table 2, we see that the differences between the results of the ANN, ANFIS- 279 

SC, GMDH, and LS-SVM models were not significant. Moreover, it was also revealed that all 280 

models yielded appropriate results regarding to the MAE, RMSE, and R criteria. Overall, the 281 

performances of the ANN, ANFIS-SC, GMDH, and LS-SVM methods in the present study were 282 

satisfactory. Eventually, the results showed that the LS-SVM method had the best performance in 283 

predicting SSC for the used input and output data. 284 

5. Conclusions 285 

Past investigations on the prediction of SSL show that it is a critical issue considering the 286 

need for massive, point-by-point, and exact environmental data. Regarding the importance of SSL, 287 

as a complex phenomenon, the application of artificial intelligent data-driven models leads to a 288 

precise prediction of SSL. In this study, a comparison of different artificial intelligence methods 289 

such as ANN, ANFIS-SC, GMDH, and LS-SVM were used for prediction of SSL. For achieving 290 

this objective, Jajrood River station (Roodak station) in the Tehran Province, Iran was utilized to 291 

create different models investigated in this study. The input data set comprises the observed 292 

monthly Q and SSL. The optimum input combination for the models was perceived using the 293 

expert knowledge and the previous studies. The global statistics (R, MAE and RMSE) were chosen 294 

to evaluate the performances of different developed methods. The results shown that soft 295 

computing techniques were powerful tools to predict the SSL since all models generally showed 296 

low RMSE and MAE and a high R. Overall, the results of different models applied in this study 297 

showed that the LS-SVM has the better performance in terms of other models to predict the 298 

multifaceted non-linear behavior of the SSC. This study expected to guide the application of soft 299 

computing models in prediction of the SS alongside the rivers. Furthermore, as a plan for future 300 
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reviews, alternating factors such as hydrological and meteorological parameters can be applied to 301 

model the SSL process.  302 
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Fig. 1 Map of the Jajrood River, Iran 

Figure



 

Fig. 2 Time series of SSL and River discharge for Roodak gauging station on Jajrood River 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Fig. 3 A comparison between observed and predicted SSL by ANN model for different input 

combination, the whole data set for the Roodak gauging station, Jajrood River, Iran 



 

 

 

 
Fig. 4 A comparison between observed and predicted SSL by ANFIS-SC model for different 

input combinations for whole data set for the Roodak gauging station, Jajrood River, Iran  
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Fig. 5 A comparison between observed and predicted SSL by GMDH model for different 

input combination for the whole data set for the Roodak gauging station, Jajrood River, Iran 
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Fig. 6 A comparison between observed and predicted SSL by LS-SVM model for different 

input combination for the whole data set for the Roodak gauging station, Jajrood River, Iran 
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Table 1. The statistical parameters of data set for the Roodak gauging station, Jajrood River, Iran 

Data Set Data Type Xmean Xstdev Xske Xmax Xmin Xmax/Xmean 

Training Q (Lit/S) 17.3 17.8 3.2 150 0.36 8.65 

SS (Mg/L) 2809 9265 5.90 85162 1.49 30.3 

Validation Q (Lit/S) 9.15 9.9 2.15 53.99 1.18 5.90 

SS (Mg/L) 743 2543 6.16 22173 1.07 29.8 

Test Q (Lit/S) 10.64 10.2 1.54 47.53 1.3 4.47 

SS (Mg/L) 932 2936 4.77 21148 1.2 22.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table



Table 2. Results of AI models SSL prediction for different input combination in monthly basisin the validation and test steps for the 

Roodak gauging station 
AI Models Input Combinations Structure (ANN) 

Radius (ANFIS) 

 

Validation  Test 

 RMSE(Mg/L) R MAE  RMSE(Mg/L) R MAE  

ANN Qt (1,1,1) 4724 0.70 2054  6334 0.64 3119  

 Qt, Qt-1 (2,2,1) 3295 0.75 1581  4403 0.71 2302  

 Qt, Qt-1, Qt-2 (3,2,1) 3348 0.75 1445  4519 0.71 2181  

 Qt, Qt-1, Qt-2, Qt-3 (4,2,1) 3198 0.76 1222  4768 0.70 2220  

ANFIS Qt (0.45) 2523 0.95 1091  1234 0.90 456  

 Qt, Qt-1 (0.5) 2479 0.96 1097  1204 0.92 466  

 Qt, Qt-1, Qt-2 (0.5) 2463 0.96 1100  1203 0.92 501  

 Qt, Qt-1, Qt-2, Qt-3 (0.6) 2494 0.95 1198  1206 0.91 578  

GMDH Qt  2984 0.94 1311  1347 0.91 628  

 Qt, Qt-1  3164 0.94 1489  1338 0.90 745  

 Qt, Qt-1, Qt-2  3284 0.93 1498  1390 0.89 781  

 Qt, Qt-1, Qt-2, Qt-3  3302 0.94 1595  1454 0.87 812  

LS-SVM Qt 10, 0.5 3036 0.94 1320  1321 0.91 587  

 Qt, Qt-1 10, 0.5 3215 0.94 1480  1312 0.90 696  

 Qt, Qt-1, Qt-2 10, 0.5 3335 0.93 1582  1363 0.89 730  

 Qt, Qt-1, Qt-2, Qt-3 10, 0.5 3353 0.94 1599  1425 0.87 759  

 
 

 


