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 30 

Abstract.  Urban growth, a dynamic and demographic phenomenon, refers to the increased 31 

spatial value of urban areas, such as cities and towns, due to social and economic forces. 32 

Nowadays, urban lands are rapidly increasing, replacing non-urban lands such as agricultural, 33 

forest, water, rural, and open lands. In this study, a CA-Markov model was utilized to predict 34 

the growth of urban lands and their spatial trends in Seremban, Malaysia. The performance of 35 

the CA-Markov model was also assessed. The Markov chain model was applied to produce the 36 

quantitative values of transition probabilities for urban and non-urban lands. Subsequently, the 37 

CA model was used to predict the dynamic spatial trends of land changes. The change in urban 38 

and non-urban land use from 1984 to 2010 was modeled using the CA-Markov model for 39 

calibration purposes and to compute optimal CA transition rules as well as to predict future 40 

urban growth. In the accuracy assessment process, the CA-Markov model was validated using 41 

a Kappa coefficient. The overall accuracy of the Kappa index statistics was 83%, which 42 

indicates the excellent performance of the model proposed in this study. Finally, based on the 43 

CA transition rules and the transition area matrix produced from the calibration process using 44 

the Markov Chain model, future urban growth in Seremban for 2020 and 2030 was simulated.  45 

Keywords: Urban growth; Markov Chain; Cellular Automata; prediction; modelling. 46 
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1. Introduction 51 

Urban development has become a global issue, and has resulted in planners and decision 52 

makers becoming increasingly concerned over its future impacts on the ecosystem (Bihamta et 53 

al., 2014). Simulating and predicting urban sprawl patterns has become essential to ecosystem 54 

protection and sustainable development (Barredo et al., 2003). In addition, the complex 55 

structure of the urban environment must be understood to simulate urban dynamics correctly 56 

(Barredo et al., 2003). In the process of urban growth simulation, the chronology of the issue 57 

of sprawl and significant historical information must be considered, so that spatial and temporal 58 

relationships can be accurately understood (Sudhira et al., 2004). Hence, the process of 59 

obtaining the actual knowledge of growth factors that affect future land uses can be improved 60 

using simulation techniques (Pijanowski et al., 2002). Understanding of spatial and temporal 61 

changes, as well as all effective elements, can be facilitated using remote sensing (RS) and 62 

geographic information system (GIS) techniques (Punia & Singh, 2012). 63 

RS and GIS techniques are commonly used to monitor and control urban growth patterns 64 

(Zhang et al., 2011). In recent years, RS and GIS techniques have been considered as effective 65 

tools for helping planners and decision-makers formulate sustainable policies. These modern 66 

techniques have several advantages, such as their low cost (Yeh & Li, 2001), effective visual 67 

interpretation (Epsteln et al., 2002), updatable spatial and temporal databases (Punia & Singh, 68 

2012), monitoring and controlling tools (Doygun, 2009; Tran, 2008), and accurate tools for 69 

evaluating, analyzing, and simulating spatial phenomena (Ren et al., 2013). For these reasons, 70 

environmental planners and urban designers have relied heavily on RS and GIS techniques to 71 

model urban growth patterns and future land-use changes. 72 

Currently, various types of models and methods utilizing the RS and GIS techniques are 73 

being employed for the general modeling of urban growth patterns and simulation of land-use 74 
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changes (Mohammad et al., 2013). There are studies that have used traditional models, which 75 

depend on the assessment of the dynamic growth of urban areas, such as the CA models 76 

(Aburas et al., 2017). Some of these studies have also relied on quantitative models, such as 77 

logistic regression (LR), for simulation and prediction (Alsharif & Pradhan, 2014). Other 78 

studies have relied on the integration of different types of models, such as the Markov chain 79 

(MC) and the CA models, to achieve accurate and realistic results (Al-sharif & Pradhan, 2013). 80 

The modeling of urban growth patterns based on RS and GIS techniques is done in order to 81 

understand the spatial process of urban movement within a specific time toward the creation 82 

of future policies of sustainable development (Wang & Maduako, 2018). 83 

The use of GIS and RS techniques to model urban growth patterns and future land-use 84 

changes can greatly benefit land-use planning and the ‘cause-and-effect’ analysis of land-use 85 

movement. Sites that are facing environmental change and urban sprawl as well as potential 86 

critical sites can be identified using several types of models, such as quantitative or spatio-87 

temporal models (Verburg et al., 2002). Spatial modeling is used to simulate land-use patterns 88 

that are indispensable towards supporting the development and implementation of urban 89 

planning policies (Inouye et al., 2015). In general, planners and policy makers are looking at 90 

useful measurements that depend on wide-reaching information, data integration, and 91 

qualitative criteria (Celio et al., 2014). 92 

The Cellular Automata (CA) model has an open structure and can be integrated with other 93 

models to simulate and predict urban growth patterns (Clarke, 1997). The CA model’s 94 

flexibility, intuitiveness, and ability to integrate spatial and temporal dimensions of the 95 

processes, as well as the capability to model complex dynamic systems, are major reasons for 96 

its widespread application in the simulation of urban growth patterns and future land-use 97 

changes in recent years (Santé et al., 2010). Tobler (1979) first proposed the application of 98 

cellular space models for geographic modeling. Following this, theoretical approaches for 99 
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simulating urban growth using CA-based models started to emerge in the 1980s (Batty & Xie, 100 

1994; Couclelis, 1985; White & Engelen, 1994). 101 

The conceptual growth of CA studies and the evolution of computing capability contributed 102 

to the first operational urban CA model, which first saw use in real-world urban systems in the 103 

1990s. The capability of the urban CA model to simulate and predict land-use changes is based 104 

on the assumption that previous urban growth affects future patterns through local and regional 105 

interactions among different types of land uses (Santé et al., 2010). Moreover, the urban CA 106 

model can be easily integrated with the GIS environment (Wagner, 1997); thus, the CA model 107 

has a high spatial resolution and computational efficiency (Santé et al., 2010). The other key 108 

fields of urban CA models, which are considered powerful spatial dynamic modeling 109 

techniques that represent a major development over previous conventional models, are: (i) 110 

spatiality; (ii) the linking of macro to micro approaches; (iii) the integration between GIS and 111 

RS techniques; (iv) dynamics: and (v) simplicity and visualization (Batty & Xie, 1994; Clarke, 112 

1997; White & Engelen, 1994, 2000; Wu, 1998).  113 

The Markov chain is usually utilized to model and predict changes, dimensions, and trends 114 

of urban growth patterns (Aburas et al., 2017). Changes in urban and non-urban lands can be 115 

analyzed and summarized by the number of transition area probabilities from one status to 116 

various other statuses during a certain period of time using the Markov chain model (Coppedge 117 

et al., 2007). The Markov chain model does not have the ability to simulate changes in spatial 118 

trends. However, it is a powerful model, which has the capability to predict the quantity of land 119 

change (Yang et al., 2012). The integration between the CA and Markov Chain models is an 120 

effective technique to estimate quantities and to model spatio-temporal dynamics because this 121 

type of GIS and RS model and data can be proficiently incorporated (Al-sharif & Pradhan, 122 

2013). The integration of dynamic simulation models (such as the CA model) with that of 123 

statistical and empirical models (such as the Markov chain) has overcome the shortcoming 124 
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inherent in each of them, i.e., the difficulty in dynamically or statistically simulating urban 125 

issues, and one will therefore complement the other (Guan et al., 2011). 126 

In this research, the city of Seremban, Malaysia, was chosen as a case study. Seremban has 127 

faced rapid urban growth over the last two decades. This growth has led to the continuous, 128 

rapid change of non-urban lands into urban lands. This study used an integrated Markov chain 129 

and Cellular Automata model (CA-Markov) to simulate rapid urban growth in Seremban City 130 

from 1990 to 2010, and then to predict future land changes quantitatively and spatially. To the 131 

authors’ best knowledge, no study of this kind has ever been done in this city before.  132 

2. Methodology 133 

2.1. Study area 134 

Seremban River Basin is the largest district in the Negeri Sembilan State (Figure 1). 135 

Seremban is also the capital of Negeri Sembilan State. It occupies a total land area of 136 

approximately 951.87 sq. km and includes the districts of Seremban town, Setul, Labu, Rasah, 137 

Ampangan, Rantau, Pantai, and Lenggeng. Seremban is located approximately 20 km from 138 

Putrajaya, the national capital of Malaysia, and 67 km from Kuala Lumpur, the economic center 139 

of Malaysia. The population of Seremban is more than 500,000 and is expected to increase to 140 

1,000,000 in 2020 (DOSM, 2011). Seremban city was selected as the study area because: (i) it 141 

is the biggest city in the Negeri Sembilan State; (ii) it is the economic center of the Negeri 142 

Sembilan State: (iii) it is located near the main developed areas in Malaysia, such as Kuala 143 

Lumpur, Putrajaya, and Selangor; (iv) it is an extension of the urban mass of Kuala Lumpur; 144 

and (v) it is the future center for urban development. 145 
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 146 

Figure.1. Location of the study area. 147 

2.2. Data and Methods 148 

This study utilized land-use maps of 1984, 1990, 2000, and 2010 from the Department of 149 

Agriculture of Malaysia (Figure 2). These land-use maps were extracted from SPOT 2, 4, and 150 

5 images, with a 10-m and 2.5 m spatial resolutions of SPOT 2.4 and SPOT 5, respectively. 151 

All SPOT images were registered and geo-corrected with ground control points using a Global 152 

Positioning System (GPS) and were classified using image-enhancement techniques. A 153 

supervised classification method was used to group and extract all clipped images into land-154 

use categories. Field data were collected using GPS to assess the accuracy of classification by 155 

comparing the classified images with GPS points from the field for each type of land use. The 156 
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accuracy assessment values reached acceptable Kappa index values, indicating that the image 157 

classification is acceptable. Based on the Anderson scheme, an acceptable Kappa index value 158 

to yield an accurate assessment should be higher than 0.85 (Anderson, 1976). The total 159 

accuracies of the land-use maps were 92%, while the Kappa coefficient values were 0.90. Thus, 160 

the classification of land-use maps by the Malaysian Department of Agriculture meets the 161 

present study’s requirements. The topographic map of 2012 was collected and used to identify 162 

the administrative boundary of the whole Seremban area and that of each district (Table 1). 163 

164 

 165 

Figure.2. Land-use maps of Seremban River Basin: (a) 1984; (b) 1990; (c) 2000; and (d) 2010. 166 

Table.1. Data used in the study. 167 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Materials Sours Type of data Scale 

Land-use maps of 1984, 

1990, 2000, 2010 

Department of Agriculture, 

Malaysia 

 

Grid 

 

10*10 

 

Topographic map of 2012 

Department of Surveying and 

Mapping, Malaysia (JUPEM) 

 

Map 

 

1:25,000 

DEM USGS Grid 30*30 

 168 

Land-use maps were reclassified into two types of land use, urban area and non-urban area, 169 

to comply with the general objective of the study. Urban areas include residential, commercial 170 

and services, industrial, transportation, communications, and utility areas, as well as mixed 171 

urban or built-up lands and other urban or built-up lands, while non-urban areas include other 172 

types of land use, such as water bodies, agricultural lands, forests, and open areas. Land-use 173 

maps were classified into urban and non-urban area classes mainly because spatial simulation 174 

was applied in this study to predict the urban growth patterns. The models used to predict urban 175 

growth in Seremban are discussed in more detail below: 176 

 177 

 178 

2.2.1. Urban CA model 179 

An urban CA model can be designed based on multiple phases, namely: (i) the data collection 180 

phase, which requires different types of data according to the type of model, data availability, 181 

and the existence of a type of integration with other models (Aburas et al., 2016); (ii) selection 182 

of factors influencing urban growth patterns (Aburas et al., 2017); (iii) identification of the 183 

characteristics of CA that are used for simulation, such as defining the lattice, determining cell 184 

state, identifying the neighborhood properties, and identifying the transition rules that will be 185 

used (Clarke, 1997; White & Engelen, 2000; White et al., 2000); and (iv) validation and 186 

calibration of the model using an actual land-use model with the Kappa index (Al-sharif & 187 

Pradhan, 2013; Mohammad et al., 2013). Subsequently, simulation and prediction of future 188 

land use are undertaken (Figure 3). 189 
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CA models use a simple mechanism to identify future conditions for cells, where their future 190 

condition is defined by identifying the actual condition for each cell and by determining the 191 

real condition of neighboring cells (Couclelis., 1997). The CA model, considered the simplest 192 

type of dynamic spatial model, essentially consists of: (i) the cell lattice (i.e., the urban CA 193 

model consists of a grid containing square cells or other geometrical shapes, such as hexagonal 194 

shapes), where all cells in the CA grid should be of equal size; (ii) the state of each cell in the 195 

CA grid, which is usually represented either by land use or land cover, but can sometimes be 196 

used to show spatial distributions of variables to model spatial movement (Mohammad et al., 197 

2013; White & Engelen, 2000; White et al., 1997); (iii) the CA neighborhood space (i.e., the 198 

neighborhood effect in urban CA is calculated for each state using the positive and negative 199 

effects of each cell in terms of the conversion or non-conversion of the cell to another state via 200 

the surrounding cells) (Barredo et al., 2003; White & Engelen, 2000); and (iv) the CA transition 201 

rules, wherein the behaviors that occur in the actual world can be understood through the 202 

transition rules in the CA models (Mohammad et al., 2013). The state of each cell can be 203 

converted to another state using the CA transition rules that can make a CA model more 204 

dynamic for simulation (Wu, 1998). The basic expression of a CA model is expressed by 205 

Equation (1): 206 

𝑆(𝑡, 𝑡 + 1)𝑓(𝑆(𝑡), 𝑁)                                                                          (1) 207 

Where, S represents the states of discrete cells, t is the time instant, t +1 is the coming future 208 

time instant respectively, N is the cellular field, and f is the transition rule of cellular states in 209 

local space. 210 
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 228 

Figure. 3. Flow Chart of the Urban CA Model. 229 

 230 

2.2.2. Markov chain model 231 

The Markov chain model is used to predict the status of a cell that is converted to different 232 

statuses according to the progression of the formation of Markov stochastic process systems 233 

(Muller & Middleton, 1994). This model is commonly used to simulate urban growth because 234 

it does not need rich data (Sun et al., 2007). This model is also used to compute the probabilities 235 

of transition areas from one land-use status to another (Coppedge et al., 2007). In this study, 236 

the urban and non-urban classes were used as input data for the model (Figure 3). Then, the 237 

transition area probabilities matrix and the probability map for the specified period time were 238 

generated using this model. The prediction of urban growth can be computed according to the 239 

conditional probability formula outlined in Equations (2), (3), and (4): 240 

𝑆 ( 𝑡 + 1 ) =  𝑃𝑖𝑗  × 𝑆(𝑡)                                                          (2)  241 

 242 

𝑃𝑖𝑗 = |

𝑃11 𝑃12 𝑃𝑛1

𝑃21 𝑃22 𝑃𝑛2

𝑃𝑛1 𝑃𝑛2 𝑃𝑛𝑛

|                                                                      (3) 243 

(0 ≤ 𝑃𝑖𝑗˂1 𝑎𝑛𝑑 ∑ 𝑃𝑖𝑗

𝑁

𝑖=1

= 1, (𝑖, 𝑗 = 1,2, … . . 𝑛))                                             (4) 244 
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Where, S(t) is the state of the system at time, t, S (t +1) is the state of the system at time, (t 246 

+1), and Pij is the matrix of transition probability in a state. 247 

2.2.3. CA-Markov chain model 248 

The reliability of urban growth modeling techniques can be improved and developed by 249 

combining two or more prediction techniques to integrate the advantages of these models 250 

(Yang et al., 2012). It could be argued that the CA-Markov model has been used recently in 251 

order to predict dynamic spatial issues such as urban growth and future land-use change (S. 252 

Wang et al., 2012). In addition, the integration of CA and Markov chain models is considered 253 

appropriate for spatial modeling of urban growth because it capitalizes on the advantages of 254 

the Markov chain in predicting urban quantitative change, and the dynamic explicit spatial 255 

simulation strength of the CA model (Yang et al., 2012). Thus, the integration of GIS 256 

environment and urban growth maps derived from satellite images and remote sensing 257 

techniques together with the CA-Markov model will result in the efficient prediction of spatial 258 

and temporal urban growth phenomena (Guan et al., 2011; S. Wang et al., 2012). 259 

The CA-Markov model has been applied to simulate and predict future urban growth in 260 

Seremban, as shown in the stepwise approach of the CA-Markov model presented in Figure 4. 261 

Four main steps have been applied in the CA-Markov chain modeling using ArcGIS 10.3 and 262 

IDRISI Selva software. These are outlined below: 263 

1. The urban and non-urban maps are prepared and loaded into the ArcGIS 10.3 software. 264 

Land-use maps of 1984, 1990, 2000, and 2010 were reclassified to suit the objective of 265 

predicting urban growth in Seremban. All land-use maps were converted from vector to raster 266 

format. After that, the raster maps were converted to ASCII file format using conversion tools 267 

in the ArcGIS environment. Then, the ASCII files were reclassified and converted to raster 268 

format in the IDRISI Selva environment, so they can be used to predict future urban growth. 269 

2. Urban and non-urban land use transition probability matrix and transition rules utilizing the 270 

Markov chain model are identified. Based on the previous land class state, the future urban 271 

growth change was modeled, i.e., the transition probabilities among urban and non-urban maps 272 

from 1990–2000 were applied to predict the changes in 2010 and to calibrate and validate the 273 

model. Meanwhile, urban and non-urban maps of 2000 and 2010 were utilized to predict future 274 

urban growth in 2020. Additionally, land maps of 2010 and 2020 were used to predict future 275 

urban growth in 2030. The transformation rules and the change probability of different land-276 

use layers into other layers are provided by the transition probability matrices while the 277 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



quantity of land change (i.e., urban or non-urban lands) into another land layer in the predicted 278 

future is reflected by the transition area matrices. 279 

3. The AC filter is determined; the standard 7×7, 5×5, and 3×3 contiguity kernels were 280 

designated as the neighborhoods in this study, so as to identify appropriate contiguity filters to 281 

predict urban growth. In the end, the contiguity filter 5×5 was selected; this means that each 282 

cell center is surrounded by a matrix space of 5×5 cellular kernels to significantly reflect the 283 

cellular changes. 284 

4. The number of iterations and starting point of time for the CA are determined. The CA-285 

Markov model was applied, utilizing various iteration numbers starting from 1 to 200 iterations, 286 

in order to identify the appropriate iteration number. This study found that the iteration numbers 287 

all showed different performances; which means that this study can use certain iteration 288 

numbers to perform future predictions. 289 

In this study, the years 1990 and 2000 were taken as starting points to carry out the calibration 290 

and validation process using the Kappa index, while the years 2000 and 2010 were used as 291 

starting points to predict future urban growth in 2020. Additionally, the years 2010 and 2020 292 

were used as starting points to predict future urban growth in 2030. 293 
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 294 

Figure. 4 The stepwise approach of the CA-Markov model. 295 

 296 

3. Result and discussion 297 

3.1. The change in urban and non-urban areas 298 
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The findings of change in the urban and non-urban areas under study are presented in Table 299 

2 and Figure 5, where the changes of urban and non-urban areas between 1984 and 2010 are 300 

shown. From the analysis of these results, the behavior, patterns, and speed of land-use changes 301 

can be better understood. The significance of these findings are as follows: (i) these results 302 

would be very useful as a scientific basis for planners and decision makers when creating future 303 

urban policies; (ii) and will be effective in achieving urban growth sustainability. The results 304 

confirm that a major increase in urban growth has occurred in the time period between 1990 305 

and 2000, which equates to 58 km2 of urban area, due to population and economic growth 306 

(Figure 6). In contrast, the total amount of non-urban areas has decreased from 1984 to 2010 307 

by 92 km2, which is considered to be a significant change in a short period of time. 308 

Unfortunately, non-urban areas such as agricultural and forest areas have decreased the most 309 

as a result of the urban growth in Seremban. However, this remarkable change in both urban 310 

and non-urban areas has led to many question marks about the effectiveness of urban policies, 311 

environmental policies, and policies of sustainability implemented in the study area. 312 

Table.2. Amount of urban growth changes observed in sq. km. 313 

 Urban Areas Non-Urban Areas 

1984 34.00 917.87 

1990 39.00 912.87 

2000 97.00 854.87 

2010 126.00 825.87 

Annual growth rate  

(1984–1990) 

2.3% -0.09 % 

Annual growth rate  

(1990–2000) 

9.54% -0.65 % 

Annual growth rate  

(2000–2010) 

2.65% -0.34 % 

Total Change sq. km + 92 -92 

 314 
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 315 

Figure. 5. Urban growth in Seremban River Basin between 1984 and 2010. 316 

 317 

 318 

Figure 6. Annual growth rate of urban and non-urban areas, population,  319 

and household income in Seremban between 1984 and 2010. 320 
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3.2. The transition probability matrices 321 

The Markov chain model was used to calculate the transition probability matrices, as 322 

presented in Table 3. In addition, the future potential percentages of change in urban and non-323 

urban land uses in the time periods of 1990-2000, 2000–2010, and 2010–2020 can be 324 

ascertained using transition probabilities matrices. Moreover, from further analysis of the 325 

results in Table 3, it can be noted that the probability of future transition of non-urban to urban 326 

areas from 1990 to 2000 is 25%, while the same probability of transition decreased to 21% 327 

from 2000 to 2010. The explanation for this decline is that the urban process in Seremban had 328 

decreased between 2000 and 2010 in comparison to 1990 and 2000, which saw a lot of urban 329 

development operations, particularly in Seremban and in Malaysia generally (Economic 330 

Planning Unit, 2013). However, the probability of the future transition of non-urban to urban 331 

areas from 2010 to 2020 is expected to increase to 29%. This high value of transition from non-332 

urban to urban land uses can be seen from the alarming decrease in non-urban areas such as 333 

agricultural lands in Seremban. By pondering the findings of the analysis and the classified 334 

maps, it can be concluded that Seremban city is facing rapid urban growth, which calls for 335 

more action in analyzing and simulating its urban growth patterns. 336 

 337 

Table.3. Transition probability matrices for the periods: 1990–2000,  338 

2000–2010, and 2010–2020. 339 

  Urban Non-urban 

 

1990–2000 

Urban 0.6530 0.3470 

Non-urban 0.2553 0.7447 

 

2000–2010 

Urban 0.7699 0.2301 

Non-urban 0.2164 0.7836 

 

2010–2020 

Urban 0.6653 0.3347 

Non-urban 0.2912 0.7088 

 340 

3.3. Model validation and prediction of future urban growth 341 

In order to confirm the accuracy of future urban and non-urban land-use predictions in 2010, 342 

the CA-Markov model was used. The 1990 and 2000 maps were used to predict land-use state 343 

in 2010. After that, the actual 2010 land-use map was compared with the predicted 2010 land-344 

use map to ensure model reliability (Figure 7 and 8). This study used different iteration 345 

numbers (i.e., the appropriate iteration numbers) in order to achieve the best performance for 346 

the CA-Markov model.  347 
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 348 

 349 

Figure 7. Observed and simulated urban growth in 2010: (a) Observed 2010; and (b) Simulated 2010. 350 
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 352 

Figure 8. A comparison of urban growth between the Observed and Simulated maps of 2010. 353 

To assess the accuracy of the model, the projected urban and non-urban maps of 2010 were 354 

compared with the actual 2010 map using the Kappa index statistic, which will measure its 355 

validity in terms of quantity and location (Al-sharif & Pradhan, 2013; Zhang et al., 2011). 356 

Figure 9 illustrates the variation of the Kappa coefficient with various iteration numbers from 357 

1 to 200. From Figure 9, it can be observed that, when predicting urban and non-urban areas 358 

of 2010, the CA-Markov model performed best at 40 and 60 iterations. High values of the 359 

Kappa coefficient were also achieved; (i) Kappa standard index of 0.83; (ii) Kappa location 360 

index of 0.86; (iii) and Kappa index no. of 0.83. 361 

 362 

 363 

Figure. 9. Kappa index value vs. number of iterations. 364 
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 From the result of the model’s accuracy assessment, a strong agreement between the 365 

actual and projected urban and non-urban land-use maps can be observed. From the validation 366 

phase, the optimal transition rules for the model were computed using the appropriate iteration 367 

numbers (i.e., 40 and 60). After that, these iteration numbers were used to predict land use in 368 

2020 and 2030. According to the successful model validation, the future urban and non-urban 369 

land-use maps of 2020 and 2030 were generated using the actual map of 2010 and projected 370 

map of 2020, respectively. By using the 2010 and 2020 urban and non-urban land uses as base 371 

maps, potential transition maps and transition area matrices of 2002–2010 and 2010-2020 as 372 

well as the future of urban growth patterns can be predicted, as presented in Figure. 10. 373 

 374 

Figure 10.  Predicted Maps of Urban Growth in Seremban River Basin: (a) 2020; (b) 2030. 375 
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 376 

Figure.10. (Continued) Predicted Maps of Urban Growth in Seremban River Basin: (a) 2020; (b) 2030. 377 

 378 
The CA-Markov chain model predicted that urban areas in Seremban would increase to 177 379 

km2 and 195.5 km2 in 2020 and 2030, respectively (Figure 11). On the other hand, non-urban 380 

areas such as agricultural, forest, open, and rural lands, as well as surface water will decrease 381 

by 774.87 km2 and 756.37 km2 in 2020 and 2030, respectively. Unfortunately, this change will 382 

affect the ecosystem and land-use sustainability in Seremban, and cause uncontrolled urban 383 

growth.  384 

Generally, it is important to note that the CA-Markov model applied in this study is capable 385 

of predicting future urban growth trends using only land-use maps (i.e., it can be used with 386 

limited data and still give impactful findings). However, several driving forces also affect urban 387 

growth. These forces include physical forces (i.e., slope, elevation, etc.), environmental forces 388 

(i.e., land use and cover), socio-economic forces (i.e., population growth, household income, 389 

etc.), and infrastructural issues (i.e., road and railway networks, etc.). Accordingly, both the 390 

driving forces and their factors can be used for predicting future urban growth rather than 391 

relying on land-use maps only. Therefore, incorporating these driving forces within the CA-392 

Markov environment will enhance the simulation and prediction capability of the model. 393 
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 394 

 395 

  396 

Figure. 11. Quantity of previous and predicted urban and non-urban areas in sq. km. 397 
 398 

4. Conclusion 399 

By using multiple classified and unclassified land-use maps, together with the integrated 400 

CA-Markov chain model (a combination of the CA and Markov chain models) the urban 401 

growth patterns in Seremban, Malaysia, was simulated and predicted excellently. The model 402 

achieved 83% accuracy in simulating projected urban and non-urban land-use maps, which is 403 

a reflection of the model’s success in predicting urban growth patterns. One of the significant 404 

advantages of using the CA-Markov chain model is that the prediction of urban growth patterns 405 

can be done using limited data (i.e., it requires at least two land-use maps in different time 406 

periods). However, it can also be said that there are some limitations when it comes to using 407 

the integrated model such as its inability to apply urban growth driving forces such as physical 408 

and socio-economic forces in the prediction process. These forces are highly significant to the 409 

monitoring and controlling of current processes of urban growth and the preparation of wise 410 

policies and plans for future requirements. 411 

The urban and non-urban land-use change analysis has shown that there is a high, continuous 412 

decline in non-urban lands in Seremban. This continuous reduction has affected its agricultural, 413 

forest, rural, and open lands. On the other hand, the prediction analysis of 2020 and 2030 using 414 

the CA-Markov chain model demonstrated that urban areas will continue to increase, which 415 

will threaten the arable lands in Seremban in the long term. Moreover, according to simulation 416 
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findings, the urban sprawl in Seremban will be in disaggregation mode. Thus, the urban growth 417 

scenario will become worse in the future. Subsequently, it is important to save and protect the 418 

non-urban areas in order to achieve urban sustainability. 419 

Finally, this study shows the significance of using the integrated CA-Markov chain model, 420 

which plays an important role in modeling urban growth, especially in developing countries, 421 

which have different urban features. However, it is important to assert that the urban growth 422 

driving forces should be applied in the prediction process of the CA-Markov chain model in 423 

order to obtain a better understanding of the change in urban growth patterns. For this purpose, 424 

the CA-Markov chain model should be integrated with other models such as the Analytic 425 

Hierarchy Process (AHP), Frequency ratio (FR), and logistic regression (LR) models in order 426 

to further improve its capability.  427 
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