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Differentially Private Multi-Agent Planning for
Logistic-like Problems

Dayong Ye, Tianqing Zhu*, Sheng Shen, Wanlei Zhou and Philip S. Yu

Abstract— Planning is one of the main approaches used to improve agents’ working efficiency by making plans beforehand. However,
during planning, agents face the risk of having their private information leaked. This paper proposes a novel strong privacy-preserving
planning approach for logistic-like problems. This approach outperforms existing approaches by addressing two challenges: 1)
simultaneously achieving strong privacy, completeness and efficiency, and 2) addressing communication constraints. These two
challenges are prevalent in many real-world applications including logistics in military environments and packet routing in networks. To
tackle these two challenges, our approach adopts the differential privacy technique, which can both guarantee strong privacy and
control communication overhead. To the best of our knowledge, this paper is the first to apply differential privacy to the field of
multi-agent planning as a means of preserving the privacy of agents for logistic-like problems. We theoretically prove the strong privacy
and completeness of our approach and empirically demonstrate its efficiency. We also theoretically analyze the communication
overhead of our approach and illustrate how differential privacy can be used to control it.

Index Terms—Multi-Agent Planning, Privacy Preservation, Differential Privacy
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1 INTRODUCTION

Multi-agent planning is one of the fundamental research
problems in multi-agent systems [1], [2]. Multi-agent plan-
ning research aims to improve agents’ working efficiency
by making plans in advance. Research into collaborative
multi-agent planning largely focuses on jointly automated
planning [3]. During jointly automated planning, agents
have to share information. However, this kind of informa-
tion sharing often results in the leaking of agents’ private
information. Accordingly, to protect agents’ privacy, privacy
preservation is introduced into the collaborative multi-agent
planning process [4], [5]. The main problem associated with
privacy preservation in collaborative multi-agent planning
is that of how to make plans for agents while also preserving
the privacy of each agent.

Privacy can be roughly classified into four levels: weak
privacy, strong privacy, object cardinality privacy, and agent
privacy [3]. Strong privacy means that an agent, regardless
of its reasoning power, cannot deduce the private informa-
tion of other agents based on the information available to
it. Developing a planning method with strong privacy in
distributed and communication-constrained environments
is challenging for the following two reasons. First, it is dif-
ficult to achieve strong privacy, completeness and efficiency
simultaneously [6]. Second, in communication-constrained
environments, each agent is allowed to communicate only a
limited number of times.
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These two challenges are widespread in many real-world
applications. A typical application is military logistics. In
military logistics, it is vital that each military unit should
strongly protect its private and sensitive facts. Also, plans
for military units must be complete and efficient to avoid
any delay. In addition, communication between units has to
be constrained, since the more communication takes place,
the more likely it will be that sensitive information is leaked.

Most existing planning approaches are either weak
privacy-preserving or overlook the issue of privacy preser-
vation entirely [3]. Very few approaches are strong privacy-
preserving [7]. These strong privacy-preserving planning
approaches, however, may not achieve strong privacy, com-
pleteness and efficiency simultaneously, as summarized in
[6]. Moreover, these approaches also may not work effi-
ciently in distributed and communication-constrained en-
vironments, as they implicitly assume that an agent can
communicate directly with all other agents, and overlook
the analysis of communication overhead.

Accordingly, in this paper, we develop a novel strong
privacy-preserving planning approach for distributed and
communication-constrained environments. Our approach
focuses primarily on logistic-like problems, which are typ-
ically used as running examples in multi-agent planning.
To achieve strong privacy, completeness and efficiency si-
multaneously, we adopt the differential privacy technique.
Differential privacy is a promising privacy model, which
has been mathematically proven that when this model is in
use, an individual record being stored in or removed from
a dataset makes little difference to the analytical output of
the dataset [8], [9]. To the best of our knowledge, we are the
first to apply differential privacy to the privacy-preserving
planning problem. Using a differential privacy mechanism
to obfuscate an agent’s private information can strongly
preserve the agent’s privacy while also having minimal
impact on the usability of the agent’s private information.
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Furthermore, we also address the communication-
constrained environment issue by adopting the concept of a
‘privacy budget’. In differential privacy, a privacy budget is
applied to control privacy levels. In our proposed approach,
the privacy budget can naturally be used to control com-
munication overhead, with the result that only a limited
number of messages are permitted during a planning phase.

In summary, the contributions of this paper are two-fold:

1) Improving upon existing strong privacy-preserving
planning approaches, our approach can achieve
strong privacy, completeness and efficiency simul-
taneously in logistic-like problems using the differ-
ential privacy technique.

2) Our approach is more applicable to distributed and
communication-constrained logistic-like problems
than existing approaches.

The remainder of this paper is organized as follows.
In the next section, a detailed review of related work is
presented. Then, a motivating example is given in Section
3. Preliminaries are presented in Section 4. After that, the
novel planning approach and the theoretical analysis are
presented in Sections 5 and 6, respectively. The application
of our approach to other domains is illustrated in Section
7. Next, the experimental results are provided in Section 8.
Finally, Section 9 concludes this paper.

2 RELATED WORK

2.1 Weak privacy-preserving approaches

Torreno et al. [10] develop a framework known as FMAP
(forward multi-agent planning). In FMAP, agents maintain
a common open list with unexplored refinement plans.
Agents then jointly select an unexplored refinement plan.
Each agent then expands the plan using a forward-chaining
procedure. Agents exchange these plans and use a dis-
tributed heuristic approach to evaluate them. Later, based
on the FMAP framework, Torreno et al. [11] develop a set of
global heuristic functions: DTG (domain transition graphs)
heuristic and landmarks heuristic, in order to improve the
efficiency of the FMAP framework.

Stolba and Komenda [12] present a multi-agent dis-
tributed and local asynchronous (MADLA) planner. This
planner adopts a distributed state-space forward-chaining
multi-heuristic search. The multi-heuristic search takes the
advantages of both local and distributed heuristic searches
by combining them together. As a result, the combination of
the two heuristics outperforms the two heuristics separately.

Maliah et al. [13] propose a greedy privacy-
preserving planner (GPPP). In GPPP, agents collabora-
tively generate an abstract global plan based on two
privacy-preserving heuristics: landmark-based heuristic
and privacy-preserving pattern database heuristic. Each
agent generates a local plan by extending the global plan.

2.2 Strong privacy-preserving approaches

Brafman [7] is the first to theoretically prove strong privacy
in multi-agent planning. He proposes an approach referred
to as Secure-MAFS (secure multi-agent forward search).
Secure-MAFS extends the MAFS approach [14] by reducing

the amount of information exchanged between agents. In
Secure-MAFS, agents protect their privacy by opting not to
communicate a given two states to others if these two states
differ only in their private elements. This is because other
agents could possibly deduce private information through
the non-private or public part of the states.

Tozicka et al. [6] investigate the limits of strong privacy-
preserving planning. They formulate three aspects of strong
privacy-preserving planning: privacy, completeness, and ef-
ficiency. They theoretically find that these three aspects are
difficult to achieve at the same time for a wide class of
planning algorithms. Also, they develop a strong privacy-
preserving planner that embodies a family of planning
algorithms. The planner is based on private set intersection,
which has been proven to be computationally secure.

Stolba et al. [15], [16], [17] refine privacy metrics by
quantifying the amount of privacy loss. In this case, their
analysis of privacy loss is conducted by assessing informa-
tion leakage [18], [19]. The amount of information leakage
is measured as the difference between initial uncertainty
and remaining uncertainty. They also develop a general
approach to compute the privacy loss of search-based multi-
agent planners. This computation is based on search tree
reconstruction and classification of leaked information per-
taining to the applicability of actions.

2.3 Other privacy-preserving approaches
Some other existing works seem to be related to ours,
such as differentially private networks [20] and privacy-
preserving distributed constraint optimization [21]. How-
ever, the research aims of these works differ from ours.

The research of differentially private networks mainly
aims at hiding specific information contained in a network,
which may be disclosed by answering queries regarding
that network. By contrast, multi-agent privacy-preserving
planning aims at collaboratively making plans without re-
vealing the private facts of each participating agent. In [22],
Kasiviswanathan et al. develop a set of node-differentially
private algorithms to engage in the private analysis of
network data. The key concept here is to obfuscate the input
graph onto the set of graphs with maximum degree below
a certain threshold. Blocki et al. [23] improve accuracy in
differentially private data analysis by introducing the notion
of restricted sensitivity in order to reduce noise. Restricted
sensitivity represents the sensitivity of a query only over
a specific subset of all possible networks. Proserpio et al.
[24] propose a platform for differentially private data anal-
ysis: wPINQ (weighted Privacy Integrated Query). wPINQ
treats edges as a weighted dataset on which it performs ε-
differentially private computations, such as manipulation
of records and their weights. Thus, the presence or ab-
sence of individual edges can be masked. Fioretto et al.
[20] design a privacy-preserving obfuscation mechanism for
critical infrastructure networks. Their mechanism consists of
three phases: 1) obfuscating the locations of nodes using the
exponential mechanism, 2) obfuscating the values of nodes
using the Laplace mechanism, and 3) redistributing the
noise introduced in the previous two phases using a bi-level
optimization problem. These works assume the existence
of adversaries while in multi-agent planning, agents are
typically assumed to be honest but curious.
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Research into privacy-preserving distributed constraint
optimization aims at securely coordinating the value assign-
ment for the variables under a set of constraints in order
to optimize a global objective function [25]. By contrast,
multi-agent privacy-preserving planning aims at securely
making plans that enable individual agents to achieve their
goals. Grinshpoun and Tassa [26] devise a novel distributed
constraint optimization problem (DCOP) algorithm that pre-
serves constraint privacy. In their problem, a group of agents
needs to compare the sum of private inputs possessed
by those agents against an upper bound held by another
agent. During this comparison, none of these agents learns
information on either the sum or the private inputs of other
agents. Their algorithm accomplishes this through the use
of a secure summation protocol and a secure comparison
protocol. Tassa et al. [27] propose a DCOP algorithm that
is immune to collusion and offers constraint, topology and
decision privacy. To achieve this goal, they adopt a secure
multi-party computation protocol [28] which is capable of
securely comparing the cost of the current full assignment
and the upper bound and guaranteeing the security of col-
lusion of up to half of the total agents. From an examination
of the two above-mentioned works, it can be seen that the
privacy-preserving DCOP mainly focuses on securely com-
paring the values of variables against an upper bound, while
multi-agent privacy-preserving planning mainly focuses on
the secure computation of each individual agent.

3 A MOTIVATING EXAMPLE
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Fig. 1. An example of a logistic map

Fig. 1 presents a military logistic map. In this map, a
circle denotes a military base while a rectangle denotes a
logistic center. The lines connecting the bases and logistic
centers are routes. Each route has a length, which is not
indicated on the map in the interests of clarity. Each letter in
a circle indicates a military unit’s name, while each number
in a circle is the index of a base in the military unit’s local
area. For example, ‘(a, 3)’ denotes the third base in military
unit a’s local area. Six military units are included on this
map: a, b, c, d, e, and f . Each unit exclusively operates in a
local area of the map.

Information about a local area is private to the corre-
sponding military unit. This information includes 1) the
number of military bases in this local area, 2) the number
of routes in this local area, 3) the length of these routes
in this local area, and 4) the positions of packages in this

local area. However, information regarding whether a given
package is or is not located in a particular logistic center is
public. For example, in Fig. 2, we extract military unit a’s
local area from Fig. 1. In Fig. 2, there are five bases: (a, 1),
(a, 2), (a, 3), (a, 4) and (a, 5). The number of these bases
and routes is private to military unit a. Moreover, the length
of these routes is also private to unit a. As noted above, the
information that a package is located in logistic center A is
public and known to all military units.

Fig. 2. Unit a’s local area

The problem in this example is as follows: how should
a plan be made for a military unit to transport a package
from one base to another, while strongly preserving each
military unit’s privacy? For example, unit a wants to trans-
port a package from (a, 2) to (f, 4), but (f, 4) is located
in military unit f ’s local area. Thus, multiple units must
collaborate to make a plan to deliver the package, while each
unit’s privacy is required to be strongly preserved during
this process. This problem therefore includes the above-
mentioned two challenges. First, planning for military units
is highly expected to achieve strong privacy, complete-
ness and efficiency simultaneously, especially when military
units are involved in a war. Second, the communication of
each military unit may be constrained, as increased level
of communication may result in a higher chance of private
information being leaked [29].

As the above two challenges have not been adequately
addressed by existing approaches, these approaches may
not be suitable for this environment. Accordingly, in this
paper, a novel strong privacy-preserving planning approach
is proposed that takes these two challenges into account.

4 PRELIMINARIES

4.1 The planning model
We propose a multi-agent planning model, Graph-STRIPS,
which is based on a widely used privacy-aware plan-
ning model, MA-STRIPS [30]. Graph-STRIPS is defined
by a 12-tuple: 〈AG,V, {Vi}mi=1,VPub, E , {Ei}mi=1,P, {Pi}mi=1,
A, {Ai}mi=1, I,G〉:

• AG is a set of agents in the environment;
• V is a set of nodes (e.g., physical entities) in the

environment;
• Vi is the set of nodes private to agent i;
• VPub is the set of public nodes in the environment,
VPub = V − ∪|AG|l=1 Vl;

• E is a set of edges (e.g., the relationships between
physical entities) in the environment;

• Ei is the set of edges private to agent i;
• P is a set of possible facts about the environment;
• Pi is the set of private facts of agent i;
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• A is a set of possible actions of all the agents;
• Ai is the set of private actions of agent i;
• m is the number of agents in the environment;
• I is the initial state of the environment;
• G is the goal state.

For example, in Fig. 1, each military unit is modelled as
an agent. In this case, we have the following:

• AG = {a, b, c, d, e, f} and m = 6;
• V is the set of military bases and logistic centers;
• Vi denotes the set of bases in the local area of

agent i; for example, in agent a’s local area, Va =
{(a, 1), (a, 2), (a, 3), (a, 4), (a, 5)};

• VPub denotes the set of logistic centers;
• E is the set of routes connecting bases and centers;
• Ei denotes the set of routes in the local area of agent

i; for example, in agent a’s local area, Ea = {(a, 1) ∼
(a, 2), (a, 2) ∼ (a, 3), (a, 3) ∼ (a, 4), ...};

• P includes the position of bases, logistic centers and
packages;

• Pi includes 1) the position of packages in the local
area of agent i; for example, if agent a has a package
in (a, 1), then Pa = {package in (a, 1)}; 2) the
number of bases in the local area of agent i; 3) the
number of routes in the local area of agent i and 4)
the length of these routes.

• A includes the actions of moving from a base or a
logistic center to another base or logistic center;

• Ai includes the actions of moving from a base or a
logistic center to another base or logistic center in
the local area of agent i; for example, an action of
agent a can be: moving from (a, 1) to (a, 2) which
is abbreviated as (a, 1) → (a, 2), where the pre-
condition of this action is package in (a, 1) and the
effect of this action is package in (a, 2);

• If a wants to transport a package from (a, 3) to
(e, 2), then I = {package in (a, 3)} and G =
{package in (e, 2)}: VI = (a, 3) and VG = (e, 2).

If agent a is to transport a package from (a, 3) to (e, 2),
the associated plan could be ΠB

a = 〈VI → (a, 4), (a, 4) →
A,A→ B,B → E,E → VG〉. In plan ΠB

a , the details of how
to move from A to B, from B to E and from E to (e, 2) are
not included, as these details involve other agents’ private
information that is unknown to agent a. In fact, as (e, 2) is
private to agent e, agent a is unaware of the existence of
(e, 2). Agent a, however, knows that the destination is in
agent e’s local area.

Specifically, each agent’s private information includes
two parts: private facts and private actions. An agent’s
private facts include four components: 1) the number of
nodes in its local area, i.e., the number of military bases
in the logistic example, 2) the number of edges in its local
area, i.e., the number of routes in the logistic example, 3)
the length of these edges, i.e., the length of routes in the
logistic example and 4) the positions of any items in its local
area, i.e., the positions of packages in the logistic example.
An agent’s private actions are the movements of items
in its local area. In this private information, the positions
and movements of items are not required by other agents.
Thus, these two pieces of information will not be disclosed

to other agents. For the other three pieces of information:
the number of nodes, the number of edges and the length
of edges, since agents have to share the three pieces of
information for planning, we need to develop a privacy-
preserving mechanism to protect them.

Formally, we have the following definition.

Definition 1 (Agents’ privacy). An agent i’s privacy is defined
as a 3-tuple: 〈Vi, Ei, L(Ei)〉, where Vi is the set of nodes in agent
i’s local area, Ei is the set of edges and L(Ei) denotes the set of
length of the edges.

To protect the privacy of Vi and Ei, we adopt the
node-differential privacy technique and uses the Laplace
mechanism to mask the number of both nodes and edges.
To protect the privacy of L(Ei), we adopt the exponential
mechanism along with a reinforcement learning algorithm.

4.2 Privacy-preserving multi-agent planning
The idea behind privacy-preserving multi-agent planning is
based mainly on research in the field of secure multi-party
computation [31], where multiple agents jointly compute a
function while each agent possesses private input data. The
goal is to compute the function without revealing agents’
private input data.

One intuitive solution would be to simply not disclose
any private information to others. However, since an agent
must collaborate with other agents in order to achieve its
goals, it is infeasible to hide all private information com-
pletely. To ensure that this private information is disclosed
securely to the other agents, it is necessary to use privacy-
preserving techniques.

Definition 2 (Strong Privacy [3]). A multi-agent planning
approach is strong privacy-preserving if none of the agents is able
to infer any private facts regarding an agent’s tasks from the public
information it obtains during planning.

In this paper, we adopt differential privacy, which is one
of the most promising techniques in this field [8], to achieve
strong privacy.

In addition to a privacy guarantee, a planning approach
also needs soundness and completeness guarantees.

Definition 3 (Soundness [13]). A planning approach is sound
iff, for a given task, there is at least one valid plan followed by all
participating agents to reach the goal state.

Definition 4 (Completeness [6]). A planning approach is
complete iff, for a given task, 1) the approach is sound and 2)
the approach can guarantee to create a valid plan.

4.3 Differential privacy
Differential privacy (DP) can guarantee that any individual
record being stored in or removed from a dataset will make
little difference to the analytical output of the dataset [8],
[32]. DP has already been successfully applied to agent ad-
vising [33], [34] and model publishing [35], [36]. Therefore,
this property may also be suitable for application to the
planning problem.

In differential privacy, two datasets D and D′ are
deemed neighboring datasets if they differ in only one
record. A query f is a function that maps dataset D to
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an abstract range R: f : D → R. The goal of differential
privacy is to mask the differences in the answers to query f
between the neighboring datasets. In ε-differential privacy,
parameter ε is defined as the privacy budget, which controls
the privacy guarantee level of mechanism M. A smaller
ε represents stronger privacy. The formal definition of ε-
differential privacy is as follows:

Definition 5 (ε-Differential Privacy [37]). A mechanism M
gives ε-differential privacy for any input pair of neighboring
datasets D and D′, and for any possible output set Ω, if M
satisfies:

Pr[M(D) ∈ Ω] ≤ exp(ε) · Pr[M(D′) ∈ Ω] (1)

In Definition 5, mechanism M is a function that takes
a dataset as input and outputs a query result. Definition
5 states that if a mechanism, applied on two neighboring
datasets, can obtain very similar results, then this mecha-
nism is a differential privacy mechanism.

Sensitivity is a parameter that captures the magnitude
by which a single individual’s data can change the function
f in the worst case.

Definition 6 (Sensitivity [37]). For a query f : D → R, the
sensitivity of f is defined as

∆S = max
D,D′

||f(D)− f(D′)||1 (2)

Two of the most widely used differential privacy mech-
anisms are the Laplace mechanism and the exponential
mechanism. The Laplace mechanism adds Laplace noise
to the true answer. We use Lap(b) to represent the noise
sampled from the Laplace distribution with scaling b.

Definition 7 (Laplace mechanism [37]). Given a function f :
D → R over a dataset D, Equation 3 is the Laplace mechanism
that provides the ε-differential privacy [37].

f̂(D) = f(D) + Lap(
∆S

ε
) (3)

Definition 8 (The Exponential Mechanism [37]). The expo-
nential mechanism ME selects and outputs an element r ∈ R
with probability proportional to exp( εu(D,r)

2∆u ), where u(D, r)
is the utility of a pair of dataset and output, and ∆u =
max
r∈R

max
D,D′:||D−D′||1≤1

|u(D, r) − u(D′, r)| is the sensitivity of

utility.

If a graph is treated as a dataset, a given node in
the graph can be interpreted as a record in the dataset.
According to Definition 5, we can have a similar definition
for ε-node-differential privacy as follows.

Definition 9 (ε-node-Differential Privacy [38]). A mecha-
nism M gives ε-node-differential privacy for any input pair of
neighboring graphs G and G′, where G and G′ differ by at most
one node, and for any possible output set, Ω, ifM satisfies:

Pr[M(G) ∈ Ω] ≤ exp(ε) · Pr[M(G′) ∈ Ω] (4)

Node-differential privacy guarantees similar output dis-
tributions on any pair of neighboring graphs that differ in
one node and the edges adjacent to that node. Thus, the
privacy of both nodes and edges can be preserved.

5 THE STRONG PRIVACY-PRESERVING PLANNING
APPROACH

In this section, we first outline our approach in a general
form, then use the aforementioned logistic example to in-
stantiate our approach. A generalized form of our approach
is presented in Algorithm 1. In Line 5 of Algorithm 1, agent
i takes all the available public nodes into account to create a
plan. These available public nodes are on the way from the
initial state to the goal state and found by agent i during its
searching phase. However, some of these available public
nodes are not needed in the final plan. Then, in Line 8,
agent i uses a reinforcement learning algorithm to find the
shortest route from the initial state to the goal state, and
selects the public nodes on the shortest route to create a
plan. The learning is based on the information obtained in
Lines 6 and 7.

Algorithm 1: The general form of our approach

1 /*Take agent i ∈ AG as an example;*/
2 Input: agent i’s local sets: Vi, Ei, Pi, Ai, and all the

public facts and actions; also, the initial state I and
the goal state G;

3 Output: a complete plan ΠB
i from I to G;

4 Agent i identifies VI and VG from the initial state I
and the goal state G, respectively, and initializes plan:
ΠB
i = 〈VI → VG〉;

5 Agent i searches the goal state, and details plan ΠB
i by

adding the available public actions into plan ΠB
i :

ΠB
i = 〈VI → vj , ..., vk → VG〉, where
{vj , ..., vk} ⊂ VPub;

6 Agent i queries the intermediate agents to request
local private facts;

7 Each of these intermediate agents obfuscates its local
private facts using the differential privacy technique;

8 Agent i uses the obfuscated facts to refine the plan by
removing unnecessary public actions by means of a
reinforcement learning algorithm:
ΠB
i = 〈VI → vx, ..., vy → VG〉, where j ≤ x, y ≤ k;

9 Each action in plan ΠB
i is further refined by each

agent creating a local plan; for example, action
VI → vx is refined by agent i creating a local plan as
〈VI → via , ..., vib → vx〉, where {via , ..., vib} ⊂ Vi;

10 Agent i merges these local plans to form a complete
plan: ΠB

i = 〈VI → via , ..., vib → vx, ..., vy → VG〉; note
that the details of local plans, created by intermediate
agents, are not shown in plan ΠB

i , since they contain
non-obfuscated private facts belonging to the
intermediate agents;

To instantiate this general approach, we use the logistic
example given in Section 3. In this example, we assume that
1) all routes in the logistic map are bi-directional; 2) each
individual agent controls only one local area; and 3) there
are no isolated nodes on the map. An agent follows three
steps to create a plan:

• Step 1: the agent creates a high-level logistic map;
• Step 2: the agent asks the agents in the intermediate

areas to provide route and map information;
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• Step 3: the agent uses the received information to
create a complete plan.

5.1 Step 1: Creating a high-level map
In Fig. 1, it is supposed that agent a has a package to
transport from (a, 2) to (f, 4). As agent f is not agent a’s
neighbor, a must query its neighbors, b, c, and d, regarding
the position of f . Two agents are deemed neighbors if there
is at least one logistic center connecting two military bases,
such that one of these bases belongs to each of the agents.

In the case that agents, b, c and d, also do not have f as
a neighbor, they pass this query on to their neighbors, e.g.,
agent e. Finally, agent f is found through agent e. By using
the information acquired while finding agent f , agent a can
create a high-level logistic map, as shown in Fig. 3.

Fig. 3. A high-level logistic map from agent a’s perspective

5.2 Step 2: Each intermediate agent provides map and
route information
After creating the high-level map, agent a asks the agents
in the intermediate areas to provide route and map infor-
mation. In Fig. 3, the intermediate agents are b, c, d and
e. To protect the topological privacy of local maps, each
intermediate agent uses the Laplace mechanism to obfuscate
its local map, i.e., modify the number of bases and routes.
Moreover, to protect length privacy, each intermediate agent
uses the exponential mechanism, along with a reinforcement
learning algorithm, to assign probability distributions over
the routes on its obfuscated local map while removing
the distance information. Finally, each intermediate agent
presents an obfuscated local map, with probability distribu-
tions over routes, to agent a. An example explaining this
process is presented below.

In this example, Fig. 4(a) is agent b’s local map with
route length. Fig. 4(b) is agent b’s obfuscated local map.
Referring to the obfuscated local map, agent b calculates
the shortest route between logistic centers A and B. Then,
agent b marks the probability distributions over the routes,
as shown in Fig. 4(c). Each probability on a route indicates
the probability of that route being selected. To guarantee
the route length privacy, agent b uses the exponential mech-
anism to redistribute these probabilities over the routes, as
shown in Fig. 4(d). Agent b then sends Fig. 4(d) to agent a.
Finally, agent a receives a map where the topology has been
obfuscated and the distance information has been replaced
by probability distributions.

5.2.1 Using the Laplace mechanism to obfuscate topolo-
gies
The Laplace mechanism is applied to the statistical informa-
tion contained in a map. We utilize a 1K-distribution [39] to
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Fig. 4. Obfuscation of agent b’s local map

obtain the statistical information. More specifically, the 1K-
distribution is used to calculate the node degree distribution
of a given graph. To describe how the 1K-distribution is
utilized for this purpose, we employ the following example.
In Fig. 4(a), the number of nodes with 1 degree is 0; the
number of nodes with 2 degrees is 4, (i.e., nodes A, B, (b, 4)
and (b, 5)); the number of nodes with 3 degrees is 2, (i.e.,
nodes (b, 2) and (b, 3)); and the number of nodes with 4
degrees is 1, (i.e., node (b, 1)). Thus, the 1K-distribution,
i.e., the node degree distribution, of Fig. 4(a) is: P (1) = 0,
P (2) = 4, P (3) = 2, and P (4) = 1.

Algorithm 2: The Laplace mechanism-based obfusca-
tion
1 /*Take agent b as an example*/
2 Input: agent b’s map (Fig. 4(a));
3 Output: agent b’s obfuscated map (Fig. 4(b));
4 Use 1K-distribution to obtain the statistical

information of b’s map;
5 for k = 1 to dmax do
6 P̃ (k)← P (k) + dLap(∆S·dmax

ε )e;
7 Rewire nodes to satisfy each P̃ (k);

The Laplace mechanism-based obfuscation is outlined
in Algorithm 2. In Line 4, the statistical information of b’s
map is obtained using the 1K-distribution. In Lines 5-6, the
Laplace noise is added to each P (k) in order to randomize
the node degree distribution; accordingly the number of
nodes now becomes

∑
1≤k≤dmax P̃ (k). Here, dmax is the

maximum node degree in a map, and dmax = 4 in the
example of Fig. 4(a). After adding Laplace noise, the node
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degree distribution could be as follows: P̃ (1) = 1, P̃ (2) = 2,
P̃ (3) = 5, and P̃ (4) = 0. Next, in Line 7, nodes are rewired
to satisfy each P̃ (k), where k ∈ {1, ..., dmax}. The node
rewiring is carried out using the graph model generator
provided in [39]. After node rewiring is complete, fake
routes may be introduced, such as route A → (b, 6) in Fig.
4(b). The length of a fake route is randomly generated based
on the average length of the existing real routes.

The reason why the Laplace mechanism is used here is
that our aim is to obfuscate the topology of each agent’s
local map by modifying the degree distribution. Since a
degree distribution consists of a set of numbers, the Laplace
mechanism is more appropriate here than the exponential
mechanism which is mainly used for proportionally select-
ing an element from a set. It should also be noted at this
point that the Laplace mechanism may generate negative
numbers. This, however, is not a problem in this paper, as
we need both positive and negative Laplace noise to ensure
that our approach satisfies ε-differential privacy. Moreover,
we adopt the Laplace mechanism to add noise to node
degree distributions rather than directly adding noise to
the number of nodes or edges. By adding noise to node
degree distributions, our approach can not only guarantee
the node and edge privacy of agents, but also guarantee the
connection of an obfuscated graph. The connection of an
obfuscated graph is a necessity for the completeness of our
planning approach. The detailed theoretical analysis will be
given in the next section.

The rationale behind Algorithm 2 is as follows. Ac-
cording to the definitions of differential privacy, a map
is interpreted as a dataset D, while a node on a map is
interpreted as a record in a dataset. As with the concept
of neighboring datasets, two maps are deemed neighbors if
they differ by only one node. Thus, using 1K-distribution to
obtain a map’s statistical information can be thought of as
querying some interesting information from a dataset, f(D).
If we compare Definition 7 to Line 6 in Algorithm 2, we can
see that just as the Laplace mechanism can guarantee the
privacy of a dataset, it can also guarantee the privacy of a
map. More discussion about the preservation of privacy will
be provided in the next section.

In Algorithm 2, ∆S represents the sensitivity of the
degree distribution in a map. The value of ∆S is de-
termined by the maximum change in degree distribution
when a node is added into or removed from the map. For
example, in Fig. 4(a), the degree scaling is from 1 to 4:
P (1), P (2), P (3), P (4). According to Algorithm 2, Line 6,
when a node is added into or removed from the map, one of
the four values, P (1), P (2), P (3), P (4), will be incremented
or decremented by 1. Thus, the maximum change of degree
distribution is 1, i.e., ∆S = 1 in Algorithm 2.

5.2.2 Using reinforcement learning to compute probability
distributions
In a local area, such as the one in Fig. 4(a), there is
a set of local military bases and logistic centers, along
with a set of routes connecting these bases and centers.
As discussed in Section 4, in the Graph-STRIPS model, V
and E can be used to represent the topology of a map.
Accordingly, we use V to represent the military bases and
logistic centers, while E is used to denote the set of routes

connecting these bases and centers. Specifically, in Fig. 4(a),
Vb = {(b, 1), (b, 2), (b, 3), (b, 4), (b, 5)}, and Eb = {A ∼
(b, 1), A ∼ (b, 2), ..., (b, 1) ∼ B, (b, 5) ∼ B}. Moreover,
different bases or centers will have different routes available
to them. For example, in base (b, 1), there are four avail-
able routes: E(b,1) = {(b, 1) ∼ A, (b, 1) ∼ (b, 2), (b, 1) ∼
(b, 3), (b, 1) ∼ B}. Furthermore, in center A, there are two
available routes: EA = {A ∼ (b, 1), A ∼ (b, 2)}.

Algorithm 3: The reinforcement learning algorithm

1 /*Take agent b as an example*/
2 Input: agent b’s obfuscated map (Fig. 4(b));
3 Output: agent b’s obfuscated map with probability

distributions (Fig. 4(c));
4 Initialize probability distributions;
5 Initialize the Q-value of each route;
6 Initialize the current position: v ← A;
7 while v 6= B do
8 Agent b selects a route, e, based on the probability

distribution π(v) = 〈π(v, e1), ..., π(v, en)〉, where
e ∈ Ev = {e1, ..., en};

9 r ← R(v, e);
10 Q(v, e)← (1−α)Q(v, e) +α[r+ γmaxei

ei∈Ev′
Q(v′, ei)];

11 r ←
∑
ei∈Ev π(v, ei)Q(v, ei);

12 for each route ei ∈ Ev do
13 π(v, ei)← π(v, ei) + ζ(Q(v, ei)− r);

14 π(v)← Normalise(π(v));
15 v ← v′;

16 Agent b marks the learned probability distributions
over the routes;

The reinforcement learning algorithm is outlined in
Algorithm 3. In Line 4, agent b proportionally initializes
probability distributions over actions, where each action
indicates the selection of a route. The initialization is based
on the lengths of the routes. For example, in Fig. 4(b),
the probability distribution over routes A ∼ (b, 1) and
A ∼ (b, 6) can be initialized as 4

9 and 5
9 , respectively. In

Line 5, agent b initializes the Q-value of each route; here,
the Q-value is an indication of how good a route is. In this
algorithm, the initial Q-value of a route is set based on the
length of the route, such that a shorter route is allocated a
higher Q-value. For example, in Fig. 4(b), the initial Q-value
of route A ∼ (b, 1) can be set to 100

50 = 2, while the initial
Q-value of route A ∼ (b, 6) can be set to 100

40 = 2.5. In Line
6, agent b sets the initial position to A and the destination to
B. This setting is based on the fact that, as an intermediate
agent, agent b will help agent a to transport the package
from A to B.

Regarding the loop, in Line 8, agent b selects a route
e based on the probability distribution over the available
routes in base v. After taking route e, agent b receives a
reward r (Line 9), which is inversely proportional to the
route length. For example, in Fig. 4(b), r(A ∼ (b, 1)) and
r(A ∼ (b, 6)) can be set to 4 and 5, respectively. The reward
r is used to update the Q-value of route e in base v (Line 10).
This update is based on: 1) the current Q-value of e in base
v, Q(v, e); 2) the maximum Q-value of the routes in new

Authorized licensed use limited to: University of Technology Sydney. Downloaded on February 14,2021 at 12:10:11 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3017497, IEEE
Transactions on Dependable and Secure Computing

base v′, maxei
ei∈Ev′

Q(v′, ei); 3) the immediate reward r; and 4)

a learning rate α and a discount rate γ. In the next step, the
updated Q-value and the probability distribution are used
to compute the average reward r (Line 11), where Ev is the
set of available routes in base v. In Lines 12 and 13, the
probability of selecting each route i ∈ Ev is updated. This
update is based on: 1) the current probability of each route
being selected π(v, ei); 2) the current Q-value of each route
Q(v, ei); 3) the average reward r; and 4) a learning rate ζ . In
Line 14, the updated probability distribution is normalized
to be valid, meaning that for each i ∈ Ev , 0 < π(v, ei) < 1
and

∑
ei∈Ev π(v, ei) = 1. In Line 15, the new base, v′, is set

as the current base. The above steps are iterated over until
the goal state is reached. Finally, in Line 16, agent b marks
each of the routes with the learned probability distributions.

5.2.3 Using the exponential mechanism to redistribute
probabilities
After using the reinforcement learning algorithm to replace
distance information with probability distributions, agents’
local distance information can be hidden. Hiding distance
information can reduce the risk of leaking this information
but cannot guarantee the privacy preservation of this infor-
mation. Therefore, we adopt the exponential mechanism to
redistribute probabilities.

We use an example to explain how to use the exponential
mechanism to redistribute probabilities. Suppose a node
in a local map has two adjacent edges, x and y, and the
probabilities of selecting x and y are 0.7 and 0.3, respec-
tively. Based on the definition of exponential mechanism,
the exponential mechanism selects and outputs an element
r with probability proportional to exp( εur2∆u ), where ε is the
privacy budget, ur is the utility of selecting r and ∆u is
the sensitivity of utility. If we set the utility of selecting a
route to be the probability of selecting that route, then we
have: ux = 0.7 and uy = 0.3, and in this setting, ∆u = 1.
Then, if we set ε = 2, we have exp( εux2∆u ) = 2.014 and
exp(

εuy
2∆u ) = 1.350. Finally, the probabilities of selecting

x and y become 2.014
2.014+1.350 = 0.6 and 1.350

2.014+1.350 = 0.4,
respectively. The above process is performed on each node
in the local map.

Another simple way to preserve the distance information
privacy is to let each agent use the Dijkstra’s algorithm [40]
to compute the shortest route length between two logistic
centers in its local area and add a Laplace noise to that
length. However, other agents may still get an approximate
idea about the route length. For example, after adding a
Laplace noise, the route length changes from 100 to 105.
Although other agents cannot deduce the real length, they
can still guess that the real length must be near 105. In some
situations, e.g., the military logistic example, an approxi-
mate length is good enough for other agents. By contrast, if
an agent uses reinforcement learning and shares only prob-
abilities, other agents cannot obtain even an approximate
length. This idea is based on the spirit of federated learning
by allowing agents to share only parameters [41]. In feder-
ated learning, to protect each client’s training data privacy,
each client only sends the model parameters, trained based
on her private data, to the server. The server, thus, has only
clients’ model parameters without any clients’ private data.

5.3 Step 3: Creating a complete plan

After receiving obfuscated local maps from intermediate
agents, agent a creates a logistic map by combining these ob-
fuscated local maps, as shown in Fig. 5. On each obfuscated
local map, although both real and fake nodes and edges are
involved, agent a is unable to determine whether a given
node or edge is real. More detailed discussion on this matter
will be presented in Section 6.
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Fig. 5. A logistic map created by obfuscated local maps

Next, agent a uses a reinforcement learning algorithm
to calculate the length of the route between each pair of
connected logistic centers, e.g., A → B, B → E and
so on. The reinforcement learning algorithm is similar to
Algorithm 3. Since agent a is only provided with probability
distributions about the other areas, agent a must generate
the distance information itself based on the probability dis-
tributions. Agent a relates the probabilities to the distance
based on the average route length in agent a’s local area.
For example, in Fig. 5, the probabilities of selecting routes
A ∼ (b, 1) and A ∼ (b, 6) are 0.7 and 0.2, respectively. If
the average route length in agent a’s local area is 45, agent a
can simply set the distances from A to (b, 1) and A to (b, 6)
to 20 and 70, respectively, whose average is 45. Here, we
operate under the assumption that there are no significant
differences between the average route length in each local
area.

After agent a calculates the length of the shortest route
between each pair of connected logistic centers (as shown in
Fig. 6), the shortest route from the origin to the destination
can also be obtained. It is clear at this point that this
calculation is not very accurate, as it is based on estimated
length. However, the aim of this calculation is not to find the
real shortest route, rather to select the intermediate agents
which are located on the shortest route. In Fig 6, the agents
on the shortest route are: b, e and f .

Fig. 6. A high-level map featuring relative distances from agent a’s
perspective
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The final plan, thus, can be expressed as ΠB
a = 〈I →

(a, 3) → (a, 4) → A → B → E → F → G〉, where I =
{package in (a, 2)} and G = {package in (f, 4)}. In this
plan, I → (a, 3) → (a, 4) → A is the local plan formulated
and carried out by agent a. At logistic centerA, agent a gives
its package to agent b, which makes a local plan to transport
the package to logistic center B. At center B, agent e takes
control of the package and devises a local plan to deliver
the package to logistic center F . Finally, agent f picks up
the package at center F and makes a local plan to transfer
the package to (f, 4).

5.4 A simplification of the proposed approach
In some situations, if the distance information is not private,
we can let logistic centers do the routing planning and
consider the routing only between logistic centers. Each
logistic center can directly communicate with the agent
that is connected with the logistic center. As the distance
information is not private, each logistic center is also aware
of the local routing information within the agent. Compared
with the proposed approach, this simplified approach can 1)
significantly reduce the problem complexity; and 2) enable
agents to obtain accurate distance information for further
calculation. and 3) fully hide the topology information be-
longing to each agent from other agents.

A typical example is daily logistic, where the distance
information between two public places do not need to be
hidden. In daily logistic, packages are transported from their
starting points to their destinations across multiple states
or provinces. Here, the distance among states/provinces
is not a privacy concern and can be considered as public
information. The simplified version of our approach can be
applied to this example. Each state/province is assumed to
have a logistic center. To transport a package, the logistic
center at the starting point utilizes the accurate distance
information among states/provinces to make an optimal
global plan. Then, each logistic center in the global planning
path conducts the local routing planning.

6 THEORETICAL ANALYSIS

6.1 Soundness analysis
Theorem 1. The proposed approach is sound.

Proof. We prove this theorem by considering one task, e.g.,
delivering one package in the logistics example. In Step 1
of our approach, we start from the initial agent which has a
task to complete and initializes a plan, each queried agent
sets up a link to the querying agent. Thus, all the queried
agents are reachable. If a goal agent is identified whose
private facts include the goal state, there must be at least one
plan connecting the initial agent to the goal agent through
some or all of the queried agents.

6.2 Completeness analysis
Lemma 1. Obfuscating local maps does not affect the complete-
ness of the proposed approach.

Proof. In Step 2 of our approach, each intermediate agent
obfuscates its local map by adding and/or removing nodes
and/or edges (see Algorithm 2). During the obfuscation

process, Laplace noise is added to the node degree distri-
bution of the local map: P (1), ..., P (dmax). As P (0) is not
counted, isolated nodes will not be created. Moreover, as the
obfuscated map is undirected, it can be guaranteed that the
obfuscated map will be connected. Hence, there must be at
least one route between the two logistic centers on the local
map. Since this property is common to the local maps of all
intermediate areas, there must be at least one route from the
initial area to the goal area via intermediate logistic centers.
Thus, the completeness is not affected.

Theorem 2. The proposed approach is complete.

Proof. Step 1 of our approach guarantees that a goal agent
can be found. According to Theorem 1, there must be at
least one plan connecting the initial agent to the goal agent.
We now need only to prove that our approach is capable of
finding at least one of these plans.

According to Lemma 1, there is at least one route from
the initial area to the goal area. One of these routes can be
treated as a high-level plan, which can be identified using
Algorithm 3. Based on the high-level plan, each interme-
diate agent creates a local plan (Step 3). Given that each
agent is honest1, each local plan is valid, which ensures that
the two logistic centers in the local area will be connected.
Therefore, a high-level plan and a set of local plans consti-
tute a complete plan.

6.3 Privacy-preserving analysis

Theorem 3. The proposed planning approach satisfies ε-
differential privacy.

Proof. To analyze the privacy guarantee, we apply two com-
posite properties of the privacy budget: the sequential and
the parallel compositions [42]. The sequential composition
determines the privacy budget ε of each step when a series
of private analysis are performed sequentially on a dataset.
The parallel composition corresponds to the case in which
each private step is applied to disjoint subsets of a dataset.
The ultimate privacy guarantee depends on the step which
has the maximal ε.

In the proposed approach, the Laplace mechanism and
the exponential mechanism consumes the privacy budget.
In the Laplace mechanism in Algorithm 2, the Laplace noise
sampled from Lap(∆S·dmax

ε ) is added in dmax steps. At each
step, the Laplace mechanism consumes the ε

dmax
privacy

budget; thus for each step, Algorithm 2 satisfies ε
dmax

-
differential privacy. By using the sequential composition
property, we can conclude that at a total of dmax steps, the
Laplace mechanism consumes the dmax · ε

dmax
= ε privacy

budget, meaning that Algorithm 2 satisfies ε-differential pri-
vacy. By comparing Definition 5 with Definition 9, since the
Laplace mechanism can guarantee the data record privacy of
a dataset, it can also guarantee the node-privacy of a graph.

The exponential mechanism is used to redistribute prob-
abilities on each agent’s local graph. For a given node in a
local graph, suppose the node has k adjacent edges. Then,
the exponential mechanism will be used k times. If we

1. It is a common assumption in privacy-preserving multi-agent
planning that agents are honest but curious about others’ private
information [3].
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set privacy budget for this node to be ε
k , based on the

sequential composition property, the privacy consumption
of this node is ε. Thus, the probability redistribution on the
adjacent edges of this node satisfies ε-differential privacy.
When this method is used on every node, based on the
parallel composition property, the probability redistribution
on this local graph satisfies ε-differential privacy.

Since the Laplace mechanism and the exponential mech-
anism are used by each agent, each agent is guaranteed ε-
differential privacy. Although an environment may contain
multiple agents, each agent maintains a local area, and these
local areas are disjoint with each other. Since each agent is
guaranteed ε-differential privacy, according to the parallel
composition property, the proposed approach satisfies ε-
differential privacy.

Remark 1: In Algorithm 2, Laplace noise is used to
randomize the node degree distribution. This implies that
both the number of nodes and the number of edges in a local
map will be perturbed. Since the topology of a map consists
of nodes and edges, perturbing the numbers of nodes and
edges incurs perturbation of the topology. Accordingly, as
Algorithm 2 satisfies differential privacy, the perturbation
of the topology of a map also satisfies differential privacy.

Corollary 1. No agent is able to conclude anything about the
existence of any subset of d∆S·dmax

ε e nodes in another agent’s
map.

Proof. In Algorithm 2, the Laplace noise is sampled from
Lap(∆S·dmax

ε ), meaning that the expected amount of noise
is ∆S·dmax

ε . As this noise is used to change the number of
nodes in a map (recall Lines 5-6 in Algorithm 2), the ex-
pected number of nodes that will be changed is d∆S·dmax

ε e.
Therefore, any subset of d∆S·dmax

ε e nodes could be fake
nodes. According to Definition 9 and Theorem 3, since
Algorithm 2 can guarantee the node-privacy of a graph, an
agent will be unable to distinguish real from fake statistical
information between two neighboring graphs, e.g., the num-
ber of real nodes. This means that an agent cannot determine
whether or not a node is fake. Hence, the existence of any
subset of d∆S·dmax

ε e nodes in an agent’s map cannot be
concluded by any other agents.

Remark 2: From Corollary 1, in the Laplace mechanism
in Algorithm 2, the value of ε controls the granularity of
privacy, given that the values of ∆S and dmax have been
fixed. A smaller ε implies a stronger privacy guarantee.
However, a smaller ε also introduces a larger amount of
noise. The increase of the amount of noise reduces the
usability of a map. Thus, the value of ε should be carefully
set.

Remark 3: Similar to the Laplace mechanism, in the
exponential mechanism, the value of ε has a huge impact
on probability redistribution results. Given that a node
has k adjacent edges and the probabilities of selecting the
k edges are u1, ..., uk, if we set ε = 0, the probability
of selecting each edge will equally become 1

k ; if we set
ε → +∞, probability um becomes 1 and others become
0, where um = max{u1, ..., uk}. In addition to the two
extreme situations, there is a median situation which is that

the redistributed probabilities are identical to the original
probabilities: u′1 = u1, ..., u

′
k = uk. Based on the compu-

tation method described in Section 5.2, each probability u′i,
1 ≤ i ≤ k, is computed as:

u′i =
exp( εui2∆u )∑

1≤j≤k exp(
εuj
2∆u )

. (5)

Let each u′i = ui, we have k equations.
exp(

εu1
2∆u )∑

1≤j≤k exp(
εuj
2∆u )

= u1,

...,
exp(

εuk
2∆u )∑

1≤j≤k exp(
εuj
2∆u )

= uk.

In our problem, ∆u = 1. By solving the k equations, we
have that

εi =
2(k · ln(ui)−

∑
1≤j≤k ln(uj))

k · ui −
∑

1≤j≤k uj
,

where 1 ≤ i ≤ k. Thus, in applications, on one hand, these
values of ε should be avoided, as they will make the redis-
tributed probabilities identical to the original probabilities,
which cannot offer any privacy preservation. On the other
hand, the values of ε should be set close to these values to
guarantee the usability of the redistributed probabilities.

Theorem 4. The proposed planning approach can strongly pre-
serve agents’ privacy.

Proof. As defined in Section 4.1, an agent’s private informa-
tion includes 1) the number of nodes in an agent’s local area,
2) the number of edges in the local area, 3) the length of these
edges, 4) the positions of any items in the local area and 5)
the movements of any items in the local area. To prove this
theorem, we only need to prove that the private information
possessed by an agent cannot be inferred by another agent.
First, according to Theorem 3 and Corollary 1, the proposed
planning approach satisfies ε-differential privacy and guar-
antees the privacy of any subset of d∆S·dmax

ε e nodes in an
agent’s local area. By properly setting the value of ε, the
privacy of all nodes and edges in an agent’s local area can
be preserved. Therefore, the privacy of the number of nodes
and edges of an agent’s local area will also be preserved.
Second, our approach dictates that the length information
in a local area is replaced by probability distributions (recall
Fig. 4). Also, these probabilities are redistributed using the
exponential mechanism. Thus, the length information is
strictly hidden. Therefore, an agent cannot infer the real
length of any individual edge in another agent’s local area.
Third, since the privacy of any node or edge in an agent’s
local area has been preserved, the positions and movements
of items have also been preserved. Based on the definition
of strong privacy (Definition 2), the proposed approach can
strongly preserve agents’ privacy.

6.4 Communication analysis

Let us suppose that there arem logistic centers. Each logistic
center, i, has a capacity, lci, which is the maximum number
of agents that can share the logistic center. Accordingly, we
derive the following theorem:
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Theorem 5. In Step 1, the upper bound of the number of
communication messages used to find a goal agent is

∑
1≤i≤m lci.

Proof. In our approach, each agent is only aware of the
existence of its own neighbors. This means that 1) each agent
does not know how many neighbors any other agent has,
and 2) each agent is not aware of how far away the goal
agent is.

As the information regarding logistic centers is public,
all agents know the capacity of each logistic center. Thus, to
guarantee that the query message is able to reach the goal
agent, an agent must assume that 1) each logistic center is
using up its capacity, and 2) the goal agent is located in the
most distant area. In this situation, the number of generated
communication messages is

∑
1≤i≤m lci.

Remark 4: Theorem 5 describes the communication
overhead in the worst case. However, as time progresses,
this communication overhead can be significantly reduced.
This is because an agent memorizes the plans that it has
previously created, meaning that an agent memorizes the
routes to goal agents. Thus, in the future, an agent can
simply exploit a route previously determined to reach a
goal agent without the need for communication. Even if an
agent decides to explore a new route, the communication
overhead can be limited by setting the maximum number of
query messages during the finding process. The maximum
number of query messages is set to be identical to the
number of messages used to find the same goal agent last
time. Formally, we have the following corollary:

Corollary 2. As time progresses, the communication overhead of
each agent monotonically decreases.

Proof. Every time an agent explores a new route to a goal
agent, the maximum number of query messages is set to
be equal to the number of messages used to find the same
goal agent last time. As each agent memorizes only the
shortest routes to goal agents, only routes that are shorter
than these memorized routes will be taken by each agent.
This means that the number of request messages currently
being used must be fewer than or equal to the number
used previously. Thus, the communication overhead of each
agent monotonically decreases.

In our approach, the setting of the communication bud-
get C can be controlled by the privacy budget ε. In a
multi-agent system, each agent k sets ε/C as their privacy
budget and ceases to communicate when ε is used up.
When C >

∑
1≤i≤m lci, the system can guarantee that

all communication steps will be completed. However, a
large amount of noise will be added to the system under
these circumstances. When C <

∑
1≤i≤m lci, the system

is likely to stop before finishing the communication steps.
However, the noise added to the system will be limited.
When C =

∑
1≤i≤m lci, the system will stop when all

communication steps have been completed. Therefore, by
adjusting the privacy budget ε and the communication
budget C, the communication overhead of a multi-agent
system can be controlled.

7 APPLICATION OF OUR APPROACH TO OTHER DO-
MAINS

This section illustrates how our approach can be applied to
three other domains: networks, air travel, and rovers.

7.1 Packet routing in networks
In a network, nodes often transmit packets between each
other. These nodes may belong to different areas, which
are connected by routers or access points. In this domain,
a router or access point can be thought of as similar to
an agent, which manages a corresponding area. In a given
area, the information possessed by each node, e.g., its load
and performance, is private to the agent. Moreover, the
number of nodes in an area and their communication links
are also private to the agent. Thus, the agents expect that
their privacy will be preserved.

As each node has only a limited range of communi-
cation, when a node transmits a packet to another node,
the packet may be relayed multiple times by intermediate
nodes before reaching its destination. Since it is highly
desirable that nodes receive packets in a timely manner, the
transmission must be efficient so that huge delays can be
avoided. The proposed approach can be applied to create
efficient plans for packet routing.

7.2 Airplane transport
The airplane transport problem consists of a set of planes
and airports. Moreover, the travel map is partitioned into
a set of areas. In the real world, each area can be thought
of as a country. Therefore, the planes and airports located
in a given area are private to the area air traffic controller.
Clearly, each area controller wants to preserve information
regarding the status and number of planes and airports in
their area as private information.

The airports located on the boundary of two areas are
public. The goal is to transport passengers between airports.
In this problem, each area controller can be thought of
as an agent. When a plane travels from one airport to
another, as the plane has only limited fuel, passengers
may be transferred multiple times on their way to their
destination. Moreover, both area controllers and passengers
would clearly prefer the plane to reach its destination as
quickly as possible. Thus, an efficient privacy-preserving
planning approach is required. The proposed approach can
be applied to create efficient plans for passenger transport.

7.3 Rover exploration
This domain models Mars exploration rovers. Each rover
can be thought of as an agent. The goal of these rovers is
to collect samples. Each rover has its own private sets of
targets and reachable locations. These targets and reachable
locations can be thought of as private facts in our planning
model, the privacy of which must be preserved.

Each rover collects samples in its reachable locations.
When a rover needs to transmit the samples it has collected
to another rover, these samples may have to be transmitted
by intermediate rovers in the interim, as the number of
locations reachable by each rover is limited. Since samples
may decay as time progresses, it is desirable for the rovers
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to transmit the samples to the destination as quickly as
possible. Hence, an efficient privacy-preserving planning
approach is required. The proposed approach can be applied
to create efficient plans for sample transmission.

In summary, our approach can be applied to all of the
planning problems, in which each party has private infor-
mation and local plans can be created by each party using
reinforcement learning techniques. Moreover, reinforcement
learning has a broad range of applications, including task
scheduling in cloud computing [43], traffic light control [44],
and robot coordination [45]. Since most of these applications
may also have privacy requirements, our method has the
potential to be applied to these real-world scheduling and
coordination problems as well.

8 EXPERIMENTS

8.1 Experimental setup
The experiments in the present research are conducted
based on two scenarios: logistics and packet routing, which
are typical logistic-like problems. In the logistics scenario,
as described in Section 3, each military base has a set of
packages to transport to other military bases. These military
bases may be located in different areas and managed by
different military units. The information pertaining to each
military base is private to the managing military unit.

The packet routing scenario is similar to the logistics
scenario, in that each node in an ad hoc network houses
a set of packets to be sent to other nodes. Nodes may belong
to different groups and are served by different access points.
The information of each node is private to the serving access
point. The key difference between these two scenarios is that
in the packet routing scenario, new nodes may dynamically
join the network and existing nodes may leave the network
at any time, while this is not the case for the logistics
scenario. These experiments have also been conducted on
the air travel and rover scenarios. As the results present a
similar trend to logistics, they are not discussed here.

Three evaluation metrics are used in the two scenarios:
1) average route length: the average length of the routes

from initial states to goal states;
2) average communication overhead: the average num-

ber of communication messages used to make a plan;
3) success rate: the ratio of the number of the success-

fully transmitted packages/packets to the total number of
packages/packets.

In both scenarios, the map shape or network topology
is similar to that in Fig. 1. The size of the maps/neworks
varies from 10 logistic centers/access points to 50 logistic
centers/access points; correspondingly the number of mil-
itary bases/network nodes varies from 50 to 250 2. The
probability of a package/packet being generated on each
military base/node is set to 0.2. The communication budget
of each agent varies from C = 40 to C = 80 depending
on variations in the map/network size. The privacy budget
of each agent is set to ε = 0.5. Moreover, in the packet
routing scenario, during the route finding process, there

2. The topologies of maps/networks are created by simulation, as
most real-world graph datasets [46], [47], [48] do not contain distance
information and thus cannot be used in our experiments. We leave the
experiments with real-world datasets as one of our future studies.

is a probability of 0.1 that an existing node will leave the
network and a probability of 0.1 that a new node will
join the network. The parameter values in the proposed
algorithms are chosen experimentally, and set to α = 0.1,
γ = 0.9 and ζ = 0.95.

The proposed planning approach, denoted as DP-based,
is evaluated in comparison with three closely related ap-
proaches. The first approach, denoted as No-privacy, is also
developed by us. The major features of No-privacy are the
same as DP-based, but the privacy-preserving mechanism
has been removed. Although No-privacy is not applicable to
privacy-preserving planning, it can be used to evaluate how
the privacy-preserving mechanism impacts the performance
of our DP-based approach. The second approach is based on
best-first forward search, denoted as Best-first, and has been
used in [14], [7], [12]. In the Best-first approach, when an
agent transmits a package/packet to a logistic center/access
point, the agent broadcasts this state to all the other agents.
The nearest agent takes the package/packet based on this
state and transmits it to the next logistic center/access point.
This process continues until the goal agent is reached. The
third approach is GPPP (greedy privacy-preserving plan-
ner), denoted as Greedy, which was developed in [13]. The
Greedy approach consists of two phases: global planning
and local planning. In the global planning phase, all agents
collaboratively devise a global plan using a best-first search
method. Next, in the local planning phase, each agent
creates a local plan by executing a single-agent planning
procedure.

8.2 Experimental results

8.2.1 The logistics scenario
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Fig. 7. Performance of the four approaches on the logistics scenario with
variation of the map size

Fig. 7 demonstrates the performance of the four ap-
proaches on the logistics scenario with variation of the map
size. As the map size grows larger, for all four approaches,
the average route length and the average communication
overhead progressively increase, while the success rate
gradually decreases.

As the map size increases, the distance between an
original agent and a destination agent may be enlarged
accordingly. Therefore, the average route length increases.
Moreover, when this occurs, the number of intermediate
agents also increases. Thus, the average communication
overhead rises as well. Due to this increase in the average
communication overhead, the communication budget of
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some agents may be used up before a plan is made. Hence,
the success rate reduces.

The proposed DP-based approach achieves much better
performance than the Best-first and Greedy approaches. The
reinforcement learning algorithm in the DP-based approach
can find shorter routes than the other two approaches.
Moreover, in the DP-based approach, agents are allowed
to communicate only with neighbors, and a privacy bud-
get is adopted to control communication overhead. Thus,
the DP-based approach uses less communication overhead
than the other two approaches. In addition, the DP-based
approach successfully makes more plans than the other two
approaches before the communication budget is used up.
Overall, the performance of No-privacy approach is slightly
better than the DP-based approach. As privacy is not taken
into account in the No-privacy approach, the information
shared between agents is accurate, and agents can make
accurate plans based on this accurate information. However,
the private information of each agent is entirely disclosed to
other agents under this approach, a situation that should
be avoided in real-world applications. More specifically, in
Fig. 7(a), the average route length in the DP-based approach
is only about 2% longer than for the No-privacy approach.
This is because in the DP-based approach, a plan is made up
of a set of local plans created by the initial agent and the
intermediate agents. Each of these local plans is created by
an individual agent with reference to its private but accurate
information. Since most of the information used to create a
plan is accurate, the introduction of our privacy-preserving
mechanism does not substantially impact the average route
length.

The Best-first approach achieves the worst performance
out of the four approaches. In the Best-first approach, a pack-
age is transmitted to the nearest agent. However, in large
and complex maps, the nearest agent may not always be the
best choice. Moreover, always choosing the nearest agent
may result in a transmission loop; if this situation arises,
packages will never reach their destinations. In comparison,
the performance of Greedy approach is better than the Best-
first approach, as the Greedy approach features a global
planning phase that involves selecting the appropriate lo-
gistic centers to create a high-level route, which conserves
communication overhead.
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Fig. 8. Performance of the DP-based approach on the logistics scenario
with variation of the privacy budget value

Fig. 8 demonstrates the performance of the DP-based
approach on the logistics scenario with variation of the
privacy budget ε value from 0.2 to 0.8. The number of

logistic centers is fixed at 10. It can be seen that with the
increase of the privacy budget ε value, the performance
of the DP-based approach improves, namely it achieves
a shorter average route length (Fig. 8(a)), lower average
communication overhead (Fig. 8(b)), and higher success rate
(Fig. 8(c)). According to the Laplace mechanism, when the ε
value is small, the noise, added to the map, is large. A large
noise value will significantly affect the agents planning.
For example, agent a has two neighbors b and c. Now,
suppose that 1) agent a wants to send a package to d, and
2) delegating the package to b is a better choice than c.
However, when agents b and c obfuscate their maps, due to
the large noise, the obfuscation results may make c appear
to be a better choice than b. Thus, agent a may make a sub-
optimal plan. This situation is alleviated when the ε value
increases.

8.2.2 The packet routing scenario
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Fig. 9. Performance of the four approaches on the packet routing sce-
nario with variation of the network size
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Fig. 10. Performance of the DP-based approach on the packet routing
scenario with variation of the privacy budget

Fig. 9 illustrates the performance of the four approaches
on the packet routing scenario with variation of the network
size, while Fig. 10 depicts the performance of the DP-based
approach on the packet routing scenario with variation of
the privacy budget ε. After comparing Fig. 7 to Fig. 9 and
Fig. 8 to Fig. 10, it can be concluded that these approaches
exhibit similar trends in terms of their results on the two
scenarios, but that the performance of these approaches is
worse on the packet routing scenario than on the logistic
scenario. This is mainly due to the dynamism of the packet
routing scenario. When a node leaves the network, the
routes involving that node are broken. Thus, agents have
to re-find routes. This incurs extra communication overhead
and reduces success rates to some extent.
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Fig. 11. Performance of the three approaches on the packet routing
scenario with variation of the dynamism

Fig. 11 illustrates the performance of the four approaches
on the packet routing scenario with variation of the dy-
namism, such that the probability of a node leaving or
joining the network varies from 0.05 to 0.2 and the net-
work size is fixed at 10 access points. From Fig. 11, it
can be seen that an increase in the dynamism negatively
affects the Best-first and Greedy approaches in terms of their
average communication overhead and success rates, but
does not significantly impact the DP-based and No-privacy
approaches.

As the dynamism increases, the frequency with which
nodes leave or join the network also increases. Thus, the
number of affected routes increases as well. In the Best-
first and Greedy approaches, when a route is broken, a
new finding process is launched. This may not significantly
affect the average route length (Fig. 11(a)), as route length
depends on the positions of nodes rather than the number of
nodes. However, launching a new finding process results in
additional communication overhead, and may thus reduce
success rates due to depletion of the communication budget.
By contrast, the DP-based and No-privacy approaches do not
require a new finding process when a route is broken. In the
DP-based approach, routes are found by using reinforcement
learning on obfuscated local network topologies. These ob-
fuscated local network topologies are obtained using dif-
ferential privacy. Differential privacy can guarantee that a
node being brought in or out of a local network will have
minimum effect on the statistical information. Therefore,
when a node leaves or joins a local network, the serving
access point does not need to re-obfuscate the new network
or to communicate with the original access point about the
change in the network. Hence, the communication budget
can be conserved, and the success rate is preserved.

8.3 Summary
According to the experimental results, the proposed DP-
based approach achieves better results than the Best-first and
Greedy approaches in all experimental situations considered
here. The average length of routes found by the DP-based
approach is about 25% and 15% shorter, respectively, than
those found using the Best-first and Greedy approaches.
The DP-based approach also uses about 20% and 10%
less communication overhead than the Best-first and Greedy
approaches, respectively. Moreover, the DP-based approach
achieves about 10% and 5% higher success rates than the
Best-first and Greedy approaches, respectively.

Regarding performance, the DP-based approach is
slightly worse than the No-privacy approach by a factor of
about 3% in terms of average route length, 2% in com-
munication overhead and 2% in success rate. The DP-based
approach, however, strongly protects the privacy of agents,
which is entirely disregarded in the No-privacy approach.
Therefore, based on the experimental results, the efficiency
of our DP-based approach can be proven.

9 CONCLUSION AND FUTURE WORK

This paper proposes a novel strong privacy-preserving plan-
ning approach for logistic-like problems. In this approach,
an agent creates a complete plan by using obfuscated
private information from each intermediate agent, where
this obfuscation is achieved by adopting the differential
privacy technique. Due to the advantages of differential
privacy, following obfuscation, an agent’s private informa-
tion cannot be deduced by other agents regardless of their
reasoning power. This approach is the first in existence to
achieve strong privacy, completeness and efficiency simul-
taneously by taking advantage of differential privacy. More-
over, this approach is communication-efficient. Compared
to the benchmark approaches, our approach achieves better
performance in various aspects.

In the future, we intend to extend our approach by in-
troducing malicious agents. Existing approaches commonly
assume that agents are honest but curious. Introducing
malicious agents, which provide false information to others,
may be a challenging and interesting addition to the field of
multi-agent planning. Also, as described in the experimental
part (Section 8), we will continue to search usable real-world
datasets and evaluate our approach with them.
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