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Summary

Due to the rapid development of the cloud computing environment, it is widely

accepted that cloud servers are important for users to improve work efficiency. Users

need to know servers’ capabilities and make optimal decisions on selecting the best

available servers for users’ tasks. We consider the process of learning servers’ capabil-

ities by users as a multiagent reinforcement learning process. The learning speed and

efficiency in reinforcement learning can be improved by sharing the learning experi-

ence among learning agents which is defined as advising. However, existing advising

frameworks are limited by the requirement that during advising all learning agents in

a reinforcement learning environment must have exactly the same actions. To address

the above limitation, this article proposes a novel differentially private advising frame-

work for multiagent reinforcement learning. Our proposed approach can significantly

improve the application of conventional advising frameworks when agents have one

different action. The approach can also widen the applicable field of advising and speed

up reinforcement learning by triggering more potential advising processes among

agents with different actions.
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1 INTRODUCTION

Cloud computing, a term coined in late 2007, has developed over the past decade but is currently still a hot topic for research due to its ability to offer

flexible dynamic IT infrastructures, QoS guaranteed computing environments and configurable software services. According to Wang et al,1 who

proposed an early definition of cloud computing in 2008, a computing cloud is a set of network enabled services, providing scalable, QoS guaranteed

normally personalized, inexpensive computing platforms on demand, which can be accessed in a simple and pervasive way. The current three ser-

vice models in cloud computing are Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).2 A cloud server

is a powerful physical or virtual infrastructure that executes application and information processing and storage. Cloud servers are created using

virtualization software to divide a physical server into multiple virtual servers using the IaaS model of cloud computing to process workloads and

store information. Users can access virtual server functions remotely through an online interface. Cloud servers provide users stability and secu-

rity because software problems are isolated from users’ environments. Also, cloud servers are stable, fast, and secure as they can avoid hardware

limitations. Nowadays, more and more cloud server providers are emerging, that is, A2 Hosting and InMotion. Users select providers and services

according to their requirements, such as high processing performance or large storage space.3,4 The service selection problem can be handled using

reinforcement learning.

Reinforcement learning (RL) is widely used today to autonomously learn how to solve sequential decision-making problems interacting with

the system environment.5,6 Regular RL approaches need a large number of interactions with the system environment to learn a policy.7 Advising
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F I G U R E 1 A real-world example:
all students and teaching staff of a
course need to execute their
assignments on a cloud computing

servers, but they have different choices
available to them

frameworks address the above problem by reusing previous knowledge in a repeated state from other agents. Simultaneously learning agents advis-

ing can be used to accelerate learning when all agents start learning in a multiple-state system at the same time.8-11 An agent’s available choices

under this state are called actions. Some of learning agents who have visited a state more times than others, can be seen as more experienced in. A

single agent can play both roles of teacher who can provide advice, and student who will ask for advice.

Figure 1 shows a real-world example, one assignment in a cloud computing course in a university. Both students and teaching staff need to

execute this assignment on the university’s cloud servers, but students can only access public servers, and staff can access either public servers or

private servers. In this example, the experienced students who have already executed their assignments more times than others can provide advice

to other students in choosing the optimal server with the best capability to run their assignments within traditional advising frameworks, and the

same applies to staff.

However, traditional advising frameworks are only appropriate for situations in which all agents have the same actions and cannot be applied

when agents’ actions are not exactly the same. In the real world, it is common that agents have different available actions even though they are solving

the same problem.11 Referring back to Figure 1, considering traditional frameworks, experienced teaching staff cannot advise students which server

has a better capability and a better performance due to different available choices for servers even though they are working on the same assignment.

Therefore, it is crucial to solve the problem of advising among agents with different available actions. Little previous work has considered experience

transfer between two agents with different available actions, and the challenge is how to transfer the experience for the actions which are different

among teachers and students.

We find that a differential privacy mechanism can address the above challenge through the property of randomization. We consider all agents’

available actions and their experience on each state as independent data sets. The two data sets can be considered as neighboring data sets in terms

of differential privacy. In Figure 1, if teaching staff and students record the execution time of tasks as their experience on selecting servers, these

records for servers can be seen as data sets. The less time means the better capability of servers. When there is only one only one server accessible

only to teaching staff, teachers’ data sets have one more record than students’. In this case, the data sets of teachers and students can be considered

as neighboring data sets. By adding randomization, these data sets can be considered as the same in a defined scale, and teaching staff and students

can share experience with each other. The differential privacy property in our work is to guarantee that the experience for each action can still be

used as advice if the two actions differ in, at most, one record. This approach can expand the applicable field of advising frameworks and increase

the probability of the occurrence of advising.

We have three main contributions in this article.

1. First, we propose an improved differentially private advising approach based on our previous framework, to improve conventional advising

frameworks to address the problem that agents’ actions are different.
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2. Second, we widen the applicable field of conventional advising frameworks in reinforcement learning by allowing more possible advising to

accelerate agents’ learning stage in RL.

3. Third, we propose a new approach to decide when advising happens by calculating the Euclidean distance of teacher and student’s Q-value, Q(s).

We design a comprehensive experiment to demonstrate our approach in simultaneously multiagent RL framework by comparing with conven-

tional advising frameworks under the same setting. We provide a brief analysis of the convergence of agents’ learning and why Euclidean distance

works here. We also present our experiment results and the analysis of the performance of differential privacy in the method by changing the value

of privacy budget, 𝜀, in the range from 0.1 to 1.

2 PROBLEM STATEMENT

2.1 Scenario setting

In this section, we describe a detailed scenario as a motivated case study to demonstrate existing challenges we are addressing. The scenario shown

in Figure 2 is an extension of above example in a cloud environment. There are many users, a, b, c, d,… , whom we consider as agents participating in

a RL environment. There are many tasks, 1, 2, 3, 4,… can treat as the states s1, s2, s3, s4,… in the set of states S. Each user is allocated to a random

task each time, we call a single cycle for a user to finish its task an epoch, from being allocated to a random task to the time before being allocated to

the next task. Cloud servers A, B, C, D,… are used to solve tasks for users. In this RL environment, servers are actions taken by agents to solve tasks.

In our scenario, each agent can access different servers and compose a set of available actions, A, that is, for agent a, Aa(S):A, B, C, D. Each agent can

only take one action for each task each epoch. However, each server behaves differently on solving different tasks, and servers behave differently on

the same task, that is, server “A” is the best server on executing task 2 with the lowest time cost but the worst on task 4, or server “C”s computation

capability is not enough to solve task 3. Combining all these factors, a user obtains a “feedback” to evaluate how this server executes this task, which

we call reward r(s,a), meaning the reward from the action a at the state s. A higher reward means a server has a better capability on solving the task,

and vice versa. Therefore, the aim of users is to solve the task with the optimal server with the maximum reward each epoch.

2.2 Scenario discussion

In the above scenario, each user should repeatedly be allocated tasks and choose servers to solve them. The process can be considered as a learning

process in which users need to learn capabilities of servers on solving tasks. We explore the problems of how users can learn servers’ capabili-

ties, whether users can share their experience to others during the learning process, and how users share the experience to others even they have

different available choices.

To address these questions, each agent needs to know each cloud server’s capabilities based on their previous sequence of learning experience,

in order to make the best decision next time being allocated to the same tasks. Users continuously expand their knowledge by receiving the rewards

F I G U R E 2 Overview of scenario setting
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from previous epochs, and use learned knowledge to make the next decision. The knowledge determines probability distribution for each agents’

available actions in each state. The agent should “simunderstand” this reward and update their probability distribution for available actions at states

by a transition function T, in order to make a better decision next time when they are allocated to this task.

Agents can transfer experience to or ask experience from others to accelerate the learning process. However, due to the randomness of the task

allocation to simultaneously learning agents, the above scenario is very likely to generate a knowledge gap at some state. The knowledge gap is an

experience gap at a state, based on difference of times that an agent is allocated to a task with others. An agent can be considered as more experi-

enced than another on a task if this agent has met this task enough times more than the other. A threshold is used to define “simmore experienced”

with a minimum number of knowledge gap. An agent can ask for advice from the experienced agent while being allocated to this task again. However,

agents will inevitably run into due to the limitation we mentioned above, that is, traditional advising frameworks only focus on knowledge trans-

fer among agents with the same actions. For instance, referring back to Figure 2, agent a’s available actions are Aa: {A,B,C,D}, and agent c’s are Ac:

{B,C,D,E}. In conventionally proposed advising frameworks, agents can only advise other agents with the same actions. In other words, agent a and c

cannot advise each other due to the difference in their actions sets. Therefore, we propose a differentially private advising framework to break this

limitation. Our approach allows agents to advise in the above scenario when RL agents have different available actions, which will accelerate their

learning.

3 PRELIMINARY

3.1 Reinforcement learning

Reinforcement learning (RL) techniques are usually used to solve sequential decision-making problems, which model the learning environment as

a Markov decision processes (MDP). An MDP model can be depicted as a tuple ⟨S,A, T,R⟩, where S is the set of possible environment states, A is the

set of agents’ available actions, T is the probability of transition to next state s′ while performing action a in state s, and R is the reward function for

agents defining the reinforcement received from performing actions. At each learning step, an agent chooses an action after observing the state s,

and then the next state is defined by T and a reward signal r can be observed. The aim of RL task for the agent is to find an optimal policy 𝜋 ∶ S → A,

which maps the best action for each possible state.

We focus on RL algorithms with Q-value estimates to determine the agent’s policy, which is used to map every combination of state and action

to an estimate of the long-term reward starting from the current state-action pair: Q:S×A→R. The policy, 𝜋∗(s) = argmaxaQ∗(s, a), is optimal if the

Q-value is accurate for this policy. The update of the Q-value during RL process based on experiences with the MDP. An experience can be described

by a quadruple ⟨s, a, r, s′⟩where action a is taken in state s, resulting in reinforcement reward r and a transition to next state s′. The update of Q-value

follows the rule as: Q(s, a) ← Q(s, a) + 𝛼[R(s, a) + 𝛾Q(s′, a′) − Q(s, a)], where 𝛼 is learning rate, 𝛾 is a discount factor for next states, a and a′ ∈ A are

the current and next action, respectively, and s and s′ ∈ S are the current and next state, respectively.

3.2 Advising in reinforcement learning

Supposing that an agent has learned an optimal policy 𝜋 for a specific task and become experienced, it can teach another agent which is beginning

to learn the same task using this fixed policy. As the student learns, the teacher will observe each state s the student encounters and each action a

taken by the student. In n of these states, the teacher can advise the student to take the “simcorrect” action 𝜋(s) with its own learning experience

or policy. The teacher-student framework aims to accelerate a student’s training process. However, a budget b can limit the advising process. The

teacher cannot provide further advice when the budget b is spent. Therefore, it is critical to define when to give advice to accelerate student’s

learning.

3.3 Differential privacy

Differential privacy is a provable privacy notation provided by Dwork et al.12 It provides a strong privacy guarantee that the outputs of the queries

on the neighboring data sets will be statistically similar. The formal definition of differential privacy is presented as follows:

Definition 1 (𝜀-differential privacy). A randomized algorithm  gives 𝜀-differential privacy for any pair of neighboring data sets D and D′, and for

every set of outcomes Ω,  satisfies:

Pr [(D) ∈ Ω] ≤ exp(𝜀) ⋅ Pr [(D′) ∈ Ω]. (1)
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𝜀 is the privacy parameter, which is defined as the privacy budget.13,14 It controls the privacy preservation level. A smaller 𝜀 represents a greater

privacy.

Definition 2 (neighboring data set). The data sets D and D′ are neighboring data sets if and only if they differ in one record. This is denoted as

D ⊕ D′ = 1.

“⊕” indicates the difference between two data sets.

Definition 3 (sensitivity). For a query Q ∶ D → R, the global sensitivity of Q is defined as follow:

S = max
D,D′

||Q(D) − Q(D′)||1. (2)

Definition 4 (Laplace mechanism). Given a function f ∶ D → R over a data set D, Equation (4) provides 𝜀-differential privacy.

f̂(D) = f(D) + Laplace
( s
𝜀

)
. (3)

A Laplace mechanism is used for numeric output. Differential privacy is achieved by adding Laplace noise to the true answer.15-17

4 DIFFERENTIALLY PRIVATE ADVISING FRAMEWORK

We have proposed a differentially private advising framework by combining reinforcement learning, teacher-student advising framework, differ-

ential privacy mechanism, and Euclidean distance together. Figure 3 is the overview of our proposed method. An reinforcement learning agent j

wants to update its probability distribution by obtaining a reward from an action. Any reason leading to the failure of advising results in the fact that

agent j has to choose the action alone based on its own probability distribution. The agent j has a communication budget bask to control its commu-

nication overhead and each successful advising process costs some communication budget from it. bask is initialized with a constant C, and each ask

consumes 1 from the budget. When it runs out the budget bask, it leads to the failure of advising. Agents can trigger advising with their neighboring

agents whose actions differ in at most one record with the agent. When bask>0, agent j check if its neighboring agents have communication budget

bgive for giving advice. bgive is also initialized with a constant C, and each advice consumes 1 from the budget. If all neighboring agents run out their

bgive, the advising process fails. If some of neighboring agents’ bgive > 0, j starts to calculate the Euclidean distance with each available neighboring

agent’s Q-value. None of Euclidean distance results are greater than a threshold d will lead to the failure of advising process. If one or more than

one Euclidean distance is greater than d, the agent with the maximum distance with j will become j’s teacher to choose an action for j for further

updating Q-value and probability distribution in this epoch. We will introduce details and algorithms for each part in following subsections.

4.1 Reinforcement learning and normalization

RL algorithm is the base of our proposed method, which is given in Algorithm 1. For each epoch, an agent j selects an action ak ∈A(j) based on its

probability distribution over the available actions at state s. The agent g obtains a reward r by taking this action and uses this reward to update its

Q-value of the action ak at state s, which this update is based on (i) Q(s,ak), the current value of Q(s,ak), (ii) max Q(s′, a), the maximum Q-value of an

action at the next state s′, (iii) 𝛾 , a discount rate to control the effect of max Q(s′, a) on update this time, (4) 𝛼, a learning rate to control the speed of

updating Q-value and learning, and (5) the reward r. An agent should to adjust its probability distribution using the updated Q-value. Similar to the

F I G U R E 3 Overview of framework
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process of updating Q-value, the agent updates its probability distribution 𝜋(s) for each action based on the current 𝜋(s, a), a learning rate 𝜉, and r

which is the sum of the product of each action’s probability and Q-value. The update of 𝜋(s) can only show the trend of experience accumulation and

reflect the relationship between each action’s Q-value; therefore, we require normalization function shown in Algorithm 2 to adjust the probability

distribution 𝜋(s) to satisfy the requirement that the sum of 𝜋(s) is 1 while keeping the ratio relationship.

Algorithm 1. Reinforcement learning

Require: Taking agent j at state s as an example

Require: Initialize probability distribution, Q-value for each actions

1: repeat for each epoch

2: Agent j chooses an action ak , based on the probability distribution: 𝜋(s) = ⟨𝜋 (s, a1) ,… , 𝜋 (s, an)⟩;

3: r ← R ⟨s, ak⟩;

4: Q (s, ak) ← (1 − 𝛼)Q (s, ak) + 𝛼
[
r + 𝛾maxaQ (s′, a)

]
;

5: r̄ ← Σa∈A(s)𝜋 (s, a)Q (s, a);
6: for a ∈ A(s) do

7: 𝜋 (s, a) ← 𝜋 (s, a) + 𝜉 (Q (s, a) − r̄);
8: end for

9: 𝜋 (s) ← Normalization (𝜋 (s));
10: s ← s′;
11: until finish learning

Algorithm 2. Normalization

Require: Taking agent j with n available actions

Require: d = min1≤k≤np (k), mapping centre co = 0.5 and mapping lower bound Δ = 0.001;

1: if d > Δ then

2: 𝜌 ← co−Δ
co−d

;

3: for k = 1 to n do

4: p (k) ← co − 𝜌 (co − p (k));
5: end for

6: end if

7: Π ← Σ1≤k≤np (k);
8: for k = 1 to n do

9: p (k) ← p(k)
Π

;

10: end for

11: return p

4.2 When to ask for and give advice

In this section, we introduce when to ask for and give advice and why the differential privacy mechanism is appropriate here. In our advising environ-

ment, agents’ actions are not private information, which means every agent knows their neighbors and neighbors’ actions. Therefore, neighboring

relationship has been defined for each client to trigger advising processes. We first present the convergence proof for Q-value in our case as a base,

and explain why the vector Q(s,a) and our queries on the vector satisfy differential privacy. The solution we used to decide the timing of advising

is calculating Euclidean distance d2
E
(teacher, student) between the student’s Q-value vector and its optimal teacher’s Q-value vector. A threshold d

is set that when the distance d2
E
(teacher, student) > d we consider the teacher to be sufficiently more experienced than the student to be able to

advise them.

4.2.1 The convergence of Q-value

Much of the previous research on the proof of Q-value has been exploratory in nature. We refer readers who are interested in the proof to Refer-

ences 18-20. In our case, due to the discreteness of our states and actions, it is not necessary to think about the optimal Q(s′, a′) from the next state
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s′ while updating current state’s Q(s,a), or simply let Q(s′, a′) = 0. The equation of updating Q-value is transformed to

Q(s, a) ← Q(s, a) + 𝛼 ⋅ (r(s, a) − Q(s, a))

← (1 − 𝛼) ⋅ Q(s, a) + 𝛼 ⋅ r(s, a).

Claim 1. Assume that an agent has selected the action a whose reward is r(s,a), at the state s enough times, and updated its Q-value Q(s,a) until full

convergence, we have

lim
t→+∞

Q(s, a) = r(s, a).

Proof. Let q=Q(s,a), r = r(s,a), and t is the index of times for updating q, so, qt is the current value of Q(s,a). When the (t+1)th time to update q, we

have

qt+1 = (1 − 𝛼) ⋅ qt + 𝛼 ⋅ r,

where 𝛼 is learning rate in the range 0 < 𝛼 < 1. We have

qt+1 − r = (1 − 𝛼) ⋅ qt + 𝛼 ⋅ r − r

= (1 − 𝛼) ⋅ qt − (1 − 𝛼) ⋅ r

= (1 − 𝛼) ⋅ (qt − r).

So we have

qt+1 − r
qt − r

= 1 − 𝛼.

So (qt − r) is a geometric progression with the common ratio (1 − 𝛼), we have

qt = (q0 − r) ⋅ (1 − 𝛼)t + r.

Because when 0 < 𝛼 < 1

lim
t→+∞

(1 − 𝛼)t = 0.

So we have

lim
t→+∞

qt = (q0 − r) ⋅ 0 + r

= r. ▪

4.2.2 Differential privacy

Assume that all agents have learned enough times, and Q(s,a) and its probability distribution are fully convergent, for the state s and the

action a, the value of Q(s,a) is fixed and Q(s,a)= r(s,a) for each agent. Consider a single agent, i’s Q-value, who has n available actions, Q(s):

{Q(s,a1),Q(s,a2),… ,Q(s,an)}. We use a table to record i’s Q(s) value as a data set as shown in Table 1. Similarly, an agent j’s Q(s) value as shown in Table 2.

When Q(s,a) values of agent i, j are fully convergent, Tables 1 and 2 is then transformed to Tables 3 and 4, separately. The difference between Tables 3

and 4 has been highlighted where agent i has a different action ak at the state s from agent j’s action a∗
k

, and accordingly different convergent Q(s,ak)

and Q(s, a∗
k
). According to Definition 2, we consider two data sets in Tables 3 and 4 are neighboring data sets, which satisfy differential privacy mech-

anism. Because Q(s) maps the probability distribution 𝜋(s), we consider 𝜋(s) is a query on the data set Q(s). We define the query f(Q(s)) is the process

of calculating 𝜋(s) from Q(s). According to Definition 1, existing a privacy budget 𝜀 and a randomized algorithm  satisfy

Pr [(Qi(s)) ∈ Ω] ≤ exp(𝜀) ⋅ Pr [(Qj(s)) ∈ Ω].

The randomized algorithm  is Laplace mechanism in our case, which satisfies

f̂(Qi(s)) = f(Qi(s)) + Laplace
(

S
𝜀

)
,
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Action Q(s)

a0 Q(s,a0)

a1 Q(s,a1)

⋮ ⋮

ak Q(s,ak)

⋮ ⋮

an Q(s,an)

TA B L E 1 Agent i’s data set of Q-value

Action Q(s)

a0 Q(s,a0)

a1 Q(s,a1)

⋮ ⋮

a∗
k

Q(s, a∗
k
)

⋮ ⋮

an Q(s,an)

TA B L E 2 Agent j’s neighboring data set of Q-value

Action Q(s)

a0 r(s,a0)

a1 r(s,a1)

⋮ ⋮

ak r(s,ak)

⋮ ⋮

an r(s,an)

TA B L E 3 Agent i’s convergent Q-value

Action Q(s)

a0 r(s,a0)

a1 r(s,a1)

⋮ ⋮

a∗
k

r(s, a∗
k
)

⋮ ⋮

an r(s,an)

TA B L E 4 Agent j’s convergent Q-value

where the sensitivity S satisfies

S = max
f(Qi(s)),f(Qj(s))

||f(Qi(s)) − f(Qj(s))||1.

4.2.3 Euclidean distance

We use Euclidean distance to calculate the difference of Q-value between teacher and student’s. Euclidean distance is most commonly used to

calculate the distance between two vectors in a Euclidean space due to its simplicity. Let x, y be two N-dimension vectors and x= (x1, x2, … , xN),

y = (y1, y2, … , yN). The Euclidean distance d2
E
(x, y) is given by

d2
E(x, y) =

N∑
i=1

(xi − yi)2. (4)

We set a threshold d that when the distance d2
E
(teacher, student) > d, we consider the teacher to be sufficiently more experienced than the

student to be able to provide advice. We have presented the convergence proof of Q(s,a) in our setting in the above subsection. Q(s,a) is convergent
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to r(s,a), so two agents can learn the same knowledge when they are in the completely same setting. d2
E
(teacher, student) is the knowledge gap that

indicates how much more the teacher has learned compared with the student.

Algorithm 3. Differentially private advising framework

Require: Taking student agent j and teacher agent i at state s as an example

Require: Initialize probability distribution, Q-value for each actions

Require: bgive = c and bask = c for each agent, c is a constant

Require: Sensitivity S and privacy budget 𝜖

Require: The distance threshold d

1: function EUCLIDEAN DISTANCE(i, j)

2: if A(i) == A(j) then

3: d2
E
(i, j) =

∑len(Aj)
p=1 (Qi(s, ap) − Qj(s, ap))2

4: else if len(A(i)) < len(A(j)) then

5: d2
E
(i, j) =

∑len(Aj)
p=1 [(Qi(s, ap) + Laplace( S

𝜖
)) − Qj(s, ap)]2

6: else if len(A(i)) > len(A(j)) then

7: adiff : the action in A(j) but not in A(i)
8: d2

E
(i, j) =

∑len(Aj)
p=1 [(Qi(s, ap) + Laplace( S

𝜖
)) − Qj(s, ap)]2 + (Qj(s, adiff) + Laplace( S

𝜖
))2

9: else if len(A(i)) == len(A(j)) and A(i)! = A(j) then

10: adiff1: the action in A(j) but not in A(i)
11: adiff2: the action in A(i) but not in A(j)
12: d2

E
(i, j) =

∑len(Aj)−1
p=1 [(Qi(s, ap) + Laplace( S

𝜖
)) − Qj(s, ap)]2 + [(Qi(s, adiff2) + Laplace( S

𝜖
)) − Qj(s, adiff1)]2

13: end if

14: return d2
E
(i, j)

15: end function

16: repeat for each epoch

17: if bask(j) < 0 then

18: i = [argmaxi∈|Neig|(EuclideanDistance(i, j)) and bgive(i) < 0]

19: if d2
E
(i, j) < d then

20: r̄ ← Σa∈A(s)𝜋 (s, a) (Qi(s, a) + Laplace( S
𝜖
));

21: for a ∈ Aj(s) do

22: 𝜋′ (s, a) ← 𝜋 (s, a) + 𝜉(Qi(s, a) + Laplace( S
𝜖
));

23: end for

24: i selects an action ak for j, based on the new probability distribution: 𝜋′(s) = ⟨𝜋′ (s, a1) ,… , 𝜋′ (s, an)⟩;

25: r ← R ⟨s, ak⟩;

26: Q (s, ak) ← (1 − 𝛼)Q (s, ak) + 𝛼
[
r + 𝛾maxaQ (s′, a)

]
;

27: r̄ ← Σa∈A(s)𝜋 (s, a)Q (s, a);
28: for a ∈ A(s) do

29: 𝜋 (s, a) ← 𝜋 (s, a) + 𝜉 (Q (s, a) − r̄);
30: end for

31: 𝜋 (s) ← Normalization (𝜋 (s));
32: s ← s′;
33: bask(j) − 1;

34: bgive(i) − 1

35: else Algorithm 1

36: end if

37: else Algorithm 1

38: end if

39: until finish learning
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4.3 Algorithm of differentially private advising framework

Algorithm 3 is the algorithm of our proposed differentially private advising framework. In this algorithm, we assume the agent j as a student and the

agent i as a teacher, and set the distance threshold d to trigger the advising process. We include Euclidean distance, differential privacy mechanism

and teacher-student advising framework into the reinforcement learning algorithm. We first propose the function Euclidean distance with differ-

ential privacy to decide the timing of advising. There are four possible situations involved in our scenario to calculate Euclidean distance between

i and j’s Q-value. First, when two agents have identical actions, they directly calculate Euclidean distance based on their original Q(s). In the second

situation, when the teacher has one action more than the student, we add Laplace noise onto the teacher’s Q(s) and only calculate the Euclidean dis-

tance of same actions’ Q-value between teacher and student. Third, when the teacher has one action fewer than the student, we temporarily add

the missing action to the teacher with an initial value of Q-value, normally 0. Following this, we add Laplace noise onto the teacher’s new Q-value

including the additional action to calculate Euclidean distance with the student’s Q(s). The last situation is when the teacher and student have the

same number of actions but one of them is different. In this situation, we temporarily consider the teacher’s different action as the student’s action

differing with the teacher, and then add Laplace noise on the teacher’s new Q(s) to calculate Euclidean distance with the student’s Q(s) normally.

All of these four situations satisfy the definition of neighboring data set, and are allowed within our proposed framework. This is how we calculate

Euclidean distance to determine when advising happens.

We include the function Euclideandistance(i,j) in the main part our algorithm to determine who the teacher agent is. While the agent j has not

depleted its ask budget bask, it can ask advice from its “neighboring agents.” In the line 18, |Neig| is the data set of agent j’s neighboring agents who can

provide advice to j. The agent j first checks its neighboring agents to determine whether they still have remaining budget bgive, and then calculates

the Euclidean distance with every neighbor with nonzero bgive. The teacher i must satisfy the following three requirements: (i) i does not deplete

its bgive, (ii) the Euclidean distance between i and j is the greatest among all neighboring agents, and (iii) their Euclidean distance is greater than the

threshold d. If existing an agent i satisfies these three requirements, it can select an action based on its new probability distribution𝜋′(s) transitioned

from a new Q(s) during the function Euclideandistance(i,j) (lines 20 to 24). Remarkably, the i’s noised Q-value is only involved in the Euclidean distance

calculation and selecting action for the student, but does not update i’s original Q-value and affect its learning process. The student agent j then

gets the reward from this action and then adjusts the Q(s,a) and probability distribution. The advising process costs 1 for student’s budget bask

and teacher’s budget bgive. If no neighboring agent meets above three requirements, or the agent j runs out its asking budget bask, the agent j then

proceeds with traditional reinforcement learning as in Algorithm 1.

In general, our algorithm allows more advising processes to occur while guaranteeing the original teacher-student advising framework runs

normally in a reinforcement learning system. We use the differential privacy mechanism to eliminate the difference between two agents’ actions in

a reasonable bound, which facilitates more effective advising with limited communication budgets.

5 EXPERIMENTS

5.1 Experiment setting

In order to demonstrate our method intuitively, we have designed experiments with the scenario introduced in Section 5. There are three parts of

experiment. In the first experiment, we investigate the following three strategies:

1. Traditional reinforcement learning (no advice): As reference, we evaluate the SARSA learning algorithm without advising;

2. Traditional advising framework: As reference, we evaluate the traditional teacher-student advising framework. Advising only happens between

two agents with completely the same actions.

3. Differentially private advising framework: Our proposed method. Advising process occurs between two agents with either the same actions or

differing by one. This strategy applies differential privacy, which means that students accept teachers knowledge with additional noise to adjust

their own knowledge influencing action

We involve our approach and two compared strategies together in experiment 1 via the controlled variable method, where each strategy has

the same number of users, servers, and tasks. We also set the same learning rate, rewards, and initial Q-value for each action to guarantee the total

knowledge is the same among every strategy. The only different setting in our proposed method is that each agent has one different action, (ie, A(a1):

{A, B, C, D}, A(a2): {A, B, C, E}, A(a3): {A, B, D, E}, … ), but each agent’s actions are the same for the other two strategies. The purpose of this experiment

is to demonstrate that our method can allow advising to occur between two agents with one different action. The expectation is that our algorithm

can have a same performance with traditional advising framework.

Our second experiment is designed to demonstrate the second contribution that our proposed approach can widen the traditional advising

framework. We compare two approaches’ performance in a completely same setting. In this reinforcement learning system, only a subset of agents

have the same available actions and others have one different actions among each other. In this case, only a small amount of agents with the same

actions can advise each other in traditional advising framework, but all of agents can advise their neighboring agents in our proposed method. In
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theory, our method can trigger more advising processes to positively accelerate convergence. We use the traditional advising framework as the

base to demonstrate how much performance our differentially private advising framework can improve. In the third experiment, we explore how

the privacy budget 𝜀 affect the differential privacy performance in our algorithm. We set the epsilon as 0.1, 0.4, 0.7, 1, and 2 separately.

The comparison criteria is convergence ratio, the accuracy of agents’ learning, which is described by the following equation:

∑n
k∈A 𝜋(s,ak) ∗ R(s,ak)∑n

m∈A 𝜋(s,am) ∗ R(s,am)
,

where n is each agent, k is each action of an agent, 𝜋(s,ak) is the probability of this action, R(s,ak) is the reward of this action, m is the action with the-

oretically maximum reward. Due to the fixed reward r(s,a), the change of the ratio is affected by the change of probability. The greater convergence

ratio means that agents have the higher probability to select the action with higher reward.

Table 5 shows three experiments’ parameters. Note that, we set the reward for the optimal action as 2, while others are 0. The Euclidean distance

threshold is set to 0.7, calculated by the theoretical convergent value of Q-value regarding related settings. We assign an advising budget of 30 for

both giving and asking for each agent during learning processes until convergence.

5.2 Experiment results

Figure 4 shows the result of experiment 1 with the comparison between three strategies with the different setting of actions but in the same num-

bers. Our proposed approach is shown with the red line, and other two approaches are demonstrated with blue and black lines separately. The result

shows that all three strategies are convergent to about 92%, and the red line is above the other two, that is, our proposed method converges the

fastest, especially in the early learning stage from 0 to 250 epochs. The details are shown in Figure 5, which is the performance comparison between

TA B L E 5 Parameter setting
Experiment: Experiment 1 Experiment 2 Experiment 3

Parameters

Users nusers 10

Servers nservers 12

Tasks ntasks 10

Privacy budget 𝜀 1 1 (0,2)

Privacy sensitivity S 1

Reward r 2, 0

Euclidean distance threshold d 0.7

Budget for giving advice bgive 30

Budget for asking advice bask 30

Epoch 700

F I G U R E 4 Experiment 1: Comparison between three
strategies
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F I G U R E 5 Experiment 1: Performance comparison
between three strategies (traditional reinforcement
learning as base)

three strategies with the traditional reinforcement learning as a base to checked how much we improve the learning process. Our proposed method

has a higher convergence percentage than the other two, and the maximum improvement is around 7% at 100 to 150 epochs, which means our

approach can accelerate agents’ learning during the whole learning process, especially in the early stage.

Experiment 2 demonstrates our second contribution that our approach allows more advising processes to occur in a reinforcement learning

system. Figure 6 shows the result of experiment 2 with the comparison among three mentioned strategies in an identical environment, which differs

from experiment 1 in that we only guarantee the total knowledge is the same for three strategies but with different actions in experiment 1. Similar to

Figure 5, Figure 7 shows how much we improve the learning speed in this reinforcement learning setting. The performance of the traditional advising

framework shown by the blue line is very close to the traditional reinforcement learning strategy, that is, it can only achieve a limited acceleration

of learning due to the fact that advising can only occur among few agents with the same actions in the setting. However, our approach shown by the

red line, accelerates the learning speed much more in the same setting than the other two strategies.

Experiment 3 explores the performance of differential privacy with different value of epsilon. The experimental results shown in Figures 8

and 9 indicate that the performance is increasingly higher with the greater value of epsilon. When 𝜀 = 0.1, it even has a negative impact on the

performance and performs worse than the traditional reinforcement learning.

F I G U R E 6 Experiment 2: Comparison between three
strategies with the same setting

F I G U R E 7 Experiment 2: Performance comparison
between three strategies (traditional reinforcement

learning as base)
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F I G U R E 8 Experiment 3: Comparison between
different epsilon value with the same setting

F I G U R E 9 Experiment 3: Performance comparison
between different epsilon value (traditional reinforcement
learning as base)

5.3 Result discussion

In this section, we will discuss and analyze our experimental results. Our purpose in the first experiment is to demonstrate our first contribution

that agents can give advice to or ask advice from others even when they have different actions. Our original expectation for the proposed method

was that it would have the same effect as the traditional advising framework. However, the experiment shows that we have a better performance in

the early learning state with a higher convergent percentage. We believe that it is positively affected by differential privacy noise. Referring back to

our algorithm Algorithm 3, we see that a teacher calculates Euclidean distance with the noised Q-value with a student’s Q-value and transitions the

noised Q-value to the new probability distribution to make the decision for the student. An appropriate randomized noise positively influences the

calculation of Euclidean distance and facilitates more advising occurring in the early learning stage. The noise also keeps the shape of the probability

distribution of the teacher, that is, the teacher still has a high probability to choose the best action, and this positively increases the result of Euclidean

distance to easily satisfy the threshold to trigger advising process.

Experiment 2 corresponds to our second contribution that our method can widen the applicable field of advising in a reinforcement learning

system. Our approach performs much better than the other two compared strategies because our method allows more advising happen by breaking

the limitation of the traditional advising framework. As we mentioned earlier, in the environment of this experiment, only a subset of agents have

the same actions, and others have one different action with each other. The traditional advising framework performs worse because only a small

number of agents with same actions can advise each other, and the effectiveness of advising is not obvious due to limited times that advising is able

to occur and the effect from learning rate. However, our proposed method allows more potential advising to occur among agents with the same

actions or neighboring agents with one different action. Agents have more opportunities to ask advice from more experienced neighboring agents.

The learning process is positively affected by more advice and better advice in our framework. Therefore, our proposed method can widen the

applicable field of advising by allowing more potential advising.

Experiment 3 demonstrates the performance of differential privacy in our proposed framework. We set five different values of privacy budget

𝜀 ranging from 0.1 to 2, to explore how the differential privacy noise affects the performance. Referring back to Equation (4) we can see that the

scale of the randomized noise is determined by sensitivity S and privacy budget 𝜀, and we have mentioned that in our case S is fixed as 1 because the

maximum value of a percentage is 1. So 𝜀 is the only factor affecting the scale of noise with an inversely proportional relationship. When 𝜀 = 0.1,

our proposed method even performs worse than traditional reinforcement learning because the noise is so large that it negatively impacts on the

teacher’s selection and student’s action. It is obvious that the red line has a sharp increase at epoch 300 because most agents have run out their
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asking and giving budgets and start independently learning without the negative impact from the randomized noise. Therefore, in Figures 8 and 9,

it is clear that our algorithm perform better when the value of 𝜀 is greater within a reasonable range.

6 RELATED WORK

The early advising approaches mostly focused on humans as teachers to provide advice. Clouse and Utgoff21 proposed that humans can offer

advice at any time as an expert monitoring a single student learning a multiple-step decision task via a reinforcement learning. Maclin and

Shavlik22 proposed that the teacher occasionally gives the suggestions to the student while watching the student’s learning process. In 2005, Tor-

rey et al23 proposed a method that requires a human-provided and hand-coded mapping to link the two tasks, to transfer knowledge from one

task to another as advice. Clouse24 proposed to train an RL agent using autonomous teacher that is assumed to perform at a moderate level

of expertise for the task. However, this approach may restrict the performance of advising due to receiving too much advice. Teacher-student

framework is first proposed by Torrey and Taylor25 and further improved by Taylor et al,26 which introduces a numeric communication budget

to limit the number of times of advising during the learning steps, which becomes an essential part of the advising model to imitate humans’

availability and attention capability in real world.27 Zimmer et al28 introduced an approach that an agent should learn when to give advice

with building a sequential decision-making problem. Even though internal representations of the student are not supposed to be known, the

teacher must observe the student reward to solve the problem. All the aforementioned works rely on a single teacher with a fixed policy. Nunes

and Oliveira29 proposed that multiple agents can broadcast their average reward at the end of each learning epoch while learning in the same

system, and agents whose average reward is lower than the best one can ask for device from the best agent. Zhan et al30 considered the pos-

sibility of receiving suboptimal advice and combined multiple bits of advice by a majority vote to make this method more robust to against bad

advising.

In above approaches, either teacher or student alone can trigger a process of advising in RL stage. Amir et al31 proposed a jointly initiated frame-

work that both students and teachers need to agree to receive and provide advice simultaneously. Da Silva et al8 proposed an advising framework

among simultaneously learning agents based on teacher-student framework, in which agents start learning together without an experienced agent.

Their method is also based on jointly initiated teacher-student relations, which are established on demand when a student is not confident enough to

make choice alone, and a teacher has enough confidence to provide advice at the same time, which is highly related to our proposed method. Ye et al9

proposed to use differential privacy to protect benign agents against malicious agents in the advising stage. Zhu et al32 proposed a partaker-sharer

advising framework (PSAF) for cooperative agents under limited communication. The framework allows Q-value transfer from an agent who has

visited a state more times to an agent who has visited a state fewer times.

7 CONCLUSION

In this article, we propose a novel differentially private advising framework for multiagent reinforcement learning applying into a real-world cloud

server environment. Our proposed method allows agents with at most one different action to advise each other to accelerate learning speed toward

convergence in a simultaneously learning setting. We applied differential privacy mechanism to add a randomized noise on the teacher agent’s

Q-value and calculated the Euclidean distance between teacher’s noised Q-value and student’s Q-value to decide the timing of advising. If the

Euclidean distance is greater than a threshold, the teacher agent selects an action for students based on the new probability distribution transitioned

from the new noised Q-value.

There are three contributions of our article: (i) we break the limitation of conventional advising framework which only allows advising between

agents with the same available actions, (ii) we widen the applicable field of conventional advising framework and thus allow more potential advising

in some reinforcement learning systems, and (iii) we design a new approach to decide when advising occurs by calculating the Euclidean distance of

teacher and student’s Q-value.

Our three experimental results demonstrate our contributions and also explore how the differential privacy budget 𝜀 affects the differential

privacy in the proposed method. The experimental results indicate that our framework can facilitate potential advising between two agents with

one different action and can perform better in the early learning state than the traditional advising framework in the same setting. Our approach

may direct some further research in server selection, resource allocation and task allocation problems.
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