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How can large-celled diatoms rapidly modulate sinking rates

episodically?

Michel Lavoie' and John A. Raven®®4*

T Québec-Océan and Unité Mixte Internationale Takuvik Ulaval-CNRS, Département de Biologie, Université Laval, Québec-Océan,

Québec, G1K 7P4, Canada

2 Division of Plant Science, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
8 School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley (Perth), WA 6009, Australia
4 Climate Changer Cluster, University of Technology Sydney, Ultimo, NSW 2006, Australia

*Correspondence: j.a.raven@dundee.ac.uk

Received 11 November 2019; Editorial decision 2 March 2020; Accepted 7 March 2020

Editor: Christine Raines, University of Essex, UK

Large variations in sinking rate of large-celled diatoms
with a periodicity of ~10 s have their basis in cell density
changes. Of the three mechanisms we model, the pre-
dicted energy cost is lower for periodic variations in the
increase in cell volume than for variations in either the
intracellular concentration of inorganic ions, or of or-
ganic solutes, that form solutions of different densities
These predictions require experimental testing.

Diatoms are silicified microalgae; marine planktonic diatoms
account for at least 20% of global primary productivity, and
40% of the ‘biological pump’ that sequesters atmospheric CO,
as organic C in the deep ocean (Tréguer et al., 2018). Small
marine diatoms generally have a greater density than does sea-
water, and so they sink (Miklasz and Denny, 2010; Villareal
et al.,2014; Kemp and Villareal, 2018). The high density of the
silicified frustules often cannot be offset by a low-density so-
lution in the vacuole, due to constraints on: (i) the lowest pos-
sible density of the vacuolar solution, even with active water
transport; and (ii) the fraction of the cell volume occupied by
the vacuole (Boyd and Gradmann, 2002; Miklasz and Denny,
2010; Raven and Doblin, 2014; Lavoie et al. 2015). With
increasing cell volume, and an increasing fraction of the cell
volume occupied by the vacuole, the overall cell density can
be lower than that of seawater, allowing positive buoyancy in
some diatoms (Allen, 1932; Gross and Zeuthen, 1948;Villareal,
1988; Boyd and Gradmann, 2002; Raven and Doblin, 2014;
Villareal et al., 2014; Kemp and Villareal, 2018). This upward

movement is particularly important for large-celled diatoms
(e.g. Ethmodiscus spp. and Rhizosolenia spp.), which undergo
periodic vertical migration in the oligotrophic ocean allowing
them to exploit vertically (light at the surface and nutrients
at depth) and temporally (photoperiod and scotoperiod) seg-
regated resources in the water column (Raven and Doblin,
2014; Lavoie ef al., 2015). Increased density results from poly-
saccharide synthesis and the accumulation of ions generating
dense solutions (e.g. K), and decreased density results from
the accumulation of ions generating less dense solutions (e.g.
Na®) and by active water influx (e.g. Moore and Villareal, 1996;
Raven and Doblin, 2014; Lavoie et al., 2015, 2016).

Recent ground-breaking studies of Gemmell ef al. (2016) and
Du Clos et al. (2019) showed that large-celled diatoms can con-
trol their sinking rate over time scales of seconds. These rapid
oscillatory changes in the sinking rate occurred in three large-
celled marine diatoms (Coscinodiscus radiatus, Coscinodiscus wailesii,
and Palmerina hardmaniana with cell radii of 56, 123,and 112 pm,
respectively). In illuminated N-depleted cultures of these algae,
the sinking rate varied from 0.025 mm s~ to 0.2 mm s ' over
a period of 5-10 s (Gemmell er al., 2016). In the dark, these
oscillations in sinking occurred at a lower frequency (Du Clos
et al., 2019). Such rapid high-frequency variations in sinking
rate occurring via an as yet unknown mechanism could help
alleviate diffusive limitation of nutrient uptake in oligotrophic
marine environments (Du Clos et al., 2019).

This fast periodic oscillatory behaviour in diatoms contrasts
with other cyclical phenomena under constant conditions in
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Box 1. Summary and energy cost of fast Na*/K* exchange at the plasmalemma

This strategy would first involve Na* influx into the cytosol down the electrochemical gradient, particularly
for diatoms with low cellular Na* and high K* such as Coscinodiscus granii (Kesseler, 1974) and C. wailesii
(Melkikh and Bessarab, 2010), and depolarization of the inside-negative membrane electrical potential
difference (Boyd and Gradmann, 1999). This would provide a driving force for K* efflux through K*
channels, replacing higher density hydrated K* ions (p=1034.3 kg m~3) with lower density hydrated Na* ions
(p=1028.4 kg m~®) in the cytosol (Boyd and Gradmann, 2002), and hence potentially decreasing cell sinking
rate at no ATP running cost. In contrast, re-establishment of the initial low Na* and high K* concentration,
which would increase the sinking rate, would need cellular energy, probably via the use of an electrogenic
plasmalemma Na*-K* ATPase, which apparently occurs in diatoms (Bhattacharya and Volcani, 1980; Rees,
1984; Flynn et al., 1987) with energetically downhill K* influx for charge balance. We performed mechanistic
energy cost and vertical gravitational sinking calculations in Supplementary Protocol S1 for the large-celled
diatom C. wailesii assuming a low cellular osmolarity similar to that of seawater, which maximizes the
sensitivity of the sinking rate to a change in inorganic ion composition and decreases the energy cost per
unit of sinking rate change. Those calculations indicate that an 8.8-fold change in sinking rate is coupled to
large energy expenditure (48% added to the total energy cost of growth) due to an electrogenic 3Na*efflux,
2K*influx ATPase with energetically downhill 1K* influx through a K* channel, giving electroneutrality at the

plasmalemma, and a similar mechanism at the tonoplast.

Coscinodiscus, namely fluctuations in photosynthetic rate (Kithn
and Raven, 2008) and in cell elongation (Olson et al., 1986),
which have lower frequencies than the variations in sinking
rate in the light (Gemmell et al., 2016). Hence, those phe-
nomena alone cannot be related to the fast cyclical modula-
tion of the diatom sinking rate. Here we discuss the feasibility
and potential quantitative importance of three mechanisms
potentially explaining the intriguing fast episodic changes in
sinking of large-celled diatoms taking Coscinodiscus wailesii as
a model species (Supplementary Protocol S1-S3 at JXB on-
line). These mechanisms are (1) high-frequency modulation of
Na" and K* permeability, as occurs in action potentials with
transmembrane ion exchange; (ii) metabolism interconverting
low-density organic cations and higher density cations; and
(iii) fast cyclical changes in the cell expansion rate.

Effects of three putative mechanisms
driving fast oscillatory changes in the
sinking rate of large-celled diatoms

The first mechanism involving a putative rapid Na'/K" ex-
change at the plasmalemma using Na" and K" channels as used
in action potentials and Na'-K" ATPase in large-celled dia-
toms is explained and discussed in Box 1 and Supplementary
Protocol S1. Our analysis suggests that this could only explain
fast (~0.1 Hz) cyclical changes in the sinking rate of C. wailesii
at a large energy cost.

A second possibility involves the exchange of organic sol-
utes yielding solutions of different densities. Based on the large
energy cost of synthesizing such organic solutes in quantities
modulating cell density (Supplementary Protocol S2), we also
argue that a prohibitive energy cost occurs for rapid cyclical
(~0.1 Hz) synthesis and breakdown of organic cations such
as tetramethylammonium that yield a solution of low density;
furthermore, tetramethylammonium and similar solutes have
not been reported in diatoms.

Similar to the first strategy above, thythmic changes in the rate
of cell expansion through modulation of active water transport
appear to be a plausible mechanism although at a significant en-
ergy cost (an additional 16% of the cost of growth) explaining
fast cyclical (~0.1 Hz) changes in the sinking rate of large-celled
diatoms such as C. wailesii (Box 2; Supplementary Protocol S3).

It must be emphasized that the observed fluctuations (but
also frequency of measurements) in the rate of volume increase
in large-celled diatoms are at a much lower frequency than is
needed to explain the episodic sinking phenomenon through
our active water transport hypothetical strategy (Box 2). Further
experiments and modelling studies of unsteady sinking would
be needed to test the presence of such a mechanism.

Conclusion

The first mechanism discussed above, namely exchanging
‘heavy’ intracellular ions for ‘light” extracellular ions to decrease
the sinking rate, and vice versa for re-establishing the original
faster sinking rate, can cost 48% of the energy cost of growth
(Table 1). The organic solute exchange mechanism (strategy
2) would be even more costly (Table 1).The third mechanism,
namely episodic cell volume increase with active water trans-
port in parallel with steady solute uptake from seawater, can cost
16% of the total energy cost of growth (Table 1). According to
our analysis, episodic increases in cell volume at the frequency
of the changes in the rate of sinking has the smallest energy cost
of the three mechanisms and thus appears most advantageous.
Moreover, this strategy involving cytoskeletal motors for fast
cyclical cell expansion is in line with the results of Gemmell
et al. (2016), showing that episodic sinking of C. wailesii was
eliminated by the myosin ATPase inhibitor 2,3-butane dione
monoxine and by the actin inhibitor latrunculin A, applied sep-
arately, and that episodic sinking was restored after rinsing in
filtered seawater. These findings are consistent with an essential
role for the actomyosin mechanochemical motor in episodic
sinking (Supplementary Protocol S3).
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Box 2. Summary and energy cost of episodic cell volume increase and active water transport

Episodic increases in cell volume (Olson et al., 1986; cf. Kihn and Raven, 2008) could modulate cell density
and account for episodic sinking if cell volume increase is not driven by turgor requiring a continuous high
cell osmolarity, but rather by cytoskeletal motors (Harold et al., 1996; Pickett-Heaps and Klein, 1998; Raven
and Doblin, 2014). Starting with a turgid cell with a greater density (density for the low and high osmolarity
cases 1024.92 kg m~2 and 1039.52 kg m~2, respectively) than that of seawater (seawater density=1024.91 kg
m~3), an increase in cell volume at a rate faster than ions are accumulated but not faster than water can
enter [down the (decreased) water potential gradient resulting from the smaller difference in osmolarity
between cell contents and the seawater medium] decreases the density of the cell. This decrease in cell
osmolarity can continue until reaching seawater osmolarity, when a further increase in volume enclosed
by the cell wall would lead to plasmolysis unless active water influx occurs. After the cessation of the
cell expansion phase, continuing ion influx restores intracellular osmolarity and hence the cell density to
maximum values, and the sinking rate increases too until the next cycle of cell expansion begins.

Mechanistic energy cost calculations coupled to modelling of the effect of changes in cell density on
sinking rate (see Supplementary Protocol S3) suggest that the above strategy could occur at a significant,
but potentially manageable, energy cost. Assuming a low cell osmolarity, which tends to minimize the cell
energy cost for a given change in cell sinking rate, we found that modulating active water transport can
modulate the sinking rate by >20-fold in C. wailesii at a cost related to water uptake equivalent to at least
16% of the total energy cost for growth. Even though the above differential cell expansion hypothesis
strongly modulates the cell sinking rate in the range of 1x10™ mm to 5x10° mm s™', which is very much
smaller than the range of absolute sinking rates measured by Gemmell et al. (2016) (between ~0.025 mm
s~ and 0.2 mm s7'), considering the difference in experimental conditions between Olson et al. (1986)
and Gemmell et al. (2016), and the assumptions made in our model calculations (e.g. parameterization
of structural components relying on empirical equations, inclusion of the putative main osmolyte glycine
betaine), our novel hypothesis enabling fast vertical diatom displacement in the water column helps move
forward our understanding of the factors explaining fast cyclical sinking in diatoms.

Table 1. Additional energy costs of episodic sinking relative to steady sinking for the three mechanisms

Mechanism

rate of sinking=100%

Downhill Na* influx and K* efflux, followed by ~48%
energized Na* efflux and K* influx

Metabolism interconverting organic cations forming low-density solutions and organic cations forming higher >50%
density solutions

Fast cyclical modulation of the rate of cell expansion and water uptake, with active water influx >16%

See text and Supplementary Protocols S1-S3 for details.

The changes in sinking rate in the light, as a function of

Supplementary data

Additional energy requirement
relative to growth with steady

nutrient availability, despite their energy cost, probably relate
to balancing the supply of photons and nutrients that can be
spatially separated, as suggested by Gemmell et al. (2016) and
Du Clos et al. (2019). However, we have no further explan-
ation other than those provided by Du Clos et al. (2019) for
the presumably energy-costly very slow sinking with limited
periodic variation in the dark under nutrient depletion. Even
though it remains unknown whether or not one or several
co-occurring mechanisms explain episodic sinking in diatoms,
our analysis provides a new testable hypothesis useful for fu-
ture laboratory experiments. No doubt the recent discovery of
frequent variations in the sinking speed fluctuations in sinking
of a planktonic diatom by Gemmell et al. (2016) will catalyse
further research on large celled diatom physiology.

Supplementary data are available at JXB online.

Protocol S1. Downhill Na* influx and K" eflux followed by
energized restoration of the initial ion content.

Protocol S2. Metabolism interconverting organic cations
forming low-density solutions and organic cations forming
higher density solutions.

Protocol S3. Fast cyclical modulation of the rate of cell ex-
pansion and water uptake, with active water influx.
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