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Abstract

We propose a class of kernel-based two-sample
tests, which aim to determine whether two sets
of samples are drawn from the same distribu-
tion. Our tests are constructed from kernels pa-
rameterized by deep neural nets, trained to max-
imize test power. These tests adapt to varia-
tions in distribution smoothness and shape over
space, and are especially suited to high dimen-
sions and complex data. By contrast, the sim-
pler kernels used in prior kernel testing work
are spatially homogeneous, and adaptive only
in lengthscale. We explain how this scheme in-
cludes popular classifier-based two-sample tests
as a special case, but improves on them in gen-
eral. We provide the first proof of consistency for
the proposed adaptation method, which applies
both to kernels on deep features and to simpler
radial basis kernels or multiple kernel learning.
In experiments, we establish the superior perfor-
mance of our deep kernels in hypothesis testing on
benchmark and real-world data. The code of our
deep-kernel-based two sample tests is available at
github.com/fengliu90/DK-for-TST.

1. Introduction
Two sample tests are hypothesis tests aiming to determine
whether two sets of samples are drawn from the same distri-
bution. Traditional methods such as t-tests and Kolmogorov-
Smirnov tests are mainstays of statistical applications, but
require strong parametric assumptions about the distribu-
tions being studied and/or are only effective on data in ex-
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tremely low-dimensional spaces. A broad set of recent work
in statistics and machine learning has focused on relaxing
these assumptions, with methods either generally applica-
ble or specific to various more complex domains (Gretton
et al., 2012a; Székely & Rizzo, 2013; Heller & Heller, 2016;
Jitkrittum et al., 2016; Ramdas et al., 2017; Lopez-Paz &
Oquab, 2017; Chen & Friedman, 2017; Gao et al., 2018;
Ghoshdastidar et al., 2017; Ghoshdastidar & von Luxburg,
2018; Li & Wang, 2018; Kirchler et al., 2020). These tests
have also allowed application in various machine learning
problems such as domain adaptation, generative modeling,
and causal discovery (Binkowski et al., 2018; Gong et al.,
2016; Stojanov et al., 2019; Lopez-Paz & Oquab, 2017).

A popular class of non-parametric two-sample tests is based
on kernel methods (Smola & Schölkopf, 2001): such tests
construct a kernel mean embedding (Berlinet & Thomas-
Agnan, 2004; Muandet et al., 2017) for each distribution,
and measure the difference in these embeddings. For any
characteristic kernel, two distributions are the same if and
only if their mean embeddings are the same; the distance
between mean embeddings is the maximum mean discrep-
ancy (MMD) (Gretton et al., 2012a). There are also several
closely related methods, including tests based on checking
for differences in mean embeddings evaluated at specific
locations (Chwialkowski et al., 2015; Jitkrittum et al., 2016)
and kernel Fisher discriminant analysis (Harchaoui et al.,
2007). These tests all work well for samples from simple
distributions when using appropriate kernels.

Problems that we care about, however, often involve distri-
butions with complex structure, where simple kernels will
often map distinct distributions to nearby (and hence hard to
distinguish) mean embeddings. Figure 1a shows an example
of a multimodal dataset, where the overall modes align but
the sub-mode structure varies differently at each mode. A
translation-invariant Gaussian kernel only “looks at” the
data uniformly within each mode (see Figure 1b), requiring
many samples to correctly distinguish the two distributions.
The distributions can be distinguished more effectively if
we understand the structure of each mode, as with the more
complex kernel illustrated in Figure 1c.

To model these complex functions, we adopt a deep ker-
nel approach (Wilson et al., 2016; Sutherland et al., 2017;
Li et al., 2017; Jean et al., 2018; Wenliang et al., 2019),

https://github.com/fengliu90/DK-for-TST
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(a) Samples drawn from P (left) and Q (right).
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Figure 1. In the Blob dataset, P and Q are each equal mixtures of nine Gaussians with the same modes (a), but each component of P is an
isotropic Gaussian whereas the covariance of Q differs in each component. Panels (b) and (c) show the contours of a kernel, k(x, µi) for
each of the nine modes µi; contour values are 0.7, 0.8 and 0.9. A Gaussian kernel (b) treats points isotropically throughout the space,
based only on ‖x− y‖. A deep kernel (c) learned by our methods behaves differently in different parts of the space, adapting to the local
structure of the data distributions and hence allowing better identification of differences between P and Q.

building a kernel with a deep network. In this paper, we use

kω(x, y) = [(1− ε)κ(φω(x), φω(y)) + ε]q(x, y), (1)

where the deep neural network φω extracts features of sam-
ples, and κ is a simple kernel (e.g., a Gaussian) on those
features, while q is a simple characteristic kernel (e.g. Gaus-
sian) on the input space. With an appropriate choice of φω,
this allows for extremely flexible kernels which can learn
complex behavior very different in different parts of space.
This choice is discussed further in Section 5.

These complex kernels, though, cannot feasibly be specified
by hand or simple heuristics, as is typical practice in kernel
methods. We select the parameters ω by maximizing the
ratio of the MMD to its variance, which maximizes test
power at large sample sizes. This procedure was proposed
by Sutherland et al. (2017), but we establish for the first time
that it gives consistent selection of the best kernel in the
class, whether optimizing our deep kernels with hundreds
of thousands of parameters or simply choosing lengthscales
of a Gaussian as did Sutherland et al. Previously, there were
no guarantees this procedure would yield a kernel which
generalized at all from the training set to a test set.

Another way to compare distributions is to train a classi-
fier between them, and evaluate its accuracy (Lopez-Paz
& Oquab, 2017). We show, perhaps surprisingly, that our
framework encompasses this approach, but deep kernels
allow for more general model classes which can use the data
more efficiently. We also train representations directly to
maximize test power, rather than a cross-entropy surrogate.

We test our method on several simulated and real-world
datasets, including complex synthetic distributions, high-
energy physics data, and challenging image problems. We
find convincingly that learned deep kernels outperform sim-
ple shallow methods, and learning by maximizing test power
outperforms learning through a cross-entropy surrogate loss.

2. MMD Two-Sample Tests
Two-sample testing. Let X be a separable metric space –
in this paper, typically a subset of Rd – and P, Q be Borel
probability measures on X . We observe independent iden-
tically distributed (i.i.d.) samples SP = {xi}ni=1 ∼ Pn and
SQ = {yj}mj=1 ∼ Qm. We wish to know whether SP and
SQ come from the same distribution: does P = Q?

We use the null hypothesis testing framework, where the
null hypothesis H0 : P = Q is tested against the alternative
hypothesis H1 : P 6= Q. We perform a two-sample test in
four steps: select a significance level α ∈ [0, 1]; compute a
test statistic t̂(SP, SQ); compute the p-value p̂ = PrH0(T >
t̂), the probability of the two-sample test returning a statistic
as large as t̂ when H0 is true; finally, reject H0 if p̂ < α.

Maximum mean discrepancy (MMD). We will base our
two-sample test statistic on an estimate of a distance be-
tween distributions. Our metric, the MMD, is defined in
terms of a kernel k giving point-level “similarities” on X .

Definition 1 (Gretton et al., 2012a). Let k : X ×X → R be
the kernel of a reproducing kernel Hilbert space Hk, with
feature maps k(·, x) ∈ Hk. Let X,X ′ ∼ P and Y, Y ′ ∼ Q,
and define the kernel mean embeddings µP := E[k(·, X)]
and µQ := E[k(·, Y )]. Under mild integrability conditions,

MMD(P,Q;Hk) := sup
f∈H,‖f‖Hk≤1

|E[f(X)]−E[f(Y )]|

= ‖µP−µQ‖Hk =
√
E [k(X,X ′) + k(Y, Y ′)− 2k(X,Y )].

For characteristic kernels, µP = µQ implies P = Q, hence
MMD(P,Q;Hk) = 0 if and only if P = Q.

The first form shows that the MMD is an integral probability
metric (Müller, 1997), along with such popular distances as
the Wasserstein and total variation.

There are several natural estimators of the MMD from sam-
ples. We will assume n = m and use the U -statistic estima-
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tor, which is unbiased for MMD2 and has nearly minimal
variance among unbiased estimators (Gretton et al., 2012a):

M̂MD
2

u(SP, SQ; k) :=
1

n(n− 1)

∑
i 6=j

Hij (2)

Hij := k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Yi, Xj).

The similar M̂MD
2

b := 1
n2

∑
ij Hij is the squared MMD

between the empirical distributions of SP and SQ.1

Testing with the MMD. It can be shown that under H0,

nM̂MD
2

u converges to a distribution depending on P and k;
we thus use this as our test statistic.

Proposition 2 (Asymptotics of M̂MD
2

u). Under the null
hypothesis, H0 : P = Q, we have if Zi ∼ N (0, 2),

nM̂MD
2

u
d→
∑
i

σi(Z
2
i − 2);

here σi are the eigenvalues of the P-covariance operator
of the centered kernel (Gretton et al., 2012a, Theorem 12),
and d→ denotes convergence in distribution.

Under the alternative, H1 : P 6= Q, a standard central limit
theorem holds (Serfling, 1980, Section 5.5.1):

√
n(M̂MD

2

u −MMD2)
d→ N (0, σ2

H1
)

σ2
H1

:= 4
(
E[H12H13]− E[H12]2

)
where H12, H13 refer to Hij above.

Although it is possible to construct a test based on directly
estimating this null distribution (Gretton et al., 2009), it is
both simpler and, if implemented carefully, faster (Suther-
land et al., 2017) to instead use a permutation test. This
general method (Dwass, 1957; Alba Fernández et al., 2008)
observes that under H0, the samples from P and Q are inter-
changeable; we can therefore estimate the null distribution
of our test statistic by repeatedly re-computing it with the
samples randomly re-assigned to SP or SQ.

Test power. The main measure of efficacy of a null hy-
pothesis test is its power: the probability that, for a particular
P 6= Q and n, we correctly reject H0. Proposition 2 implies,
where Φ is the standard normal CDF, that

PrH1

(
nM̂MD

2

u > r
)
→ Φ

(√
nMMD2

σH1

− r√
nσH1

)
;

1Including k(Xi, Yi) terms in M̂MDu gives the minimal vari-
ance unbiased estimator, and allows m 6= n. The U -statistic is
more convenient for analysis and for efficient permutations; in our

settings it behaves similarly to the MVUE and M̂MD
2

b .

we can find the approximate test power by using the rejec-
tion threshold, found via (e.g.) permutation testing, as r.
We also know via Proposition 2 that this r will converge to a
constant, and MMD, σH1

are also constants. For reasonably
large n, the power is dominated by the first term, and the
kernel yielding the most powerful test will approximately
maximize (Sutherland et al., 2017)

J(P,Q; k) := MMD2(P,Q; k)/σH1
(P,Q; k). (3)

Selecting a kernel. The criterion J(P,Q; k) depends on
the particular P and Q at hand, and thus we typically will
neither be able to choose a kernel a priori, nor exactly
evaluate J given samples. We can, however, estimate it with

Ĵλ(SP, SQ; k) :=
M̂MD

2

u(SP, SQ; k)

σ̂H1,λ(SP, SQ; k)
, (4)

where σ̂2
H1,λ

is a regularized estimator of σ2
H1

given by2

4

n3

n∑
i=1

 n∑
j=1

Hij

2

− 4

n4

 n∑
i=1

n∑
j=1

Hij

2

+ λ. (5)

Given SP and SQ, we could construct a test by choosing k
to maximize Ĵλ(SP, SQ; k), then using a test statistic based
on M̂MD(SP, SQ; k). This sample re-use, however, violates
the conditions of Proposition 2, and permutation testing
would require repeatedly re-training k with permuted labels.

Thus we split the data, get ktr ≈ arg maxk Ĵλ(StrP , S
tr
Q ; k),

then compute the test statistic and permutation threshold
on SteP , SteQ using ktr. This procedure was proposed for

M̂MD
2

u by Sutherland et al. (2017), but the same technique
works for a variety of tests (Gretton et al., 2012b; Jitkrittum
et al., 2016; 2017; Lopez-Paz & Oquab, 2017). Our paper
adopts this framework (Section 5) and studies it further.

Relationship to other approaches. One common
scheme is to pick a kernel kω based on some proxy task,
such as a related classification problem (e.g. Kirchler et al.
2020 or the KID score of Binkowski et al. 2018). Although
this approach can work quite well, it depends entirely on
features from the proxy task applying well to the differences
between P and Q, which can be hard to know in general.

An alternative is to maximize simply M̂MDu (Sriperum-
budur et al. 2009; proposed but not evaluated by Kirchler

2This estimator, as a V -statistic, is biased even when λ = 0
(although this bias is only O(1/N); see Lemma 18). Although
Sutherland et al. (2017); Sutherland (2019) give a quadratic-time
estimator unbiased for σ2

H1
, it is much more complicated to imple-

ment and analyze, likely has higher variance, and (being unbiased)
can be negative, especially e.g. when the kernel is poor.
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et al.). Ignoring σH1
means that, for instance, this approach

would choose to simply scale k →∞, even though this does
not change the test at all. Even when this is not possible,
Sutherland et al. (2017) found this approach notably worse
than maximizing (4); we confirm this in our experiments.

MMD-GANs (Li et al., 2017; Binkowski et al., 2018) also
simply maximize M̂MDu to identify the differences be-
tween their model Qθ and target P. If Qθ is quite far from
P, however, an MMD-GAN requires a “weak” kernel to
identify a path for improving Qθ (Arbel et al., 2018), while
our ideal kernel is one which perfectly distinguishes P and
Qθ and would likely give no signal for improvement. Our
algorithm, theoretical guarantees, and empirical evaluations
thus all differ significantly from those for MMD-GANs.

3. Limits of Simple Kernels
We can use the criterion Ĵλ of (4) even to select parameters
among a simple family, such as the lengthscale of a Gaussian
kernel. Doing so on the Blob problem of Figure 1 illustrates
the limitations of using MMD with these kernels.

In Figure 2c, we show how the maximal value of Ĵ changes
as we see more samples from P and Q, for both a family
of Gaussian kernels (green dashed line) and a family (1)
of deep kernels (red line). The optimal Ĵ is always higher
for the deep kernels; as expected, the empirical test power
(Figure 2a) is also higher for deep kernels.

Most simple kernels used for MMD tests, whether the Gaus-
sian we use here or Laplace, inverse multiquadric, even
automatic relevance determination kernels, are all transla-
tion invariant: k(x, y) = k(x−t, y−t) for any t ∈ Rd. (All
kernels used by Sutherland et al. (2017), for instance, were
of this type.) Hence the kernel behaves the same way across
space, as in Figure 1b. This means that for distributions
whose behavior varies through space, whether because prin-
cipal directions change (as in Figure 1) so the shape should
be different, or because some regions are much denser than
others and so need a smaller lengthscale (e.g. Wenliang
et al., 2019, Figures 1 and 2), any single global choice is
suboptimal.

Kernels which are not translation invariant, such as the deep
kernels (1) shown in Figure 1c, can adapt to the different
shapes necessary in different areas.

4. Relationship to Classifier-Based Tests
Another popular method for conducting two-sample tests
is to train a classifier between StrP and StrQ , then assess
its performance on SteP , SteQ . If P = Q, the classification
problem is impossible and performance will be at chance.

The most common performance metric is the accuracy

(Lopez-Paz & Oquab, 2017); this scheme is fairly com-
mon among practitioners, and Kim et al. (2020) showed
it to be optimal in rate, but suboptimal in constant, in one
limited setting (linear discriminant analysis between high-
dimensional elliptical distributions, e.g. Gaussians, with
identical covariances). We will call this approach a Clas-
sifier Two-Sample Test based on Sign, C2ST-S. Letting
f : X → R output classification scores, the C2ST-S statistic
is âcc(SP, SQ; f) given by

1

2n

∑
Xi∈SP

1(f(Xi) > 0) +
1

2n

∑
Yi∈SQ

1(f(Yi) ≤ 0).

Let acc(P,Q; f) := 1
2 Pr(f(X) > 0) + 1

2 Pr(f(Y ) ≤ 0);
âcc is unbiased for acc and has a simple asymptotically
normal null distribution.

Although it is perhaps not immediately obvious this is the
case, C2ST-S is almost a special case of the MMD. Let

k
(S)
f (x, y) =

1

4
1(f(x) > 0)1(f(y) > 0). (6)

A C2ST-S with f is equivalent to an MMD test with k(S)
f :

Proposition 3. It holds that

MMD(P,Q; k
(S)
f ) = |acc(P,Q; f)− 1

2
|

M̂MDb(SP, SQ; k
(S)
f ) = |âcc(SP, SQ; f)− 1

2
|.

Proof. The mean embedding µP under k(S)
f is simply

1
2 E1(f(X) > 0) = 1

2 Pr(f(X) > 0), so the MMD is

1

2

∣∣∣Pr(f(X) > 0)−Pr(f(Y ) > 0)
∣∣∣ =

∣∣∣ acc(P,Q; f)− 1

2

∣∣∣.
Moreover, âcc is acc on empirical distributions.

The C2ST-S, however, selects f to maximize cross-entropy
(approximately maximizing âcc), while we maximize Ĵλ
(4). Although k(S)

f is not differentiable, maximizing (3)
would exactly maximize acc and hence maximize test power
(Lopez-Paz & Oquab, 2017, Theorem 1).

Accessing f only through its sign allows for a simple null
distribution, but it ignores f ’s measure of confidence: a
highly confident output extremely far from the decision
boundary is treated the same as a very uncertain one lying
in an area of high overlap between P and Q, dramatically
increasing the variance of the statistic. A scheme we call
C2ST-L instead tests difference in means of f on P and Q
(Chen & Cloninger, 2019). Let

k
(L)
f (x, y) = f(x)f(y). (7)

A C2ST-L is equivalent to an MMD test with k(L)
f :
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Figure 2. Results on Blob-S and Blob-D given α = 0.05; see Section 7 for details. nb is the number of samples at each mode, so nb = 100
means drawing 900 samples from each of P and Q. We report, when increasing nb, (a) average test power, (b) standard deviation of test
power, (c) the value of Ĵλ, and (d) average type-I error. (a), (b) and (c) are on Blob-D, and (d) is on Blob-S. Shaded regions show standard
errors for the mean, and the black line shows α.

Proposition 4. It holds that

MMD(P,Q; k
(L)
f ) = |E f(X)− E f(Y )|

M̂MDb(SP, SQ; k
(L)
f ) = | 1

n

∑
Xi∈SP

f(Xi)−
1

n

∑
Yi∈SQ

f(Yi)|.

Proof. This kernel’s feature map is k(L)
f (x, ·) = f(x).

Now maximizing accuracy (or a cross-entropy proxy) no
longer directly maximizes power. This kernel is differen-
tiable, so we can directly compare the merits of maximizing
(4) to maximizing cross-entropy; we will see in Section 7.2
that our more direct approach is empirically superior.

Compared to using k(L)
f , however, Section 7.2 shows that

learned MMD tests also obtain better performance using
kernels like (1). This is analogous to a similar phenomenon
observed in other problems by Binkowski et al. (2018) and
Wenliang et al. (2019): C2STs learn a full discriminator
function on the training set, and then apply only that func-
tion to the test set. Learning a deep kernel like (1) corre-
sponds to learning only a powerful representation on the
training set, and then still learning f itself from the test set –
in a closed form that makes permutation testing simple.

5. Learning Deep Kernels
Choice of kernel architecture. Most previous work on
deep kernels has used a kernel κ directly on the output of
a featurization network φω, kω(x, y) = κ(φω(x), φω(y)).
This is certainly also an option for us. Any such kω , however,
is characteristic if and only if φω is injective. If we select
our kernel well, this is not really a concern.3 Even so, it

3A characteristic kernel on top of even φω(x) = ωTx with a
random ω will be almost surely consistent (Heller & Heller, 2016),
and in general the existence of even one good φω for a particular

would be reassuring to know that, even if the optimization
goes awry, the resulting test will still be at least consistent.
More importantly, it can be helpful in optimization to add a
“safeguard” preventing the learned kernel from considering
extremely far-away inputs as too similar. We can achieve
these goals with the form (1), repeated here:

kω(x, y) = [(1− ε)κ(φω(x), φω(y)) + ε] q(x, y).

Here φω is a deep network (with parameters ω) that extracts
features, and κ is a kernel on those features; we use a Gaus-
sian with lengthscale σφ, κ(a, b) = exp

(
− 1

2σ2
φ
‖a− b‖2

)
.

We choose 0 < ε < 1 and q a Gaussian with lengthscale σq .

Proposition 5. Let kω be of the form (1) with ε > 0 and q
characteristic. Then kω is characteristic.

Learning the deep kernel. The kernel optimization and
testing procedure is summarized in Algorithm 1. For larger
datasets, or when n 6= m, we use minibatches in the training
procedure; for smaller datasets, we use full batches. We use
the Adam optimizer (Kingma & Ba, 2015). Note that the
parameters ε, σφ, and σq are included in ω, all parameterized
in log-space (i.e. we optimize ε′ where ε = exp(ε′)).

Time complexity. Let E denote the cost of comput-
ing an embedding φω(x), and K the cost of comput-
ing (1) given φω(x), φω(y). Then each iteration of
training in Algorithm 1 costs O

(
mE +m2K

)
, where

m is the minibatch size; for the moderate m that fit in
a GPU-sized minibatch anyway, the mE term typically
dominates, matching the complexity of a C2ST. Test-
ing takes time O

(
nE + n2K + n2 nperm

)
, compared to

O (nE + nnperm) for permutation-based C2STs. In either
case, the quadratic factors could if necessary be reduced

P, Q pair is enough that a perfect optimizer would be able to
distinguish the distributions (Arbel et al., 2018, Proposition 1).
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Algorithm 1 Testing with a learned deep kernel
Input: SP, SQ, various hyperparameters used below;
ω ← ω0; λ← 10−8;
Split the data as SP = StrP ∪ SteP and SQ = StrQ ∪ SteQ ;

# Phase 1: train the kernel parameters ω on StrP and StrQ
for T = 1, 2, . . . , Tmax do
X ← minibatch from StrP ; Y ← minibatch from SteQ ;
kω ← kernel function with parameters ω; # as in (1)

M(ω)← M̂MD
2

u(X,Y ; kω); # using (2)
Vλ(ω)← σ̂2

H1,λ
(X,Y ; kω); # using (5)

Ĵλ(ω)←M(ω)/
√
Vλ(ω); # as in (4)

ω ← ω + η∇AdamĴλ(ω); # maximize Ĵλ(ω)
end for
# Phase 2: permutation test with kω on SteP and SteQ
est ← M̂MD

2

u(SteP , S
te
Q ; kω)

for i = 1, 2, . . . , nperm do
Shuffle SteP ∪ SteQ into X and Y

permi ← M̂MD
2

u(X,Y ; kω)
end for
Output: kω , est , p-value 1

nperm

∑nperm

i=1 1(permi ≥ est)

with the block estimator approach of Zaremba et al. (2013),
at the cost of some test power. In our experiments in Sec-
tion 7, the overall runtime of our methods was scarcely
different from the overall runtime of C2STs.

6. Theoretical Analysis
We now show that optimizing the regularized test power
criterion based on a finite number of samples works: as
n increases, our estimates converge uniformly over a ball
in parameter space, and therefore if there is a unique best
kernel, we converge to it. Sutherland et al. (2017) gave no
such guarantees; this result allows us to trust that, at least for
reasonably large n and if our optimization process succeeds,
we will find a kernel that generalizes nearly optimally rather
than just overfitting to Str.

We first state a generic result, then show some choices of
kernels, particularly deep kernels (1), satisfy the conditions.

Theorem 6. Let ω parameterize uniformly bounded ker-
nel functions kω in a Banach space of dimension D, with
|kω(x, y)− kω′(x, y)| ≤ Lk‖ω − ω′‖. Let Ω̄s be a set of ω
for which σ2

H1
(P,Q; kω) ≥ s2 > 0 and ‖ω‖ ≤ RΩ. Take

λ = n−1/3. Then, with probability at least 1− δ,

sup
ω∈Ω̄s

|Ĵλ(SP, SQ; kω)− J(P,Q; kω)| =

O

(
1

s2n1/3

[
1

s
+

√
D log(RΩn) + log

1

δ
+ Lk

])
.

If there is a unique best kernel ω∗, the maximizer of Ĵλ
converges in probability to ω∗ as n→∞.

A version with explicit constants and more details is given
in Appendix A (as Theorem 11 and Corollary 12); the proof
is based on uniform convergence of the MMD and variance
estimators using an ε-net argument.

The following results are shown in Appendix A.4. We first
show a result on simple Gaussian bandwidth selection.
Proposition 7. Suppose each x ∈ X has ‖x‖ ≤ RX , and
we choose the bandwidth of a Gaussian kernel among a set
whose minimum is at least 1/RΩ. Then the conditions of
Theorem 6 are met with D = 1 and Lk = 2RX/

√
e.

Our results also apply to multiple kernel learning, where
in fact the exact maximizer of Ĵλ is efficiently available
(Proposition 27).
Proposition 8. Let {ki}Di=1 be a fixed set of kernels, with
supx ki(x, x) ≤ K for all i. Then picking kω =

∑D
i=1 ωiki

among some set of ω with
∑D
i=1 ω

2
i ≤ R2

Ω satisfies the
conditions of Theorem 6 with Lk = K

√
D.

We finally establish our results for fully-connected deep
kernels; it also applies to convolutional networks with a
slightly different RΩ (Remark 25). The constants in Lk are
given in Proposition 23.
Proposition 9. Take kω as in Section 5, with φω a fully-
connected network with depth Λ and D total parameters,
whose activations are 1-Lipschitz with σ(0) = 0 (e.g.
ReLU). Suppose the operator norm of each weight matrix
and L2 norm of each bias vector are is at mostRΩ, and each
x ∈ X has ‖x‖ ≤ RX . Then kω meets the conditions of The-

orem 6 with dimension D and LK = O
(

ΛRΛ−1
Ω

RX+1
σφ

)
.

The dependence on s in Theorem 6 is somewhat unfortu-
nate, but the ratio structure of J means that otherwise, er-
rors in very small variances can hurt us arbitrarily. Even so,
“near-perfect” kernels (with reasonably large MMD and very
small variance) will likely still be chosen as the maximizer
of the regularized criterion, even if we do not estimate the
(extremely large) ratio accurately. Likewise, near-constant
kernels (with very small variance but still small J) will gen-
erally have their J underestimated, and so are unlikely to be
selected when a better kernel is available. The εq component
in (1) may also help avoid extremely small variances.

Given N data points, this result also gives insight into how
many we should use to train the kernel and how many to test.
With perfect optimization, Corollary 14 shows a bound on
the asymptotic power of the test is maximized by training

on Θ
((
N
√

logN
) 3

4

)
points, and testing on the remainder.

7. Experimental Results
7.1. Comparison on Benchmark Datasets

We compare the following tests on several datasets:
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(b) Power vs. N ; d = 10
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(c) Level vs. N ; d = 10
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(d) Power vs. d; N = 4 000
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(e) Level vs. d; N = 4 000

Figure 3. Results on HDGM-S and HDGM-D for α = 0.05 (black line). Left: average test power (a) and Type I error (b) when increasing
the number of samples N , keeping d = 10. Right: average test power (c) and Type I error (d) when increasing the dimension d, keeping
N = 4 000. Shaded regions show standard errors for the mean.

• MMD-D: MMD with a deep kernel; our method de-
scribed in Section 5.

• MMD-O: MMD with a Gaussian kernel whose length-
scale is optimized as in Section 5. This gives better
results than standard heuristics.

• Mean embedding (ME): a state-of-the-art test
(Chwialkowski et al., 2015; Jitkrittum et al., 2016)
based on differences in Gaussian kernel mean embed-
dings at a set of optimized points.

• Smooth characteristic functions (SCF): a state-of-the-
art test (Chwialkowski et al., 2015; Jitkrittum et al.,
2016) based on differences in Gaussian mean embed-
dings at a set of optimized frequencies.

• Classifier two-sample tests, including C2STS-S
(Lopez-Paz & Oquab, 2017) and C2ST-L (Chen &
Cloninger, 2019) as described in Section 4. We set the
test thresholds via permutation for both.

For synthetic datasets, we take a single sample set for StrP
and StrQ and learn a kernel/test locations/etc once for each
method on that training set. We then evaluate its rejection
rate on 100 new sample sets SteP , SteQ from the same distri-
bution. For real datasets, we select a subset of the available
data for StrP and StrQ and train on that; we then evaluate on
100 random subsets, disjoint from the training set, of the
remaining data. We repeat this full process 10 times, and
report the mean rejection rate of each test. Table 5 shows
significance tests. Further details are in Appendix B.

Blob dataset. Blob-D is the dataset shown in Figure 1;
Blob-S has Q also equal to the distribution shown in Fig-
ure 1a, so that the null hypothesis holds. Details are given
in Table 6 (Appendix B.1).

Results are shown in Figure 2. MMD-D and C2ST-L are the
clear winners in power, with MMD-D better in the higher-
sample regime, and MMD-D is more reliable than C2STs.
Figure 2c shows that J is higher for MMD-D than MMD-O,

in addition to the actual test power being better, as discussed
in Section 3. All methods have expected Type I error rates.

High-dimensional Gaussian mixtures. Here we study
bimodal Gaussian mixtures in increasing dimension. Each
distribution has two Gaussian components; in HDGM-S, P
and Q are the same, while in HDGM-D, P and Q differ in the
covariance of a single dimension pair but are otherwise the
same. Details are in Table 6 (Appendix B.1). We consider
both increasing N while keeping d = 10 and increasing d
while keeping N = 4 000, with results shown in Figure 3.
Again, MMD-D has generally the best test power across a
range of problem settings, with reasonable type I error.

Higgs dataset (Baldi et al., 2014). We compare the jet
φ-momenta distribution (d = 4) of the background pro-
cess, P, which lacks Higgs bosons, to the corresponding
distribution Q for the process that produces Higgs bosons,
following Chwialkowski et al. (2015). As discussed in these
previous works, φ-momenta carry very little discriminating
information for recognizing whether Higgs bosons were pro-
duced. We consider a series of tests with increased number
of samples N .

We report average test power (comparing P to Q) in Table 1,
and average type-I error (comparing P to P or Q to Q) in
Table 7 (Appendix B.6). As before, MMD-D generally
performs the best; although the improvement over MMD-
O here is not dramatic, MMD-D does notably outperform
C2ST. All methods maintain reasonable Type I errors.

MNIST generative model. The MNIST dataset contains
70 000 handwritten digit images (LeCun et al., 1998). We
compare true MNIST data samples P to samples Q from
a pretrained deep convolutional generative adversarial net-
work (DCGAN) (Radford et al., 2016). Samples from both
distributions are shown in Figure 4 (in Appendix B.2).

We consider tests for increasing numbers of samples N ,
and report average test power (for P to Q) in Table 2 and
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Table 1. Higgs (α = 0.05): average test power±standard error for N samples. Bold represents the highest mean per row.

N ME SCF C2ST-S C2ST-L MMD-O MMD-D

1 000 0.120±0.007 0.095±0.022 0.082±0.015 0.097±0.014 0.132±0.005 0.113±0.013
2 000 0.165±0.019 0.130±0.026 0.183±0.032 0.232±0.017 0.291±0.012 0.304±0.035
3 000 0.197±0.012 0.142±0.025 0.257±0.049 0.399±0.058 0.376±0.022 0.403±0.050
5 000 0.410±0.041 0.261±0.044 0.592±0.037 0.447±0.045 0.659±0.018 0.699±0.047
8 000 0.691±0.067 0.467±0.038 0.892±0.029 0.878±0.020 0.923±0.013 0.952±0.024

10 000 0.786±0.041 0.603±0.066 0.974±0.007 0.985±0.005 1.000±0.000 1.000±0.000

Avg. 0.395 0.283 0.497 0.506 0.564 0.579

Table 2. MNIST (α = 0.05): average test power±standard error for comparing N real images to N DCGAN samples.

N ME SCF C2ST-S C2ST-L MMD-O MMD-D

200 0.414±0.050 0.107±0.018 0.193±0.037 0.234±0.031 0.188±0.010 0.555±0.044
400 0.921±0.032 0.152±0.021 0.646±0.039 0.706±0.047 0.363±0.017 0.996±0.004
600 1.000±0.000 0.294±0.008 1.000±0.000 0.977±0.012 0.619±0.021 1.000±0.000
800 1.000±0.000 0.317±0.017 1.000±0.000 1.000±0.000 0.797±0.015 1.000±0.000

1 000 1.000±0.000 0.346±0.019 1.000±0.000 1.000±0.000 0.894±0.016 1.000±0.000

Avg. 0.867 0.243 0.768 0.783 0.572 0.910

average Type I error (P to P) in Table 8 (in Appendix B.6).
MMD-D substantially outperforms its competitors in test
power, with the desired Type I error. ME also does well in
this case: it is perhaps particularly suited to this problem,
since it is capable of identifying either modes dropped by
the generative model or spurious modes it inserts.

CIFAR-10 vs CIFAR-10.1. CIFAR-10.1 (Recht et al.,
2019) is an attempt to collect a new test set for the very
popular CIFAR-10 image classification dataset (Krizhevsky,
2009). Normally, when evaluating a supervised model, we
consider the test set an independent sample from the train-
ing distribution, ideally never-before-seen by the training
algorithm. But modern computer vision model architectures
and training procedures have been developed based on re-
peatedly evaluating on the CIFAR-10 test set (P), so it is
possible that current models themselves are dependent on
P. CIFAR-10.1 (Q) is an attempt at an independent sam-
ple from this distribution, collected after the models were
trained, so that they are truly independent of Q. These mod-
els do obtain substantially lower accuracies on Q than on
P – but this drop is surprisingly consistent across models,
which seems unlikely to be due to the expected overfitting.
The main potential explanation proposed by Recht et al. is
dataset shift, but their attempt (in their Appendix C.2.8) at
what amounts to a C2ST-S did not reject H0.4 Samples from
each distribution are shown in Figure 5 (Appendix B.2).

We train on 1 000 images from each dataset and test on
1 031, so that we use the entirety of CIFAR-10.1 each time,
and average over ten repetitions. These tests provide strong

4Assuming pretrained classifiers are independent of P, Figure
1 of Recht et al. (2019) indicates that the joint (images, labels)
distribution certainly differs between CIFAR-10 and CIFAR-10.1.
We test here whether the marginal image distribution differs.

Table 3. CIFAR-10.1 (α = 0.05): mean rejection rates.

ME SCF C2ST-S C2ST-L MMD-O MMD-D

0.588 0.171 0.452 0.529 0.316 0.744

evidence (Table 3) that images in the CIFAR-10.1 test set
are statistically different from the CIFAR-10 test set, with
MMD-D again strongest and ME still performing well.

Our learned kernel also helps provide some ability to inter-
pret the difference between P and Q, particularly if we use
it for an ME test. Appendix C explores this.

Recht et al. (2019) also provide a new ImageNetV2 test set
for the ImageNet dataset, with similar properties; we defer
this more challenging problem to future work.

7.2. Ablation Study

We now study in more detail the difference between MMD-
D and closely related methods. Recall from Section 4 that
there are two main differences between MMD-D and C2STs:
first, using a “full” kernel (1) rather than the sign-based
kernel (6) or the intermediate linear kernel (7). Second,
training to maximize Ĵλ (4) rather than a cross-entry surro-
gate. MMD-D uses a full kernel (1) trained for test power;
C2ST-S effectively uses the sign kernel (6) trained for cross
entropy.

In this section, we consider the performance of several inter-
mediate models empirically, demonstrating that both factors
help in testing. All are based on the same feature extraction
architecture φω; some models add a classification layer with
new parameters w and b,

fω(x) = wTφω(x) + b,
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Table 4. Mean test power on Blob (nb = 40), HDGM (N = 4000, d = 10), Higgs (N = 3000) and MNIST (N = 400) for α = 0.05.
See Section 7.2 for the naming scheme; S+C corresponds to C2ST-S, L+C to C2ST-L, and D+J to MMD-D. L+M is the method proposed
by Kirchler et al. (2020).

S+C L+C G+C D+C L+M G+M D+M L+J G+J D+J

Blob 0.835 0.942 0.901 0.900 0.851 0.960 0.906 0.952 0.966 0.985
HDGM 0.472 0.585 0.287 0.302 0.494 0.223 0.539 0.635 0.604 0.659
Higgs 0.257 0.399 0.353 0.384 0.321 0.254 0.379 0.295 0.364 0.403
MNIST 0.646 0.706 0.784 0.803 0.845 0.680 0.760 0.935 0.976 0.996

Avg. 0.553 0.658 0.581 0.597 0.628 0.529 0.646 0.704 0.727 0.761

Table 5. Paired t-test results (α = 0.05) for the results of Sec-
tion 7.1. For HDGM, we fix d = 10 (corresponding to Figure 3a).
X indicates MMD-D achieved statistically significantly higher
mean test power than the other method, × that it did not.

Dataset ME SCF C2ST-S C2ST-L MMD-O

Blob X X X × ×
HDGM X X X X X
Higgs X X X × ×
MNIST X X X X X

which is treated as outputting classification logits. The
model variants we consider are

S A kernel 1(fω(x) > 0)1(fω(y) > 0); corresponds to a
test statistic of the accuracy of f (Proposition 3).

L A kernel fω(x)fω(y); corresponds to a test statistic com-
paring the mean value of f (Proposition 4).

G A Gaussian kernel κ(φω(x), φω(y)).

D The deep kernel (1) based on φω .

We combine these model variants with a suffix describing
the optimization objective:

J Choose ω, including possibly w and b, to optimize the
approximate test power (4).

M Choose ω, including possibly w and b, to maximize the
value of the empirical MMD between two samples.5

C Choose ω, including w and b, to optimize cross-entropy
using the classifier that specifies the probability of x
belonging to P as 1/ (1 + exp(−fω(x))).6

Table 4 presents results for all of these methods (except
for S+J, which is non-differentiable and hence difficult to
optimize). Performance generally improves as we move
from S to L to G to D, and from C to J, and from M to J.

5If a deep kernel is unbounded, directly maximizing MMD
will make optimized parameters of φω be infinite. Thus,
for L+M, we consider a normalized linear deep kernel:
tanh(fω(x)/‖S‖F)tanh(fω(y)/‖S‖F), where S = [SP;SQ] and
‖ · ‖F is the Frobenius norm.

6G+C and D+C take the fixed φω embeddings, then find the
optimal lengthscale/etc by optimizing Ĵλ.

7.3. Architecture design of deep kernels

For Blob, HDGM and Higgs, φω is a five-layer fully-
connected neural network, with softplus activations. the
number of neurons in hidden and output layers of φω are
set to 50 for Blob, 3d for HDGM and 20 for Higgs, where
d is the dimension of samples. in general, we expect simi-
lar fully-connected networks, to be reasonable choices for
datasets where strong structural assumptions are not known,
perhaps with 3d as a baseline width for datasets of at least
moderate dimension.

For MNIST and CIFAR, φω is a convolutional neural net-
work (CNN) that contains four convolutional layers and one
fully-connected layer. The structure of the CNN follows
the structure of the feature extractor in the DCGAN’s dis-
criminator (Radford et al., 2016) (see Figures 6 and 8 for
the structure of φω in MMD-D, and Figures 7 and 9 for the
structure of classifier F in C2ST-S and C2ST-L). In general,
we expect GAN discriminator architectures to work well for
image datasets, as the problem is closely related.

8. Conclusions
The test power of MMD is limited by simple kernels (e.g.,
Gaussian kernel or other translation-invariant kernels) when
facing complex-structured distributions, but we can avoid
this problem with richer deep kernels, which is no longer
translation-invariant. We show that optimizing the parame-
ters of these kernels to maximize the test power, as proposed
by Sutherland et al. (2017), outperforms state-of-the-art al-
ternatives even when considering large, deep kernels with
hundreds of thousands of parameters, rather than the simple
shallow kernels they considered. We provide theoretical
guarantees that this process is reasonable to conduct on
finite samples, and asymptotically selects the most power-
ful kernel. We also give deeper insight into the relation-
ship between this approach and classifier two-sample tests
(Lopez-Paz & Oquab, 2017), explaining why this approach
outperforms that one.

We thus recommend practitioners to use optimized deep
kernel methods when they wish to check if two distributions
are the same, rather than indirectly training a classifier.
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