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ABSTRACT

Motivation: Discovery of binding sites is important in
the study of protein-protein interactions. In this paper,
we introduce stable and significant motif pairs to model
protein binding sites. The stability is the pattern’s re-
sistance to some transformation. The significance is
the unexpected frequency of occurrence of the pattern
in a sequence dataset comprising known interacting
protein pairs. Discovery of stable motif pairs is an iterative
process, undergoing a chain of changing but converging
patterns. Determining the starting point for such a chain
is an interesting problem. We use a protein complex
dataset extracted from PDB to help identifying those
starting points, so that the computational complexity of the
problem is much released.

Results: We found 913 stable motif pairs, of which 765
are significant. We evaluated these motif pairs using com-
prehensive comparison results against random patterns.
Wet-experimentally discovered motifs reported in literature
were also used to confirm the effectiveness of our method.
Supplementary Information:  http://sdmc.i2r.a-star.edu.sg
/BindingMotifPairs

Contact: {haiquan,jinyan}@i2r.a-star.edu.sg

INTRODUCTION

play (Smith, 1985; Rodi et al., 2001; Sidhu et al., 2003)
and mutagenesis (Botstein and Shortle, 1985; Clemmons,
2001). These methods usually lead to relatively high accu-
racy, but they are time-consuming and cost-expensive. As
complementary methods, computational ones are fast and
economical to narrow down the search space.

Current computational methods for discovering binding
pairs are mainly concentrated on domain-domain interac-
tions. Sprinzak and Margalit (2001) first termed domain-
domain interactions as correlated sequence-signatures.
Deng et al. (2002) applied a maximum likelihood method
to statistically estimate domain-domain interactions. Ng
et al. (2003) used an integrative score system to deduct
domain-domain interactions. All these methods stand at
the domain level and study only pre-defined domains.
Note that domain themselves may not be binding sites.
For example, they can be folding determinants instead.
Also, most domains are lengthy segments of residues,
where only a part of them are contained in binding sites.
Therefore, how to pinpoint those specific regions that are
really involved in binding behavior becomes our research
interests.

In this paper, we examine a simple type of binding
pairs where each side of a binding site consists of a short
sequence of continuous residues and where the two sides

Protein-protein interactions play important roles in many2PProach spatially with each other closely. We call these
biological processes such as for inter-cellular commyShort sequencesotifsand the binding siteinding motif
nication, for signal transduction, and for regulation ofPars. We present a computational method to discover
gene expressions. Binding sites are crucial clues tgUch-specified binding motif pairs from a combination of
unraveling protein-protein interactions. The discovery ofWO Protein interaction datasets.
binding sites is also useful for the prediction of unknown Ve require our binding motif pairs to beable The
protein-protein interactions, for the library design of n_otlon_of stable motif pairs is rqoted in the fact that many
phage display (Smith, 1985), and for drug design adiological phenomenon exist in stable status, and these
targets in proteomics. ’ , stable status might be evolved from their past unstable
The discovery of binding sites can be categorized intctatus. So! from a certain starting point to the stable point,
two different approaches. One is focused on the singld'athematically it is a chain of changing but converging
sides of binding sites, while the other emphasizes the ca{terns. Second, we require our binding motif pairs to
operation of both sides. We are interested in the secon€ Significant We propose statistical measurements to
approach and call it the binding-pair approach. Both eX_evalua_te the S|gn|f|cance_not only for single mot_lfs but
perimental and computational methods can deduct bind?10r€ importantly for their co-occurrence as pairs. By
ing pairs. Experimental methods include those for analyzSignificance, we mean that their observations or supports
ing protein complexes (Josephson et al., 2001), phage gishould be much higher than their random expectations.



study, the complex dataset is first used to generate starting
points for stable motif pairs, then the interacting sequence
dataset is used to transform those starting motif pairs so
as to output a set of stable and significant binding motif
pairs.

The following are basic notations that are frequently
used in this paper.

Space of Motif Pairs

Fig. 1. The relation of stable motif pairs and significant motif pairs.

; e A ) : Y the alphabet of the 20 amino acids
The special subset of stable and significant motif pairs are our aim P aprotein: a sequence of amino acids
in this paper. M  amotif: a sequence of amino acid sets
PPr = {Pi, P>}, aprotein pair
MPr = {Mr, Mgr}, amotif pair
. h . L if . PrtnDB  the protein database
Comb'”'”g these two ideas, O.Uf- bmdm_g m_otl pairs are D  asequence dataset of interacting protein pairs
mathematically stable and statistically significant. 7 the absolute support of a motif or a motif pair
The discovery of all stable and significant motif pairs m<  the contributive support of a motif pair

is a challenging problem as the number of candidates is 2=  Z-scoreofamotif
huge. In this paper, we narrow down our search space by s P-score ofamotif pair
looking for only a special subset of stable and significant
motif pairs. The starting points of this subset of stable L

motif pairs are derived from a protein complex dataset More formally, a protein” is denoted byaa, - - i,
that is known to contain the most biologically reliable Wherea; € % andl > 0. A motif M is denoted by
data about protein binding sites. By this way, the binding 142 * - - Ax, whereA; C % andk > 0. For example,

tif pairs aimed to di Id have high confidence¥! = {£, K, N}H{P}¥X{D, E}. (Traditionally, it is also
MOM PAITS aimed 1 CISCOVEr Would have NG ConNeen e, ritten ash — [EK N|Px[DE].) A protein P contains

because of the biological support from the complex ) g X )
data. This is strongly confirmed by our comprehensive® Motif A1, denotedV/ C P, if there exists a continuous

comparison experiments with random patterns and b§egrr]nehnt inP of Iength<k:, quOteOhva(vH)"I‘Da(vJBcE—;l_)'
wet-experimentally discovered binding motifs reportedSUch thatz; € A;,v < j < (v + ki_, 1). PrinDB is
in the literature. Figure 1 relates stable motif pairs and Set Ofn proteins and is denotefl”,i = 1,...,m}.

significant motif pairs and locates where are motif pairsThe sequence datasPtof n inteéracting protein pairs is

that we are most interested in. denoted by{ PP = {Pﬂfﬁ} li=1,....,n,P,P; €
In the next section, we describe two datasets an&'tnDB}, whereP: andP; have interactions.

define basic notations. Then we explain stable motif pairs

significant motif pairs, and starting motif pairs in a formal STABLE MOTIF PAIRS

way using three sections of this paper. Finally, we reportn this section, we introduce the new conceptstdble

our discoveries and evaluations. motif pairs This notion is in light of evolution principles:
a stable motif pair is evolved from its neighboring motif
DATA AND BASIC NOTATIONS pairs, and it should maintain such a status for a long

time. We emulate such an evolution using a functjon
dataset of interacting protein pairs collected by von Mer%%fined in accordance with a widely accepted concept
! Ing protein pai y v alledconsensus discoverBy this function, only strong

ing et al. (2002), and a protein complex dataset derive esidue si : :
_ gnals are conserved in heritage but weak ones are
from PDB  (http:/www.rcsb.org/pdb/).  The SEQUENCEL o red out in the transformation of motif pairs.

data:s_et_ conlsistst OIfI ﬂ:8?9t0 [[1_ont—restJ_ndant tin_teraqtiops,Given a motif pair, our algorithm for the consensus
containing aimost all tné 1atest intéracting protein pairs in iscovery is to find a&onsensus patterfitom the cluster
yeast genome produced by various experimental and hi ; o

! X . this motif pair.
confident computational methods. The protein complex
dataset was generated from PDB on the 9th of June, DEFINITION 1. [Cluster of a motif pair] Let MPr
2003, containing 1533 such entries that have at least twbe a motif pair andD be a sequence dataset of inter-
chains, by using online search tools in PDB-REPRDBacting protein pairs. The cluster a¥/Pr in D, denoted
(http://mbs.cbrc.jp/pdbreprdb-cgi//reprdjoiery.pl). In  Cluster(MPr,D), is a subset ofD such that for ev-
this complex dataset, the maximum pairwise sequencery PPr in this subset,PPr contains MPr. That is,
identity between any two complexes is 30% and eactCluster(MPr,D) = {PPr' € D | MPr C PPr'}, or
complex has a structure of resolution 2.0 or higher. In thislenotedC'luster(MPr) simply wherD is understood.




where, a protein paiPPr = {P;, P,} containsMPr =  consensus motifs\{; or My) are derived separately

{Mp,Mg} if (M, C PPANMr C P,) V (My C fromthese two semi-clusters. The consensus pattern (the

P, N My C Py). Thisis also denoted/Pr C PPr. motif pair { M}, M}}) is listed at the second last row of
To find the consensus pattedPr’ from the cluster the table.

of a given motif pairMPr = {M,, Mg}, we use the Alternatively, we can use other algorithms such as

following method. EMOTIF (Nevill-Manning et al.,, 1998) to discover
_ . . _ consensus patterns.

1. Split the cluster vertically into twsemi-clusters From the consensus discovery, we can seelthat’ is a
Clusterp andClusterp o transformation of\/Pr. We use functiory to describe this
Clustery (MPr,D) = {P'|P" € {P|, P;}, M1, C  transformation process. Therefore, finding the consensus
P Mp C ({P{, Py} —{P'}),{Pi, P;} € D}, patternMPr’ from the cluster of a given motif pait/Pr

Clusterg(MPr,D) = {P' |[P" € {P], P;}, Mr C  can be denoted by(MPr) = MPr'.
P M, © ({F, Py} —{P'}),{P, P} € D},

2. Align all the occurrences inCluster; or in DEFINITION 2. [Stable motif pairs] A motif pair MPr
Clusterr according to the motifM; or Mz is stable if
respectively,
f(MPr) = MPr.

3. Find a consensus motil/; or M}, respectively
from the two alignments by extracting all those

residues in each column of an alignment whosil; Mathematically, this definition follows the Brouwer’s

ixed Point Theorem (Mohamed and William, 2001).
hat is, a thing X, after a transformationf, is still
the same thingX, denotedf(X) = X. Some basic
4. Combine M} and M}, into a motif pair MPr" = pjological phenomenon can be interpreted as fixed points.
{M}, My}, then itis the transformed motif pair of For example, the DNA of a cell can be split into two
MPr. cells with the same DNA after self-replicating where the
is the DNA, and thef is the laws of Physics and
. hemistry applied to DNA. As another example, some
pair {AGGG(IY], [FV]G[EK.] [AE] [ENS.] [[L]A} C2H2 Zinc-Finger genes can be translated into the same
In a sequence datase? l.Jsed in von '\"?””9 et aI.. type of protein after frameshifts (Meng et al., 2004). Here
(2002.)' Obser\_/e th‘.'"t thls_clugter_ consists of 7 "the X is the protein type, and thgis the frameshifting.
teracting protein pairs, which is indeed a nonempty” g, ing from any motif paitVPr, it is possible to find
subset of D. Columns 2 and 3 of Table 1 list the a stable motif pair. Supposﬁ(MP;ﬂ) — MPD. Then
Table 1. The cluster of the motif par We apply f to MPr®V and getMPr®. lteratively, it
{AGGG[1Y], [FV]G|EK][AE][ENS|[IL]A} and the consensus is possible to getf(MPr®) = MPr®. If MPr® is
pattern{ AGGG[IY], [FV|G[EK|A[ES]|IA} derived from this cluster. nonempty, then it is called a stable motif pair. The whole
process is callecefinementTable 2 shows an example of

occurrence rate is larger than a threshold (20% i
this paper).

Table 1 gives an example, showing the cluster of a moti

| Protein 1 I Protein 2 | such refinement from a starting motif pair. We can prove
that the refinement from any motif pair converges to either
| Name | Sequence || Sequence | Name | a stable motif pair or an empty pattern.
YKLOB5W | ...AGGGI ... - FGKASIA. .. YPL004C Table 2. The refinement from a starting motif pair
YGR204W | ...AGGGY... ...FGKASIA... | YPLOO4C (AGIDGS|[GSI[IVY], [FVIGIEK|[AE|[DENS|[IL]A}. The
YLLO18C | ...AGGGI... ---FGKASIA... | YPL0O0AC resulting stable motif paif AGGG|IY], [FV]G[EK]A[ES]I A} is listed
YGR204W | ...AGGGY... ...VGEAEIA... | YLR153C at the last row.
YLLO18C | ...AGGGI... ...VGEAEIA... | YLR153C
YKLO85W | ...AGGGI... ...VGEAEIA... | YLR153C
YKL182W | ...AGGGY... | ...VGEENLA... | YDL052C | Left Motif | Right Motif | Cluster Size|
| | AGGG[lY] || [FVIG[EKIAES]A | | AG[DGSI[GSI[IVY] | [FVIGIEK]AE][DENS][IL]A 13
AG G [GS|IIVY] | [FVIG[EKIAE][ ENSJ[IL]A 9
| | consensus pattern | | AG G [GS][I Y] | [FVIG[EK]AE][ ENS][IL]JA 8
AG G G [I Y] | [FVIGEK][AE][ ENS][IL]A 7
AG G G [l Y] | [FVIGEKIA [ E S]I A 6

alignment for the two semi-clusters of the motif pair
{AGGGI[IY],[FV|G[EK]|[AE|[ENS]|[IL]A}. The




SIGNIFICANT MOTIF PAIRS AND THEIR support of motif pairs with respect to a sequence dataset

EFFICIENT COMPUTATION D of interacting protein pairs.
As shown later, not all stable motif pairs are statistically DeriNITION 4. [Support a motif pair] The absolute
significant. So we introducsignificant motif pairsn this  support of a motif pairMPr = {M;, Mg} in D is

section to capture more information for binding motif defined as the number of interacting protein pairsIn
pairs. A significant motif pair requires that the two motifs that containMPr, denoted byt (MPr, D) = |{PPr® €

in the pair must be significant as well. The significance isD | MPr C PPri}| = |Cluster(MPr, D).

statistically evaluated against randomness. We begin with _ ) ) . . . .
definitions for the absolute support and statistical score SiNce not all motif pairs contained in an interacting
of single motifs and their efficient computation. Then wePrOtéin pair can play a role for the interaction, we define
explain significant motif pairs and give efficient methodscontributive support of motif pairs to reflect the true
to compute their significance indices. contributors for the interaction.

DEFINITION 5. [Contributive support for a motif pair]
The contributive support of a motif pait/Pr in D is
the number of protein pairs irD whose interaction is
partially contributed byMPr, denoted byr¢(MPr, D) =
{PPri € D|MPr C PPr‘, MPr contributes PPr'}|,
or simply denoted by“(MPr).

_The Z-score measurement is widely used to evaluate the,nripytive support is only a theoretical concept when
significance of single motifs (Atteson, 1998). The Z-SCorégyctyre data for the protein complexes are unavailable.

of a motif M is defined as Later on, we will show how to estimate contributive sup-
7(M,PrtnDB) — exp(M, PrtnDB) port values based on a sequence datdsef interacting
zs(M, PrtnDB) = (M, PrinDB) protein pairs and a set of motif pairs.
’ (1 Similarly as Z-scores (Atteson, 1998) used to measure

where exp(M, PrtnDB) is the expectation support for the significance of single motifs with regard BostnDB,
M in PrtnDB, o(M, PrtnDB) is the standard deviation We define P-scores to measure the significance of motif

DEFINITION 3. [Support foramotiff The abso-
lute support of a motifA/ in PrtnDB is the number
of proteins in PrtnDB that contain M, denoted by
7(M,PrtnDB) = |{P* € PrtnDB|M C P}|, or
simply denoted by (M).

for the random occurrence (support) df in PrtnDB.  Pairs. Given anMPr = {My, Mg} and a protein
With Z-scores, we can distinguish significant motifs from intéracting sequence datadet

random ones. If the occurrence of a motif is far away m¢(MPr, D)

from its random expectation, this motif is considered to ps(MPr,D) = WP;,D) (4)

be statistically significant.

Through the software package provided by Nicodem§yhereexp(MPr, D) is expectation support of random co-
et al. (2002), the expectation and deviation for a motifgccyrrences oM Pr in D.

M = AA,--- Ay with respect toPrtnDB can be  Based on the Z-scores of single motifs and P-scores of
calculated as follows, whene is the number of proteins  yotif pairs, now we define significant motif pairs:

in PrinDB(seeAppendix Aor details): o o o
DEFINITION 6. [Significant motif pairs] A motif pair

k A MPr = {Mp, Mg} is significant in a protein interacting
il;ll‘ i sequence datasdP and the corresponding protein set
exp(M,PrtnDB) = g +(|PrtnDB|—m(k—1))  PrtnDB if z,(My, PrtnDB) > 71, z,(Mpg, PrtnDB) >
Tr, andp,(MPr, D) > 15, wherer;, > 0,75 > 0,75 >

)
Nicodeme et al. (2002) also showed that for most motifs| &re pre-set thresholds.

This definition emphasizes that the observations should
o(M, PrtnDB) ~ \/exp(M, PrtnDB) (3)  be far away from the expectation values.

and standard deviation of any motif can be calculated ifmination. So, we present an approximate solution. First,
linear time with respect to the number of positions in theBSSUume\/,, and M, are independent, the expectation can

motif, i.e.in O(k) time. be calculated as follows:
Next, we introduce the concept of significant motif (M) w(Mg)
pairs. Let's first define the support and contributive exp(MPr,D) = n * * (5)

m m




wherem is the number of unique proteinsh Therefore, proteins are acontact segment paiif any residue in

the P-score can be re-written as one segment can find at least one contact residue in
9 the opposite segment, where the contact of two residues

m® + m°(MPr) (6)  means that at least one of their atom pairs has an Euclidean

nx (M) * m(Mp) distance less than a threshold. A contact segment pair is
Assume an interaction contains only one binding motif® maximal contact segment pair 'f. no any other_ contact

pair, then the contribution of a motif pair to a protein pairissegmem pair 1n the same protein pair_contains both

influenced by other motif pairs. Given a sufficiently large SE9MeNts Of this contact segment pair, capturing contact

set of motif pairsS,,p., we can estimate the contributive segment pairs as Ien_gthy as possible. These defini_tions
support using the folldwing and the search algorithms can be found in our previous

work (Li et al., 2004). To be self-contained for this paper,
we also outline these in Appendix B. As an example (see
_ more in Figure Sland Figure S2of the supplementary
et information), the segment paiffa1e, aso], [da1, daz]) with
5:(MPr) = { ; of MIY & PRy sequence (AGSSY, VGRANMA) between chain A and
chain D of the complexpdblmbmis a maximal contact
. (7) .._segment pair.

It can b(_e seen that for a motif pair, the supports of Its However, directly using maximal contact segment pairs
two contained motifs are f|xe_d values in a given protein,g starting motif pairs is not a smart choice. Because
set PrtnDB. So, when handling a large motif pair set y,o5e segment pairs are highly specific in corresponding
Snpr, formula (6) and (7) will consist of a large group <hecies, they may not occur in yeast interacting protein
of equations with two types of variables: the P-scores anfaiaqep. So, we need tgeneralizehese contact segment
the contrlbutl\{e supports of the mot|f pars. airs. We achieve this goal by using the principle proposed

To solve this group of equations, we explore the Us§, azarva-Sprinzak et al. (1997). The principle says that
of iterative programming. First we set_an identical initial even some residues in some positions are changed to
value for the P-score of every motif pair. Th_en we use theother residues, their structures are still unchanged. Since
current P-scores to calculate the contributive support fof o structures maintain the same. the binding behavior
all motif pairs by formula (7). We can thereafter get new P-¢ highly likely to maintain as weil. Basically, we use

scores using formula 6) f_or each motif pair and starta nevy, .| alignment and consensus discovery to implement this
round of calculation, until the changes of most variablegyenerajization and to get satisfactory starting motif pairs.
are less than a threshold. Given a maximal contact segment p&lif- and a protein
interaction dataseD, the generalization of5Pr is as
follows:

ps(MPr,D) =

r(MPr) = lim S —2(MPD) s yrpyy

oW, i
|Snmpr|—00 ;7 > ps(MPr’,D)

DETERMINE STARTING POINTS TO DERIVE
STABLE MOTIF PAIRS

Since the number of possible starting motif pairs is huge, i ; i ;
is a computational difficult problem to find all stable motif {pprt € D | Local Alignment(SPr, PPr') >
pairs from a large dataset of interacting protein pairs. In A} WhereX is an empirical threshold,
this section, we present a heuristic method to find a subset 2. Discover the consensus patterd/Pr from
of the stable motif pairs with the biological guidance ApproxCluster(SPr).
from a protein complex dataset. Our motivation is that i ,
the protein complex data is the most reliable data about 1hUS, MPr is a generalized pattern forSPr.
protein interactions, and its 3-D co-ordinate information! N€N we useMPr as a starting point to discover
is an easy platform to find binding sites. Hereby, we2 Stable motif pair. For the maximal segment pair
first compute binding sites from the complex dataset, an§4G5SY, VGRANMA) — mentioned ~above, we
then use them to produce starting motif pairs to searcfPUnd 34 interactions for its ApproxCluster. From
for stable and significant motif pairs from the dataset ofNiS_ cluster, we induced a consensus motif pair,
interacting protein sequence pairs. By this way, we car{A_G[DGS} [GS][IVY], [FV}G[EK] [A_E] [DENS] [IL]A},
get high confidence to the discovered stable and significaffNich was then used as the starting point to derive a stable
motif pairs since they are stemmed from the biologicallyMOtif PAIr{AGGGIY], [FV]G[EK]A[ES]IA}.
reliable protein complex data.

A core step to determine starting motif pairs is to
discover the so callethaximal contact segment paiffsi
et al., 2004) from a protein complex dataset. Let’s explain
a bit more about this concept. Two segments from different

+ 1. Find asubset dP, denoteddpproxCluster(SPr) =




Summary of the whole flow to discover a subset of iterative process. The initial P-score for every motif pair
stable and significant motif pairs was set ad.0 in this work. We observe that the P-score

The whole flow of our method is summarized as fol-trends of most motif pairs{ 90%) in the iterative process
lows: are convergent, either monotonically increasing or mono-

. : : . . tonically decreasing. Given a set of motif palfg;»., the
Inr;u('[:.()rﬁp?:)?zz?;seélatasﬁ of interacting protein pairs, overall score difference between tji¢h and the(j — 1)-

} I e th iteration is calculated by an indéx(j) *. If A < 0.01,
OL;tpUt' A set of stable' and significant motif paifs e we stop the iterative process. For m(os)t sets of motif pairs,
or all complexCPL inC do th Id st ithin 4 iterati
for all protein pairP, and P, in CPL do € process could stop within 4 iterations.
find the set of maximal contact segment p&ks. ;
end for
end for
for all contact segment paliPr in Sgp. do
generalizeSPr to produce a starting motif paiv/Pr
end for
for all starting motif pairhMPr do
refine MPr to either a stable motif paib/Pr’ or an

Results overview

In total, we discovered 765 stable and significant motif
pairs from the sequence dataset of interacting protein pairs
using 1403 maximal contact segment pairs identified from
the protein complex dataset. See Table 3 for these results
and other related results such as the support information.

Table 3.Our results in overview.

emptyset.
end for
for all stable motif pairMPr’ do
filter those stable motif paird/P’ if MPr' is not Numof | Numof | Numof | Numof | Supportof| Supportof
significant Contact | Starting | Stable Significant Stable Significant
df Segment| Motif Motif Stable Motif Motif Motif
end for Pairs Pairs Pairs Pairs Pairs Pairs
IMPLEMENTATIONS AND RESULTS
. . . 1403 1222 913 765 122193 107028
In the computation of contact residues in a complex, we

set the distance threshold &4, that is, any residue/atom
pair which have a distance less tha# is regarded to be
contacted. In the computation of maximal contact segment
pairs, we required that every contact segment should
contain at least 4 residues. In the generalization fro
maximal contact segment pairs to starting motif pairs, w
set different\ thresholds for local alignment based on the
segment lengthsk was set strictly for short segments but
loosely for long segments. Actual values used in this
study can be referred teigure S3of the supplementary
information
After obtaining starting motif pairs from the complex

dataset, we conducted the refinement process to find

The P-sore values of the 765 stable and significant motif
airs differ very much from one another. Figure 2 shows
he distribution of these P-scores (unttgy, scale). Itcan

be seen that our algorithm can discover motif pairs with
both high and low P-scores (larger than a threshold).

2
3

Num of Stable and Significant Motif Pairs
@
8

stable motif pairs from the sequence dataset of inter- .

acting protein pairs. For a motif pai¥/Pr, to discover - H H H H
f(MPr)—the consensus pattern—and subsequently —
fG--f(f(MPr))) until a stable state, we computed P-scores (under log2 scale)

a latter cluster based on its previous cluster instead of

the whole dataset. The efficiency was therefore greatlyig. 2. The distribution of the P-scores (undesg,) for the 765
improved. This is correct because the refinement leads taable and significant motif pairs.

more and more specific motif pairs.

After obtaining a set of stable motif pairs from the start-
ing motif pairs and the refinement, we filtered the insignifi- _ _ )
cant ones. The thresholds for the significance indices were 2x Mmgs - (ps(MPr*, D) — ps(MPY*,D); 1)
setasr, = 0,75 = 0,75 = 1. The computation pf the AU = S (ps(MPri, D);)% + (ps(MPri, D), _1)2 ©)
supports and Z-scores are straightforward according to our MPri €8 npr ' '
algorithm. However, the computation of the P-scores is an
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Fig. 3. The distribution of the absolute support values (urider, Fig. 5. The percentage of non-zero support motif pairs in our
scale) of the 765 stable and significant motif pairs. discovered stable motif pairs and those in 10 sets of equal size of
random motif pairs.

Effectiveness comparison with random patterns

. To demonstrate our discovered stable and significant
w motif pairs are credible, and also to illustrate that our
choice of the starting motif pairs makes benefits to the
B S —— Y discovery, we conduct a comprehensive computational

The i-th motif pair (i=1 to 765) comparison between our patterns and random patterns.

These experiments include: (1) the comparison between

Fig. 4. The distribution of information content of our discovered our 913 stable motif pairs versus 10 random sets each
stable and significant motif pairs. consisting of 913 random maotif pairs; (2) the comparison
between our 1222 starting motif pairs versus 10 random

sets each consisting of 1222 random starting motif pairs.

Besides P-scores, another important information is sup- A random motif pair is generated by substituting
port. The distribution of the support values (undeg,  €very residue in our pattern with a random residue. So,
scale) of the 765 stable and significant motif pairs is dethe random pattern has the same length as ours. The
picted in Figure 3. It can be seen that our algorithm predistribution of the randomly generated residues follows
ferred to discovering motif pairs with relatively low sup- the same distribution of all the residues in the contact
ports. This is an advantage of our algorithm as the suppofites of our complex dataset. (In fact, it has no significant
of many real binding motif pairs is quite possible to be lowdifference between this distribution and that in the whole
in an incomplete dataset. The distribution of the estimateyeast genome (Fariselli et al.,, 2002)).
contributive support values for our discovered motif pairs First, we compare our 913 stable motif pairs with the 10
exhibits almost the same shape as the one in Figure 3. Sets of random motif pairs of equal size to see how much

To evaluate the lengths of our discovered motif pairs, weaPercentage of them are significant. We observed that
usedlnforrﬂatlondcon;en(TompIac,i_199b9) as thﬁ m_d:zx. AS'. About two thirds of the random motif pairs have
Sume eacf rest I}I]\Z 3qui’4a 'SLT utlonl,ot eimn orm{:\jtlon a zero-support in the interaction datag2t namely
content of a moti = A Ay - -+ A Can be compute 7.‘.(]\IH,,'r'MLdom7 D) = 0. However, for everyMPr of

Information Content
8

by: our 913 stable motif pairs;(MPr, D) # 0 . Figure 5
k shows the percentage of random patterns having non-
I(M) = klogy, |X| — Z log,, | Al (9) zero support for the 10 rounds of random experiments.
i=1
For a motif pairMPr = { M, Mz}, we define e Only about one ninth of the random motif pairs are
significant. However, about 84% of our 913 stable
I(MPr) = I(Mp) + I(Mg) (10) motif pairs are significant. Full results can be seen in
Figure 6.

So, the information content largely reflects the length of &
motif. The distribution of the information contents of the
765 motif pairs is presented in Figure 4. It can be seen
that most of the motif pairs have an information content
between 10 and 20, except for very few cases. So, these
motif pairs roughly have residues between 10 to 20. These results indicate that our discovered stable motif

The total support of our stable and significant motif
pairs is much larger than that of significant random
motif pairs, which is shown inFigure S4 of the
supplementary information
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Fig. 6. The percentage of significant motif pairs for our discoveredFig. 8. The percentage of stable and significant motif pairs derived
stable motif pairs and those for 10 sets of equal size of random motifrom our starting motif pairs and those derived from 10 sets of equal
pairs. size of random starting motif pairs.

that they provide much information to find real binding
motif pairs. This is also confirmed by our literature
searching results reported in the next subsection.

Percentage of Stable Motif Pairs
o
A

Literature validation

Our Starting Motif Pairs ve. Random Starting Mofif Pairs To demonstrate the biological significance of our dis-
covered patterns, ideally, they should be validated by

Fig. 7. The percentage of stable motif pairs derived from our startingwet'e)(pe”mental methods. Unfortunately, there are few

motif pairs and those derived from 10 sets of equal size of randonfVell-known wet-experimental methods which can deter-
starting motif pairs. mine the two sides of the binding sites simultaneously.

Current available technique such as phage display (Smith,
1985) can determine only one side of the binding sites and
pairs are much more statistically significant than randonproduce protein-motif binding pairs or protein-peptide
patterns. Therefore, they are most likely to be potentiabinding pairs. On the other hand, there is still limited
binding motif pairs. data about binding sites, mostly spanning across various
Secondly, we substitute our 1222 starting motif pairsindividual literature, without an integrative and compre-
with random starting motif pairs to see how muchhensive database available, which makes our validation
percentage of stable motif pairs can be discovered, aneven harder.
how much percentage of stable and significant can be Nevertheless, we still find some evidences to show the
discovered. Such substitution is repeated for ten times. Weiological significance of our discovered patterns. First,
observed that we check the coincidence of thedividual motifs in our
) o motif pairs with the reported binding motifs determined
e Our starting motif pairs can lead to 75%(913) of stablepy, yarious wet-experimental methods. For example, using
points, but those random starting points in each rounqj<ey words ‘binding motif OR site AND mutagenesis’,
lead to less than 33% of stable motif pairs. Full resultsye extracted 202 binding motifs from the abstracts of
can be seen in Figure 7. NCBI PUBMED; 89 of them have at least 3 positions
30, of cOMpatible to ours and 40% overall similarity. Of these

e Our starting motif pairs can lead to about 6 . P P . .
stable and significant motif pairs, but less than 18989 binding motif pairs, 42 motif pairs are highly similar

of those random starting points can lead to stable an/Ith our discovered motifs, having at least 4 positions
significant motif pairs. See Figure 8 for full results. ~ compatible and 50% overall similarity. We show the top
5 matches in Table 4. Similar examples comparing with

From these comparison, we can conjecture that théhe phage display method is providedTable Slof the
generalization from maximal contact segment pairs tsupplementary information
our starting motif pairs is a useful method because it Secondly, we check our discovered motif pairs with
contributes much more number of stable and significanprotein-motif binding pairs determined by phage display.
motif pairs than the random method does. First, we identify the individual motifs in our population
From these various random experiments, we can see thaf discovered motif pairs that match closely with a binding
the stable and significant motif pairs that we discoverednotif/peptide in the literature. Then, for each of such
are far way from random expectation, which benefits frommatched motifs, we verify whether the motif on the other
the choice of starting points. Therefore, it is reasonableaide of the corresponding motif pairs can be found in the




Table 4. Motif coincidence with the mutagenesis method. The motif Mp = [EK] [LV]GDG is rooted at the
segmentY QFGDG at the chain B of thepdb3daa

| OurMotif | Mutagenesis Motif| PMID of Mutagenesis Motif| Complex_' Thes? Six amin(_) acids are indexed from .24th to
29th residues in the chain B, denoted [by,, bag] with
GSGKT GXGKT 10464259 sequenc& QFGDG.
ALETS LETS 11435317 The segment pair,[a147, @150], [b24, bao]) With se-
PlIVIDL PVDLS 11373277 qguence (LNLL,YQFGDG) between chain A and chain B,
L[DN]LL LLDLL 11451993

is a maximal contact segment pair.

This maximal contact segmentpalt NLL,Y QFGDG)
is then generalized to the following starting motif pair
Mprstm’t

K[DEIK[EK] KEKE 10748065

proteins known to bind the particular motif/peptide. An MPry.,s = {L[DN]LL, |[EK][LV]GDG}
example is shown in Table 5. Tumbarello et al. (2002)

studied the binding sites of protein paxillin and its bindingfor the functiony.

proteins. The binding site of paxillin is in the form of Interestingly, we found that f(MPra.) =
LDXLLxXL. Our method discovered similar motifs as pp-, ., = MPropampie. That is, this starting mo-
shown in the first column of Table 5. The other side oftif pair M/Pr,,,., itself is a stable motif pair.

the corresponding motif pairs are shown in the second \We found that this stable motif paibPropampic iS
column of the table, which have been found to exist instatistically significant after examining its support level
the binding proteins reported in the literature (Tumbarelloand P-score against random motif pairs. The support
et al., 2002). The fully matched binding proteins orof motif L[DN]|LL is 265 in PrtnDB, the support of
roughly matched motifs are shown in the last column ofmotif [EK][LV|GDG is 13 with respect to the same
the table. More examples are detailedTiable S2and  protein setPrtnDB. The support of MPrpampie @S
Table Sof the supplementary information a pair is 58 in the protein interaction sequence data

Table 5. The coincidence between our discovered motif pairs and the bindingset D. Then, we generated 1000 random motif pairs

sites of paxillin and its binding proteins, where the binding site of paxillin is @CCOrding toMPr ..q,mpie, Where each random motif pair
motif LDXLLXXL. is generated by substituting every residué\it ., . pic
with a random residue. So, the random motif pairs have
the same length a8/Pr.,qmp. The distribution of the

| Leftmotif | Right Motif | Confirmed Proteins| : ohuie
randomly generated residues follows the same distribution
| DIULOL] | [STIDIEKIA |  VinculinFAK | of all the residues in the whole yeast genome. For these
1000 random motif pairs, the average support of the

| ILIDGIIVILD | DIEKIEGI | PYK2(D[EKIEG) | random motifs corresponding ®[DN]LL is 32.91, the

average support of the random motifs corresponding to

L[FL]VLK ’ L[FL]VLK ’ Vinculin(L[FL]VL) [EK][LV]GDG is 4.41. The average support for those
PYK2(L[FLIVL) 1000 motif pairs is 1.83 in the protein interaction sequence

data setD. The P-score ofV/Pr.,qmpi. @S a pair is 6.15
with respect to protein interaction sequence datal¥et

) ) ) while the average P-score for these 1000 random motif
Finally, we give full details of one of the 765 stable and pairs is 2.63 with respect to the sarfiz From these

significant motif pairs to see how it is discovered, wheregiaiistical numbers of\/Pr., .. and its equal-length
is its origin, and what is its biological significance. This 1000 random motif pairs “We can see tHePr

. .. example
stable motif pair is has occurrence much more than its random expgctation
{LIDN]LL,[EK][LV]GDG} either in single motifs or in pairs. So, the stable motif pair
MPr,qmpie 1S not a random result indeed.
denoted byMPr.,ompie = {Mp, Mr}, where M, = We also found many biological significance of the motif
L[DN]|LL andM, = [EK][LV]GDG. pair MPr.ompie- In biology, Doray and Kornfeld (2001)

Its origin is located at the so-callqguib3daa protein  found a protein motifAMpx = LLDLL, a functional
complex. Specifically, the motifi/; = L[DN]LL is variant of theL LN LD motif within the beta 1 subunit of
evolved from the the segmehtV L L at the chain A of the AP-1, was biologically confirmed to bind to the terminal
pdb3daa complex. These four amino acids are indexeddomain of the clathrin heavy chain. From the sequence of
from 147th to 150th residues in the chain A, denoted bythis terminal domain, we find that there exists a segment
[a147, a150] With sequencd NLL. E LG D near the end part of this domain. Comparing these




biological results and our computational results, we cara special subset of them. The discovery of this subset of
see that stable and significant motif pairs is guided by binding sites
_ L .. identified from a biologically reliable dataset of protein

¢ %lDDIEV]L_L ofcﬁjl?é{)/tigs a?rIJT/[I?: to the left motif complexes. For this, we extract maximal contact segment

P example: pairs from the complexes dataset, then generalize them to

e The segmentE LG D matches well with our right become our crucial patterns—starting motif pairs that lead

motif [EK]|[LV]GDG of MPr.,qmpic- The precise to stable motif pairs by a refinement process.

position of the segmerff LG D is from positions 462 Our comprehensive comparison results have shown that

to 465 at the end of the globular terminal domain (fromour discovered motif pairs are much more statistically
1th to 479th) of clathrin heavy chain 1 of human. significant than random motif pairs, a result from the
choice of starting motif pairs. Some of our discovered

e Besides, our left motif LIDN]LL is similar to  mqotif pairs are also highly matched with real binding
LLDLL andLLN LD both of which share the same tifs reported in literature.

functions.
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For a motif M = A;A,--- A, the expectation in
overlapping model is as follows:

k
— | A
p(M) = ]I =]
li‘lzkl m

exp(M,PrtnDB) = p(M)* > (|P'|—k+1)

i=1

- p<M>*<§|Pi|fm*<kf1>>
= p(M)* (|PrtnDB| —m x (k — 1))

(11)
APPENDIX B
DEFINITION 7. [Contact segment pairs] Given
two proteins P, = (ay,...a;,...a,) and P, =

(by,...b;,...b,), wherea; and b; are corresponding
residue ids on its protein, a segment pdit;, , a;, ], [b;,, bj,])
is a contact segment pair ifa; € [a;,a;,], 3b; €
[b;,,b;,] such that contact;, b;), andVb; € [b;,,b;,],
Ja; € [a;,,a;,] such that contagt;, b;). Residuer; and
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