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ABSTRACT

This paper presents an original methodology for extract-
ing semantic features from X-rays images that correlate to
severity from a data set with patient ICU admission labels
through interpretable models. The validation is partially per-
formed by a proposed method that correlates the extracted
features with a separate larger data set that does not contain
the ICU-outcome labels. The analysis points out that a few
features explain most of the variance between patients admit-
ted in ICUs or not. The methods herein can be viewed as a sta-
tistical approach highlighting the importance of features re-
lated to ICU admission that may have been only qualitatively
reported. In between features shown to be over-represented
in the external data set were ones like ‘Consolidation’ (1.67),
‘Alveolar’ (1.33), and ‘Effusion’ (1.3). A brief analysis on
the locations also showed higher frequency in labels like ‘Bi-
lateral’ (1.58) and Peripheral (1.28) in patients labelled with
higher chances to be admitted in ICU. To properly handle the
limited data sets, a state-of-the-art lung segmentation network
was also trained and presented, together with the use of low-
complexity and interpretable models to avoid overfitting.

Index Terms— Covid-19, deep learning, ICU, severity,
X-ray.

1. INTRODUCTION

Chest medical imaging has proven to be useful in managing
more serious COVID-19 infections since respiratory dysfunc-
tion is one of the primary sources of COVID-19 morbidity
and mortality. Several researchers have shown Deep Learn-
ing to be useful in classifying COVID-19 cases from med-
ical images including CXR [1], CT [2] with some research
also achieving promising results with the Ultrasound imag-
ing mode [3]. However, using Deep Learning as a diagnostic
tool can be problematic as it is hard to assess biases, risk, po-
tential overfitting, and ability to generalize in clinical settings
[4]. Its value resides more on the prognosis and treatment
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Fig. 1: ICU-related images are filtered from a limited data set,
augmented, processed, and features are extracted via a spe-
cialized neural network. A few of the extracted features are
used to fit a shallow decision tree, which is further compared
to an external data set compose of text labels.

side than in actual diagnostic use [5]. Chest X-rays (CXR)
and Computed Tomography (CT) imaging can be useful tools
since these methods help clinicians to establish a baseline pul-
monary status and identify underlying pulmonary conditions
that may contribute to the patients’ risk. Compared to CT,
CXR is less expensive, more available, and require less tech-
nical expertise to perform and interpret than Ultrasound [6].

This paper therefore focuses on the potential disease pro-



gression by providing a methodology for extracting features
that are correlated with patients that develop severe COVID-
19 symptoms (admitted to ICUs). It leverages the existence of
a data set with patient outcome labels of CXR images and the
fact that some of these were collected before ICU admission.
As such a data set is limited, significant measures were taken
to aggressively limit potential overfitting such as image pre-
processing, augmentation, lung segmentation and feature se-
lection. To achieve significant results, a segmentation model
achieving state-of-the-art results is also proposed and part of
the contribution. Besides cross-validation, the found features
are also correlated with an external data set to attest their sig-
nificance. Such a data set has pathologies and localization la-
bels, which also allows for insights relating to their locations
in the lung.

In short, the contributions can be summarized: (i) presen-
tation of a method that extracts semantic features explaining
the variance between patients that severe or not, (ii) correla-
tion with an external data set, improving validation, and (iii)
a lung-segmentation model achieving state-of-the-art results.

2. METHODS

Given the limited amount of data to learn the severity-
correlating features, a focus on limiting potential overfitting
was central to most methodological decisions. Instead of
disregarding such investigation simply because the data is
limited, the idea proposed here is to use low-complexity, in-
terpretable methods to test features for potential predictive
value and correlate them to an external data set and literature.
Fig. 1 is set to depict a high-level graphical summary of the
methodology.

2.1. Data sets

The data set used to learn the features present in patients with
higher chances of being admitted to ICU was a subset of the
data presented by Cohen et al. [7]. It is one of the most
popular data sets on the literature, favourited more than 2000
times on Github. One of its most positive characteristics is
its rich metadata containing categories such as sex, age, lo-
cation, patient condition, and outcome (ICU admission), al-
lowing for the investigation presented here. For the images
that had rich descriptors, two prominent labels were of inter-
est when analysing this ICU data set: ‘went-icu’ and ‘in-icu’.
An image taken from a patient marked with ‘Y’ on the former
label and ‘N’ on the latter is a sample from a patient that even-
tually developed severe symptoms before they were admitted
in ICU. Therefore, one can reasonably form the hypothesis
that there might be features in these images that are associ-
ated with patients that were eventually admitted in ICU. In
total, 100 images containing these two labels were used in the
analysis, which were further multiplied by a factor of approx-
imately 10 (1040 images) by gentle affine random data aug-

mentations: rotation, piecewise affine transformation, trans-
lation, and shear.

To expand the validation and address potential generaliza-
tion concerns, a larger, external data set was also used at the
testing phase. Its metadata does not contain labels regarding
patient outcome (went to ICU or not), but the information it
has could be correlated to results from the learned semantic
features by frequency. This data set of X-ray images from
COVID-19 patients, named BIMCV [8] and publicly avail-
able, contains doctor’s annotations for each subject that were
used here as discrete labels and descriptive terms. Besides nu-
merous, such labels refer not only to the pathologies observed
by the doctors in the patient’s lungs but also points to their lo-
cation. A total of 1312 images were labelled as valid, which
were used to create a dictionary with the pathologies and lo-
cations labels and their respective frequency for each group
(labelled with a high chance of going severe or not). The cor-
relation is a measure of how the features relevant to the clas-
sification in the first data set are represented (frequency) in
the different classes assigned in the second data set. The null
hypotheses, in this case, is that if the images were sampled at
random, the frequency of labels would be equal in both sets.

2.2. Processing pipeline

The selected images, augmented to a factor of 10, are assigned
to a class (ICU or not) and fed through a pre-processing
pipeline established to normalize and remove potential bias-
inducing artifacts. The histogram equalization steps are set
to impose a normalizing effect on the contrast of images by
equalizing the distribution of pixel intensities that might be
concentrated in a narrow range. Although there are more
intricate equalization techniques, conventional and Contrast
Limited Adaptive Histogram (CLAHE) were used for the
normalizing steps. The choice was motivated by the direction
of using simpler yet robust techniques to avoid introduc-
ing potential overfitting bias; conventional plays the role
of global equalization while CLAHE does it locally. The
lung-segmentation model is applied to each X-ray image,
improving the signal-to-noise ratio for machine learning clas-
sification. Such model has a U-Net architecture with a ResNet
backbone and is trained with images are from Montgomery
and Shenzen datasets [9], resulting in a combination corpus of
1185 CXR image/mask pairs. Artefacts in the generated lung
field masks were removed by a combination of morphological
closing, contour filling and flood-filling, resulting in a set of
automatically segmented lung-field images. As a final step,
the images were also automatically cropped to fully contain
the segmented lung field, resulting in a uniform image set to
the downstream classifier and normalizing for different lung
sizes. Fig. 2 illustrates an example of an images before and
after pre-processing.



Fig. 2: Chest X-Ray images in different stages of the pre-
processing pipeline: original images (left), segmented lungs
without the normalization techniques (middle), and lungs seg-
mented with normalization applied (right).

Fig. 3: Gradient features illustrations. Sectioning of gradient
maps where the features are calculated: longitudinal (left) and
transversal (right) cuts.

2.3. Feature extraction

The feature extraction model is a DenseNet pre-trained
on 80,000+ lung X-ray images. The model, part of the
TorchXRayVision library, was firstly presented in [10] and
also later used in a work proposing a COVID-19 pneumonia
severity score [11]. The semantic labelling was performed by
adding an 18-node layer at the end of the network and train-
ing it to classify different pathology labels through a sigmoid
activation layer. The labels that each of the nodes was trained
to classify were the ones found in the large data sets used:
Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion,
Emphysema, Enlarged Cardiomediastinum, Fibrosis, Frac-
ture, Hernia, Infiltration, Lung Lesion, Lung Opacity, Mass,
Nodule, Pleural Thickening, Pneumonia, Pneumothorax.

In addition to the features extracted by the pre-trained,
specialized network, an original feature was conceptualized
to translate information regarding the location of the patholo-
gies in the lung, called here entropy gradient features. The
output features from the network, despite sufficient when at-
testing separability, do not translate any information regard-
ing the location of the pathologies in the lung. The calcula-
tion of the gradients in the network graph leaves in respect
to an input image was performed by the autograd torch class,
which is often used to create saliency maps. First, the maps
are construed with the energy of the accumulated gradients
in the layers of the network and then sectioned in two cuts:
longitudinal and transversal. For each of these cuts, an en-
tropy measure is calculated; a single integer value based on
the Shannon entropy, which can be seen as a measure of the
spread of the activations in their respective cuts. Figure 3 is
set to exemplify how the energy of the activations appear in
the image and how it was sectioned to translate the informa-
tion of the their locations.

2.4. Classification and validation

Given their interpretability and low-complexity, decision
trees were chosen to analyse the extracted features. Besides
being human interpretable, one can easily limit the effects
of overfitting by mechanisms of pruning, such as setting the
minimum amount of samples in the tree leaves. For the ex-
periments performed here, for example, trees were pruned
to contain at least 20 samples in each leaf in a maximum
depth of 4 levels, greatly reducing complexity and model
dimensionality. The results are presented for both the fea-
tures extracted with the pre-trained network and the proposed
entropy gradient features in a whole set and cross-validation
approach. To avoid confusion, it is worth noting that classi-
fication here is used only as a method to assess separability
between classes, rather than the optimal way to detect such
patients.

3. RESULTS

Regarding the segmentation network trained on large chest
X-rays image data sets, the designed architecture achieved
a maximum validation dice similarity coefficient of 0.988 at
epoch 93. The best performance observed in the literature
was achieved using a complex CNN achieving a dice similar-
ity coefficient of 0.980 [12], followed by Yang et al. [13] with
0.975 and Novikov et al. [14] with 0.974.

The separability (whole set) and cross-validation metrics
were calculated for the extracted semantic features and the
gradient entropy features. The former, features from the spe-
cialized network, resulted in 0.8 accuracy and 0.74 F1-score
when fitted on the whole data set and 0.78 accuracy and 0.72
F1-score for the cross-validation scenario. If the features are
ranked by samples under their respective node, it can result
in interesting insights since they are trained to have seman-
tic meaning. The three features with most samples, in this
case, were ‘Effusion’, ‘Consolidation’, and ‘Cardiomegaly’.
Fig. 4 depicts a 3-level version of the tree for better illustra-
tion purposes, which has performance closely equivalent to
the 4-level version.

While the pathologies picked by the decision tree as best
predictors of severity is illuminating, they do not translate in-
formation about the location of such pathologies. The simple
method proposed here uses hand-engineered features on gra-
dient maps to check for areas where the features are prevalent.
Although not revealing as the pathology tree, the experiment
shown to result in a relevant level of separability reaching ac-
curacy of 0.78, F1-score of 0.73, and cross-validation accu-
racy of 0.73. Some relevant features by the number of sam-
ples were ‘Fibrosis’ on the lower transversal cut of the lung,
and ‘Effusion’ and ‘Edema’ on the upper cut of the lung (see
Fig. 3).

The tens of thousand labels contained in the BIMCV data
set allowed for an interesting comparison between the classes
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Fig. 4: Decision trees and confusion matrices from the exper-
iment with semantic features.

after classification by the fitted model. The images had their
respective text labels assigned to sets given by their predicted
class (went severe or not). With many text labels for each im-
age, two dictionaries were construed with the keys being the
unique words in the set and the values representing the fre-
quency of such labels. The comparison was made with the
normalized ratio between the frequency of words in the po-
tentially severe class (1) and not (0). Such a ratio was calcu-
lated only for words that had the minimal arbitrary number
of appearances of 20 in each class. It may be worth not-
ing that, if the samples were picked at random, such a ratio
would be equal to 1, given the normalization. Table 1 presents
the pathological and localization labels with normalized ratios
higher than 1.2 and lower than 0.8, in descending order. The
most interesting aspect from such comparison the fact that
two of the most over-represented features in the images of the
external data set were also the ones chosen as most important
when fitting the decision tree in the data set used for training.
This shows that the features used to separate the data set used
for training are also consistently detected on the external data
set.

The method presented here can then be interpreted as a
way to express the statistical difference between features pre-
viously known but mostly qualitatively, described by practi-
tioners. With this methodology, one uses only the specialized
pre-trained network and a dictionary comparison with text-
labeled data to infer such significance in patients that develop
severe symptoms. When compared to other works, two over-
represented features in the class of higher chances to go se-
vere — ‘Consolidation’ and ‘Bilateral’ — are often cited as
pathologies relating to the severity in the literature [15, 16].
For example, the authors in [17] reported that the evolution
from ground-glass opacities to consolidation was present in

Table 1: Over- and under-represented pathology and local-
ization labels and their frequency ratio

Pathology Localization
Feature Ratio (C1/C0) Feature Ratio (C1/C0)

‘Consolidation’ (127) 1.67 ‘Bilateral’ (449) 1.58
‘Alveolar’ (151) 1.34 ‘Middle’ (326) 1.39
‘Effusion’ (60) 1.30 ‘Lower’ (452) 1.31
‘COVID’ (443) 1.24 ‘Peripheral’ (489) 1.28

‘Pneumonia’ (301) 1.24 ‘Upper’ (305) 1.25
‘Pleural’ (67) 1.22 ‘Left’ (549) 1.23

‘Infiltrates’ (184) 1.23 ...
‘Interstitial’ (223) 1.2 ‘Hilar’ (99) 0.66

... ‘Mediastinum’ (84) 0.56
‘Normal’ (168) 0.48

(a) (b)

Fig. 5: Surface plots of the average of gradient maps in each
class: a) Non-ICU and b) ICU.

some severe patients. They also pointed out that a systematic
review on the subject showed that the prevalent locations were
bilateral and peripheral (another over-represented term from
results presented here). Lastly, another highly cited work [18]
reported that most of the patients had bilateral involvements
and that ICU-admitted patients showed bilateral multiple lob-
ular and subsegmental areas of consolidation.

With the methodology adopted, an interesting way to vi-
sualize the spatial distribution of some features becomes pos-
sible. Instead of simply plotting the gradient maps, one can
calculate the average of activations in relation to one feature
for all images, then averaging these whole class activation for
a representation of that particular feature. Figure 5 presents an
example for the highly-ranked semantic features: ‘Effusion’.

4. CONCLUSIONS

The results presented point out that selected semantic features
correlate to patients who eventually develop severe symptoms
and are admitted to ICU. The analysis included an original
methodology that heavily mitigates potential overfitting while
being interpretable, and proposes a method to compare them
to an external data set of text labels. Another original contri-
bution is are the lung segmentation network resulting in state-
of-the-art results. A more detailed report and source code of
experiments can be found in the in work repository 1.

1https://github.com/dougpsg/covid_mavidh_
icufeatures_scoring
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