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Abstract 

Carbon quantum dots (CQDs) are a class of carbon nanomaterials that have recently gained 

recognition as current entrants to traditional semiconductor quantum dots (QDs). CQDs have 

the desirable advantages of low toxicity, environmental friendliness, low cost, photostability, 

favorable charge transfer with enhanced electronic conductivity, and their comparable easy 

synthesis protocols.  This article examines advancements in CQD research and development, 

with a focus on their synthesis, functionalization, and energy applications. Initially, various 

synthesis methods are discussed briefly with pros and cons. Herein, first top-down methods 

including arc discharge technique, laser ablation technique, plasma treatment, ultrasound 

synthesis technique, electrochemical technique, chemical exfoliation, and combustion were 

discussed briefly. The later section presents bottom-up (microwave synthesis, hydrothermal 

synthesis, thermal pyrolysis, and MOF template-assisted approach) and waste-derived CQDs 

synthesis methods.  The next section is focused on the energy applications of CQDs including 

supercapacitors, lithium-ion batteries, photovoltaics, hydrogen (HER), and oxygen evolution 

reaction (OER). Finally, challenges and perspectives in this exciting and promising area are 

presented. 

 

Keywords: Carbon quantum dots (CQDs); energy applications; supercapacitors; photovoltaics; 

hydrogen evolution reaction (HER) and oxygen evolution reaction (OER)  

 

1. Introduction 

Earlier, semiconductor quantum dots (QDs) have been studied extensively for their quantum 

confinement effect, and tunable fluorescence emission properties, which allow them to be 

used in biosensing and bio-imaging for many years.1, 2 Change in particle size of 

semiconductor QDs leads to change in photostability and optical properties including 

adsorption and emission wavelength. However, due to the use of heavy metals (such as 

cadmium (Cd), lead (Pb), and mercury (Hg)) in their production, semiconductor QDs have 

some drawbacks, such as high toxicity. Heavy metals are known to be highly toxic even at low 

concentrations, which could make large production impossible.3, 4 Thus, carbon quantum dots 

(CQDs) were developed as an alternative for semiconductor QDs to conquer the extreme 

recalcitrance and toxicity of heavy metal ions.3 CQDs outperform traditional organic 

fluorophores and semiconductor QDs in terms of low cytotoxicity, high emission quantum 



yield, and chemical inertness 5, 6. Xu et al. discovered CQDs in 2004 while trying to make single-

walled carbon nanotubes (SWCNTs), which were identified as carbon nanoparticles.7 Since 

then CQDs, have piqued researchers' interest due to their unique properties, which include 

excellent optoelectronic properties, photoluminescence, simple synthetic routes, facile 

surface functionalization, good biocompatibility, large specific surface area, and low toxicity.8-

10 Sun et al. proposed laser ablation technique to produce CQDs with much-enhanced 

fluorescence emissions via surface passivation, coined the term "carbon quantum dots" for 

fluorescent carbon nanoparticles in 2006 using graphite powder as precursor.11 In general, 

the top-down route and the bottom-up route are used to synthesize CQDs.12, 13  

CQDs are considered as a type of zero-dimensional carbon-dominated nanomaterial, 

compared to spherical, tubular, and sheet fillers, and in the graphene-family nanomaterials. 

As a structure encompassing a few layers of graphene oxide (GO) nanosheets, CQDs offer 

numerous beneficial characteristics of GO even though having their own distinguishing 

properties.14 Because of their larger edge effects and quantum confinement, CQDs reveal 

unique electronic and optical characteristics; better than GO nanosheets as well as they can 

also easily separated into electrons and holes owing to their high dielectric constant and 

extinction coefficient. Further, long-term in-vivo experimental results on CQDs revealed that 

it is much less cytotoxic than micrometer-sized GO sheets; it may be safer for in-vivo biological 

research.15, 16 Apart from, energy applications carbon based nanomaterials are widely 

explored for water and wastewater treatment.17-19 Among them, CQDs have been able to 

achieve remarkable enhancements in membrane filtration efficiencies, notably in membrane-

fouling resistance.20, 21     

CQDs have a quasi-spherical structure with amorphous to nanocrystalline carbon cores 

smaller than 10-20 nm in diameter.22 CQDs are further divided into graphene quantum dots 

(GQDs), carbon nanodots (CNDs), and polymer dots (PDs) based on the different carbon 

cores.23 Similar to that of CQDs, GQDs also a type of zero dimensional nanomaterial in the 

graphene family that possesses the features of both the graphene and carbon dots that are 

anisotropic with lateral dimensions most commonly less than 20 nm.24 Whereas, CNDs are 

fluorescent carbon nanomaterials that can be derived from numerous carbon materials such 

as graphene, fullerenes, graphite, and carbon nanotubes at the size of molecules that fall 

within the range of 10 nm.25 A PDs are a class of CDs comprising of a polymer/carbon hybrid 



structure that contains plentiful carbon-based linkages on the surface and an abundant 

polymeric network in the interior.26 

Due to ease of fabrication via green synthesis protocols and the vast availability of raw 

materials, CQDs demonstrated favorable application prospects in a variety of fields such as 

medicine, chemistry, food, and the environment.27-30 It's important to note that modifying 

CQDs allows for the detection and attachment of various specific analytes on their surface via 

electrostatic interactions and hydrogen bonding, which serves as a platform for specific 

sensing.31 Oxidized CQDs contain polar functional groups on the surface including hydroxyl 

and carboxyl groups allowing further chemical functionalization and stable dispersion in an 

aqueous medium. The oxygen content of oxidized CQDs varies depending on the synthetic 

route, ranging from 5 to 50 weight percent.32, 33 Surface passivation and modification alter 

the fluorescence and physical properties of CQDs.  

To date, there are only a few literature reviews of CQDs that focus on their use in energy 

applications. This article gives an overview of the advancements and energy applications of 

CQDs. The first section provides newly developed synthetic methods for the synthesis of 

CQDs. Herein, the surface modification of CQDs with reactive functional groups and 

heteroatom doping were highlighted via various physical and chemical approaches. The 

following section focused on various energy applications of CQDs including solar cells, 

supercapacitors, and lithium-ion batteries. The review also provides new insights for 

hydrogen and oxygen evolution reactions using CQDs. Finally, to conclude, current and future 

challenges are described to heighten the physicochemical properties of CQDs. 

2. Synthesis of carbon quantum dots (CQDs) 

Several techniques for the synthesis of CQDs using a variety of complex structured raw 

materials have been reported. Unlike GQDs, CQDs do not exhibit a proper graphitic domain. 

More intriguingly, each synthesis technique has a significant impact on the physicochemical 

properties of CQDs, allowing CQDs to be used in a wide range of applications. For instance, 

size-dependent photoluminescence (PL) for bioimaging, bio labeling, and optoelectronic 

applications,34-37 as photo-blinking materials in multichromophoric systems and 

optoelectronic applications,38-40 for excitation-dependent PL for fabricating luminescent 

materials,41 as hydrophilic surfaces and surface ligands in bio imaging.42 Because of such 

diverse applications of CQDs, it is extremely important to analyze the properties of CQDs 



based on their structure and sizes obtained through different synthesis techniques.43 

Generally, CQDs synthesis techniques are broadly categorized into two approaches namely 

top-down and bottom-up strategies as shown in Figure 1. A further strategy, known as waste-

derived CQDs synthesis, has recently been introduced (Figure 1). 

 
Figure 1: Schematic representation for the synthesis of CQDs through various techniques of 

“top-down”, “bottom-up”, and “waste-derived” approaches. 

2.1. Top-down route  

In a top-down strategy, CQDs can be synthesized from a variety of carbon-based raw materials 

such as activated carbon, carbon fibers, graphite, allotropes of carbon such as graphene, 

carbon nanotubes (CNTs), etc., through a variety of techniques. Herein, we briefly describe 

some of the important top-down strategies for synthesizing CQDs. 

2.1.1. Arc Discharge technique 

The arc-discharge technique is a high-energy method in which a bulk carbon raw material 

undergoes decomposition in an anode electrode in the presence of plasma generated 

between two electrodes placed at an optimal distance under the influence of high voltage 

within a sealed reactor.44 In the presence of high-energy plasma, the temperature of the 

reactor reaches up to 3727 oC. At this temperature, the carbon atoms vaporize from the 

anode and get reassembled in the cathode to form CQDs. CQDs produced by this method will 

be rich in oxygen content and they exhibit sharp fluorescence property without any surface 



treatment.45, 46 The only downside is that CQDs made this method are difficult to purify due 

to the existence of complex impurities. However, their particle size distribution will be high in 

most cases, decreasing CQD surface area and potentially reducing the number of active 

reactions. The specific surface area of CQDs is reduced as particle size increases, decreasing 

the number of active reaction sites in the electrocatalytic process.47 

2.1.2. Laser ablation technique 

 

Figure 2: Schematic of different top-down synthesis techniques for CQDs: (a) CQDs formation 

through laser ablation; short-pulse laser (C1) and long laser pulse widths (C2). Reproduced 

with permission from ref 48. Copyright 2011 Springer Nature. Schematic of the plasma reactor 

used for the synthesis of CQDs (b). Reproduced with permission from ref 49. Copyright 2010 

American Chemical Society. Schematic of sonochemical technique for the synthesis of CQDs 

(c). Reproduced with permission from ref 50. Copyright 2016 The Royal Society of Chemistry. 

Laser ablation is a widely accepted and advanced technique to synthesize CQDs of different 

morphology. Figure 2a shows the schematic for the synthesized CQDs.48 The laser ablation 

technique was first proposed by Sun et al. they irradiated the carbon raw material (target 



material) using Nd:YAG laser source (1064 nm, 10 Hz) and treated the product with the use 

of acid.42 The resultant CQDs were initially not able to emit the light, however after the 

surface functionalization by using two different oligomers such as poly (ethylene glycol) and 

poly (propionylethyleneimine-coethyleneimine), the CQDs were able to exhibit a high-

intensity PL emission. Afterward, several research groups successfully demonstrated the 

synthesis of CQDs of the desired size, by controlling the nucleation by varying the laser pulse 

width.48 High energy laser can localize the plasma pulse at the interface between the solid 

target and the liquid medium surrounding the target (Step 1 of Figure 2a) to initiate a quickly 

expandable bubble.  Under the influence of pressure exerted by the surrounding liquid the 

bubble shrinks, while the cooling core slowly initiates the nucleation of CQDs (Step 2 of Figure 

2a). CQDs of various cluster densities can be obtained using this method by tuning the laser 

pulse width, which gives them unique properties. The CQDs produced by this technique 

exhibit narrow particle size distribution, excellent water solubility, and fluorescence 

properties. However, process complication and high cost restrict its application in various 

fields.   

2.1.3. Plasma reactor  

In 2010, Denes et al. demonstrated the use of an Arc plasma reactor for single-step synthesis 

of functionalized CQDs (Figure 2b).49 In this technique, the free radicals responsible for the 

formation of CQDs were produced by helium plasma, and in-situ functionalization of the CQDs 

was carried out by using ethylene diamine. This technique enabled the uniform dispersibility 

of CQDs in an aqueous medium due to the presence of primary amine functionality. A 

cylindrical compartment of Pyrex glass (Figure 2b) was used to build a submerged-arc plasma 

reactor. PTFE caps were used for the electrical connections and cavitation gas supply. During 

the synthesis of CQDs, cavitation gas (benzene and helium) were passed into the reactor. 

While discharging, benzene instantly becomes black and ultimately turns into CQDs. In this 

technique, the composition and size distribution of CQDs mainly depends upon the precursor 

concentration and the operating voltage which leads to the difference in PL emission.  The 

CQDs produced by this technique possess C=O, C-O, and -OH functional groups, which results 

in good water dispersibility/solubility of CQDs, as a result which exhibit strong blue emissions 

between the range of 365–490 nm. This technique can be extended to prepare 

photoluminescent CQDs with different compositions by varying the carbon sources, like N-, 



B- and P- doped reactants, which could enhance the quantum yields of CQDs and extend the 

emission wavelength ranges to red fluorescence. CQDs prepared by non-thermal plasma has 

potentialities for a variety of applications like sensing, optoelectronics, and bimodal 

bioimaging in the very near future.28 

2.1.4. Ultrasound synthesis technique 

Ultrasound synthesis techniques utilize high-energy ultrasound to develop carbon nano 

materials in a shorter time under ambient conditions like high pressures and temperatures. 

In this technique, multiple factors collectively decide the production or modification of CQDs, 

namely morphology (surface topography, size, and shape), chemical composition, solubility, 

and aggregation. Changes in the CQDs are due to the formation of acoustic cavity followed by 

the sudden disruption of the liquid bubbles as explained in Figure 2c.51 Hydrodynamic 

cavitation is initiated by an intensive local pressure decrease caused by supersonic liquid jets. 

This leads to the critical bubbles formation,52, 53 which further induces the fragmentation of 

macro carbon materials into CQDs. Kumar et al. proposed the synthesis of Sn@CQDss@Sn (a 

hybrid anode) through ultrasound techniques.51 It can be concluded that compared to CQDs 

prepared by other techniques the CQDs synthesized through sonochemical technique are 

non-toxic and are excellent biocompatible materials for biomedical applications. Sonication 

parameters such as power, frequency, and sonication time need to be optimized to prepare 

the CQDs of desired properties. The photoluminescence properties and quantum yield of 

CQDs can be improved via doping of metal and other elements. CQDs prepared via this 

technique are suitable for variety of applications such as skin lotions, ointments, 

antimicrobial, bioimaging, drug delivery, cell labelling, catalysts, polymer synthesis, water 

treatment, superconducting devices, and energy storage devices due to their excellent 

physicochemical and fluorescence properties.54  

2.1.5. Chemical exfoliation and combustion 

In this technique, CQDs are produced via electrochemical cleavage of raw materials of carbon 

including graphene, carbon nanotubes, graphite rods, and rGO. The mechanism of this 

technique involves radicals like OH• and O• produced from the oxidation of water at the 

anode. The OH• and O• radicals function as electrochemical ‘‘scissors’’ to form CQDs. 

Exfoliation process normally starts at edge points and gets accelerated at the defective points. 



For the case of organic solvents, the process of exfoliation depends upon the electrical stress 

continued by the intercalation of anions between the layers of graphene. It has to be noted 

that the simple choice to synthesize CQDs is combustion.  For combustion synthesis of CQDs, 

waste raw materials such as paraffin putty, candle soot, and natural gas soot have been used. 

For example, carbon nanoparticles (~2 nm) exhibiting multicolor fluorescence and water-

solubility were obtained via combustion of candle soot.55 The candle soot was refluxed first 

with nitric acid and then purified by electrophoresis to obtain CQDs. There are some 

important aspects of oxidative acid treatment of CQDs synthesized via combustion process, 

they are (i) fragmentation of aggregates of CQDs into nano-sized carbon particles (ii) surface 

modification to enhance water dispersibility, and (iii) fluorescence property modulation for 

CQDs. The CQDs synthesized via these techniques exhibit strong fluorescence, high stability 

and high purity, and promising materials for drug delivery, bio-sensors, bioimaging, and solar 

cell applications.56 

2.1.6. Electrochemical technique 

This technique is the most popular, economically viable, and highly productive technique for 

the synthesis of CQDs.57-59 This technique was demonstrated for the first time by Zhou and 

co-workers.57 Authors employed this technique to synthesize CQDs (deep blue luminescent) 

using multiwall carbon nanotubes (MWCNTs). The synthesis of CQDs via this technique was 

carried out in a solution of degassed acetonitrile solution by adding 0.1 M 

tetrabutylammonium perchlorate (TBAP), in a three-electrode system consisting of working 

electrode (WE) of carbon paper with chemical vapour deposited MWCNT, a counter electrode 

(CE) of Pt wire and reference electrode (RE) of an Ag/AgClO4. Another simple route was 

proposed by Lu et al. to obtain CQDs through an ionic liquid-assisted electrochemical 

exfoliation. In their electrochemical cell, they used 2 different anodes namely a graphite rod 

and highly oriented pyrolytic graphite (HOPG) as two different experiments by using a Pt wire 

that is CE in 1-methyl-3-butylimidazolium tetra fluoroborate and 1-methyl-3-

butylimidazolium chloride ionic liquid electrolyte system.58 The CQDs synthesized via this 

technique, exhibit uniform size distribution, high crystallinity, and used potentially for 

chemical analysis and bio-related applications 60. 

2.2. Bottom-up approach 



In the bottom-up approach generally, the carbonization of organic molecule such as citric acid 

and saccharides are used as building blocks for the synthesis of CQDs. In these approaches by 

tuning the experimental conditions it is possible to synthesize CQDs of the required size in a 

cost effective and scalable way. Under bottom-up approach, commonly used techniques are 

microwave synthesis, pressure and temperature assisted hydrothermal synthesis, thermal 

pyrolysis, and pore confined metalorganic framework (MOF) as templates to synthesize CQDs 

are briefly explained as below. 

 

Figure 3: Schematics for bottom-up synthesis approaches of CQDs; (a) microwave technique-

based synthesis of CQDs by using different amines. Reproduced with permission from ref 61. 

Copyright 2012 The Royal Society of Chemistry. (b) Model for CQDs growth following the 

different steps mentioned for glycine. Reproduced with permission from ref 62. Copyright 

2012 The Royal Society of Chemistry. (c) Steps involved in the synthesis of luminescent CQDs 

by using a MOF template. Reproduced with permission from ref 63. Copyright 2017 Wiley-

VCH. 

2.2.1. Microwave synthesis  

In this technique the electromagnetic waves having wavelength around 1 mm to 1 m are used 

to break chemical bonds to allow the formation of CQDs within less than 10 min.61, 64, 65 Zhu 

et al. prepared the CQDs via microwave synthesis by using poly (ethylene glycol) and 



saccharides such as glucose and fructose as building blocks.64 In another report, Zhai et al. 

developed the microwave pyrolysis technique, by using citric acid they synthesized the high 

PLQY (~30%) as a starting block.61 Where, the surface of CQDs was made unreactive by using 

1,2-ethylenediamine (EDA). They studied the luminescence of CQDs by using different amine 

functionalities such as diethylamine (DEA), triethylamine (TEA), and 1,4-butane diamine (BDA) 

for surface inactivation (Figure 3a).61 The CQDs prepared via this technique are highly 

biocompatible and have tremendous potential for bio and health related applications.28 The 

CQDs rich with oxygen-containing groups obtained by this technique act as coordination sites 

for metal ions for the development of CQDs-based electrocatalysts.46 

2.2.2. Hydrothermal synthesis  

It is a simple and cost effective technique for the synthesis of CQDs from saccharides or 

organic acids.62, 66-69 This technique involves the synthesis of CQDs via carbonization of organic 

precursors in a sealed Teflon-lined hydrothermal reactor at high-temperature (180–200 ◦C). 

For the first time Hsu et al. discovered the CQDs synthesis via hydrothermal route. They 

further explained that the model of growth of CQDs involves 4 steps namely, (i) dehydration, 

(ii) polymerization, (iii) carbonization, and (iv) passivation as explained in the (Figure 3b).62 

Amino and carboxylic acid groups were useful for the CQDs formation. And in hydrothermal 

technique, H- bonds contribute for molecular assembly and heating to enable the growth of 

CQDs polymerization and nucleation. The CQDs synthesis via hydrothermal technique was 

also demonstrated by using precursors such as glucose and monopotassium phosphate 

(KH2PO4).67 The facile technique can be used to synthesize water soluble or insoluble CQDs 

via changing the composition of reaction mixtures.70 Heteroatom doping enable this 

technique to design and synthesize new electrocatalysts with controllable doping 

composition and electronic structures.46 

2.2.3. Thermal pyrolysis  

This technique for the synthesis of CQDs was demonstrated for the first time by Giannelis and 

co-workers.71 In their study surface functionalized carbon nanoparticles were synthesized by 

the thermal carbonization of variety of ammonium citrate salts. The authors carbonized two 

different salts namely octadecyl ammonium citrate salt to obtain organophilic CQDs, and 2-



(2-aminoethoxy)-ethanol salt to obtain hydrophilic CQDs. The ammonium carboxylate 

moieties undergo thermal dehydration to form –NHCO– bonding between the organic 

architecture and the cores. The same group demonstrated the mechanism of formation of 

carbogenic CQDs via citric acid (CA) and ethanolamine pyrolysis (EA) under the influence of 

different temperatures.72 They further showed the strong influence of pyrolysis temperature 

on CQDs PL behaviours during the synthesis. Under lower pyrolysis temperature (180 °C), the 

luminescence spectrum was due to the dehydration of CA− EA. When pyrolysis temperature 

was 230 °C, they noticed both molecular fluorophores and the carbogenic core, which 

collectively form the PL spectrum. Furthermore, by increasing the pyrolysis temperature to 

the range between 300 °C–400 °C, they achieved the PL emission only from carbogenic cores. 

It is a cost effective and scalable technique to prepare CQDs from abundant low cost 

materials, and encapsulation of CQDs with biocompatible polymers make them useful for 

biomedical applications such as bimodal imaging, and drug delivery. 73 The CQDs obtained via 

this technique have to be purified by dialysis. However, this technique can be used to 

synthesize monodispersed CQDs with average particle size with less than 10nm by tuning the 

experimental variables.74 

2.2.4. MOF template-assisted approach  

MOFs possess well defined pores which act as a template for the synthesis of uniform-sized 

CQDs attributing to their rich isoreticular pore morphology (around 1–10 nm pore size). It is 

a latest approach demonstrated by Gu et al. in the year 2017.63 In their study, MOFs of three 

different pore size, HKUST-1 (largest at ~ 1.35 nm), ZIF-8 (pore diameter ~ 1.9 nm), and MIL-

101 (pore diameter ~3.4 nm) were used as the host templates. The MOF pores were filled 

with a glucose solution by dipping the MOF powder in that and heated at elevated 

temperature (200◦C) to selectively decompose the glucose filled in the MOF pores. Then to 

collect CQDs, MOF template was removed by washing with a KOH solution (Figure 3c).63 Due 

to the ease of controlling size and morphology of CQDs, this technique encouraged 

researchers to use variety of MOFs to synthesize highly luminescent CQDs.75-77 

2.3. Waste derived synthesis of CQDs 



 

Figure 4: Waste derived synthesis of CQDs; (a) Synthesis of water-dispersible fluorescent 

CQDs using watermelon peel. Reproduced with permission from ref 78. Copyright 2012 

Elsevier. (b) CQDs preparation via hydrothermal synthesis by using orange juice as a natural 

source of carbon. Reproduced with permission from ref 79. Copyright 2012 The Royal Society 

of Chemistry. (c) Synthesis of CQDs by using cabbage via hydrothermal technique and blue 

emission in response to UV light. Reproduced with permission from ref 80. Copyright 2015 

The Royal Society of Chemistry. 

This technique involves the use of waste materials as a source for carbon to synthesize CQDs. 

Generally, the waste source of carbon are the plant materials such as fruits and vegetables 

due to their eco-friendliness.78, 79, 81-83 For example, Zhou et al. synthesized the highly 

fluorescent CQDs (Figure 4a) by using watermelon peel waste as a natural source of carbon.78 

Sahu et al. used orange juice to obtain CQDs showing a PLQY of ~26% (Figure 4b).79 As far as 

vegetable sources concerned, cabbage was used by Alam et al. (Figure 4c).80 Cabbage peals 

were washed thoroughly and mixed with an ultrapure water and crushed into juice using a 

domestic fruit-juicer. The obtained cabbage juice was transferred to a hydrothermal reactor 

and heated at 140 ◦C for 5 h. Finally, the resultant CQDs-solution was dialyzed by using Milli-

Q water and a tubular membrane for almost 48 h. Synthesis of CQDs from waste sources has 

benefit of simple, low cost and easily availability in nature. Further, Table 1 summarizes all 

above-mentioned techniques with their pros and cons.   



The synthesis techniques like microwave, electrochemical synthesis, and confined pyrolysis 

are desirable to prevent carbonaceous agglomerations and to prepare monodispersed CQDs 

which are extremely important for their properties and applications. According to both 

economic and practical perspectives, photoluminescence (PL) is a top contender for CQDs is 

among the most appealing features. Various scientific publications dealing with PL emissions 

have been noted in CQDs, all of which claim to be associated with different theories.5 It is 

typically proposed that two mechanisms of fluorescence quenching exist for CQDs: (a) firstly, 

the fluorescence initiating from the conjugated p-domains which is thought to be the result 

of band-gap transitions, (b) secondly, the fluorescence due to the presence of defects on the 

surface. To the fact, the emission spectrum of CQDs is very nearly identical to the spectral 

absorption spectrum at a given wavelength. The emission spectrum of CQDs differs greatly 

from that of those conventional dyes that are organic and has large stokes shifts in the 

spectrum. Other common characteristics among PLs of CQDs are distinct depending on their 

emission wavelength and intensity being roughly uniform. A possible explanation for this is 

that the optical selection uses different-sized particles with different wavelengths to select 

individual molecules, or that CQDs have different binding and emission ranges of molecules 

on their surface.84 Different sizes and intensity of the particles are simply a consequence of 

broad and light emission are reflected in the numerous and excitation-dependent PL emission 

spectrum ascertained the CQDs emission spectra as illumination at 470 nm and examine it 

under different irradiation conditions.42 Another advantage of traditional CQDs is that they 

are highly photo-stable, which means they're also less affected by the blinking issues, and 

unable to photo-bleach; meanwhile, most semiconductor QDs and organic ones are photo-

unstable. As a novel and advanced nanomaterial CQDs have PL properties, electrical 

conductivity, chemical stability and high specific surface area and therefore suitable for 

variety of applications.85 



Table 1: Comparison of pros and cons of CQD synthesis techniques and their precursors.   

Approach Technique Precursors Pros Cons Applications References 

Top-

down 

Arc Discharge 

technique 

Carbon, Graphite, 

Graphene, CNTs 

CQDs will be rich in 

oxygen content, highly 

fluorescent, 

High energy and cost, 

difficult to purify, 

polydispersity in size, 

high variation in 

specific surface area 

Fluorescent, and 

sensing 

86 

 Laser ablation 

technique 

Graphite, 

Graphene, CNTs 

Size and morphology can 

be controlled,  excellent 

water solubility,  

Fluorescent 

Process complication 

and high cost 

restrictions 

Biomedicine, 

sensing,  and 

electrocatalysts 

5, 46, 87 

 Plasma reactor Gaseous benzene Monodispersed in size, 

good water solubility,  

CQDs will be rich in 

oxygen content,  

Fluorescent 

Process complication 

and high cost 

restrictions 

Sensing, 

optoelectronics, 

and bimodal 

bioimaging 

28 

 Ultrasound 

synthesis 

technique 

Polyethylene 

glycol, Glucose 

Non-toxic, biocompatible,  

highly fluorescent,  

excellent physicochemical 

stability 

Requires high energy, 

pressure and 

temperature 

Biomedicine, 

water 

treatment, 

54 



energy storage, 

catalysis 

 Chemical 

exfoliation and 

combustion 

Graphene, carbon 

nanotubes, 

graphite rods, rGO 

and paraffin putty, 

candle soot 

Enhance water 

dispersibility, strong 

fluorescence, high 

stability and high purity 

Non uniform size 

distribution 

Drug delivery, 

bio-sensors, 

bioimaging, and 

solar cells 

88 

 Electrochemical 

technique 

Graphite, 

graphene 

Excellent purity and yield, 

high crystallinity, 

monodispersed size, and 

reproducible 

Complication in 

process 

Chemical 

analysis, 

biomedical, 

solar cells 

60 

Bottom-

up 

Microwave 

synthesis 

Acetyl acetone, 

folic acid 

Less time consuming, 

monodispersed size 

distribution, size 

controllability 

Requires more 

energy and cost 

Bio and health-

related 

applications, 

electrocatalysts 

46 

 Hydrothermal 

synthesis 

Citric acid, L-

cysteine, 

melamine, 

ethylene diamine 

Water soluble and 

insoluble CQDs can be 

prepared, non-toxic, high 

quantum yield, cost 

effective 

Less productivity Electrocatalysts, 

photocatalysis 

and biomedical 

applications 

89 



 Thermal 

pyrolysis 

Ammonium citrate 

salts, octadecene 

(ODE) 

Cost effective, scalable, 

non-toxic, 

Polydispersity in size Biomedical, 

drug delivery, 

fluorescent 

90 

 MOF template-

assisted 

approach 

Glycol, glucose Morphology, shape and 

size is controllable, highly 

luminescent 

Less productive, 

requires template 

removal 

Fluorescent, 

optoelectronics,  

photocatalysis, 

sensors, 

bioimaging 

76 

Waste 

derived 

Hydrothermal 

synthesis, 

carbonization 

Waste source of 

carbon obtained 

from plant 

materials 

Photoluminescence , 

electrical conductivity, 

chemical stability, high 

specific surface area 

Requires high 

temperature, inert 

gas atmosphere with 

controlled flow rate 

of gas 

Catalysis, water 

treatment, 

biomedical, 

sensors 

85 



2.4. Functionalization of CQDs 

Functionalization of CQDs is an effective way for tuning the properties of CQDs for desired 

applications. Generally, the CQDs are surface-functionalized through various chemical 

interactions such as covalent,91, 92 coordination93, and π-π interactions.94 The CQDs 

synthesized through most of the techniques contain oxygen-containing functional groups, 

which helps for their surface functionalization through covalent bonding.5, 28 Passivating the 

surface of CQDs through covalent bonding of entities with amine functionality helps to 

improve the photoluminescence property of CQDs. Blue-green light-emitting fluorescent 

CQDs were synthesized via hydrothermal carbonization of 2Na∙EDTA followed by surface 

functionalization using spiropyrans. The functionalized CQD’s emission centered at 510 nm 

could be turned off, while being switched on at 650 nm through the transfer of energy 

between the CQDs and spiropyrans after ultraviolet (UV) light irradiation.95 This process could 

be reversed via visible light irradiation. The functionalized CQDs show excellent photo-

reversibility and high stability. Other than covalent bonding, coordination is another simple 

strategy for the functionalization of CQDs.  A facile technique for phosphate detection was 

achieved by fabricating an on-off fluorescence probe of europium, which was efficient in 

detecting Phosphate ions in media like artificial wetlands.93 The fluorescence emission of 

CQDs was turned off upon coordination of -COOH groups on the CQDs surface with Eu3+, and 

it was switched on when the Eu3+ was specifically coordinated with phosphate ion.  Some 

studies reported sol-gel technique for the functionalization of CQDs. For example, Liu et al. 

synthesized the highly luminescent (quantum yield (QY) =47%) amorphous CQDs by using 

organosilane as a coordinating solvent.96 The CQDs surface exhibited methoxysilyl groups, 

monodispersed with a diameter of 0.9 nm and enabled easy conversion into pure CQDs 

fluorescent films and monoliths via simple heating at 80oC for 24 h.  

Hola et al. synthesized the alkyl chain passivated CQDs. The alkyl chains present on the surface 

of CQDs were quickly converted to carboxylate groups by hydrolysis by treating with mild 

NaOH and resulted in emission between 402 to 440 nm, red-shifted)) because of COO- surface 

functionality.97 An introduction of new surface functionalities by using organic molecules was 

demonstrated by Kwon et al. The CQDs surface-functionalized with anilines para-substitution) 

exhibited new energy levels, expressing long-wavelength PL ( around 650 nm)  of much 

shorter spectral widths with a high QY of 20%.98 In another study Ding et al. demonstrated 



the technique to control the CQD surface functionalization via silica column chromatography 

separation.99 The resultant red-shift in the emission peaks (from 440 to 625 nm) was 

attributed to the drastic reduction in the bandgap with the increase of infusion of oxygen 

species onto their surfaces. Overall surface functionalization of CQDs has a great impact on 

improving the intensity of PL, QY, water dispersibility/solubility, biocompatibility. This makes 

CQDs useful for various energy and environmental applications.  

3. Energy applications of CQDs 

CQDs had only a few applications until recently, but now that they've been discovered to have 

a variety of unique properties, and thus they're more popular than previously thought. 

Herein, applications of CQDS in various energy-related fields such as supercapacitors, 

photovoltaics, batteries, water splitting, and photodetectors are reviewed in this section. 

3.1. Supercapacitors 

In contrast to batteries, supercapacitors are energy storage devices that can sustain a high 

power output for long durations. Due to their distinct advantages, such as long life, 

environmental friendliness, and high power densities, supercapacitors have received a lot of 

recognition.100-102 For supercapacitors, a nanomaterial electrode with a higher specific 

capacitance and longer period stability is a good choice.101 Furthermore, supercapacitor 

expandable electrodes have proven to be very useful for fast energy storage, and providing 

rationally high energy densities and quick charging capacity. 

Despite current efforts, further research is needed to develop novel porous, conducting, and 

wide surface area-based carbon materials with higher specific capacitance and longer cycle 

stability. CQDs have been used in energy storage applications due to their shape and size 

tuneable properties, and high electrical conductivity.103, 104 For obvious reasons, using metal 

oxide/sulfide and CQDs to synthesise nanohybrid structures has been revealed as a promising 

method for fabricating effective and stable supercapacitors.105-107 To achieve high power 

density and specific capacitance Arul et al. synthesized CQD-MnO2 nanostructures from a 

sustainable waste source by employing an environmentally friendly approach.108 The 

structural investigation established that CQD-MnO2 exhibited a higher surface area and 

improved electrical conductivity than pristine MnO2 which reflected from the highly 

conductive CQDs. When these nanohybrid used as the electrode in symmetric 



supercapacitors demonstrated specific capacitance of 189 F g-1 with long cycle-life due to 

admirable coulombic efficiency and quick current-voltage response imitated from the 

electrochemical analysis.   

 

Figure 5:   BET analysis (a) N2 adsorption-desorption isotherms; (b) pore sizes distribution 

curves; (c) cyclic voltammetry (CV) and (d) galvanostatic charge-discharge (GCD) curves of an 

asymmetric device based on CuS, CuS@CQDs-ICM, and CuS@CQDs-SSM nanocomposites. 

Reproduced with permission from ref 109. Copyright 2020 Elsevier.   

The CQDs can increase the electrical conductivity of the metal oxide-sulfide composites, but 

also better the electrochemical properties of the energy-storage devices.102, 110, 111 Binesh et 

al. synthesized manganese oxide-graphene (MnOx–CDGs) nanohybrids using facile, 

environmentally being, and one-pot synthesis approach.  For this purpose, CQDs cannot only 

use as a dispersing agent for graphene but also as a reducing agent for KMnO4 for the 

synthesis of MnOx–CDGs nanohybrid nanocomposites. The resulting solid-state 

supercapacitor with MnOx–CDGs displayed specific capacitance ∼280 F g–1 with long-term 

stability over >10 000 charge-discharge cycles.112 Arul et al. stated that the CQD anchored 



Bismuth Oxide (Bi2O3-CQD) can be used as a promising material for energy storage 

applications. The Bi2O3 was prepared using a facile hydrothermal route while CQD was derived 

from the spoiled milk. The resulting Bi2O3-CQD nanocomposite provided a maximum energy 

density of 88 Wh kg–1 and possess good stability over the 2500th cycle.113  

From the aspect of the electronic features, transition metal sulfides are more appropriate to 

use in energy storage devices because of their high electrical conductivity and superior 

electrochemical activity.114-116 These features are advantageous for achieving stable and high-

performance energy storage devices. For instance, in 2020, Quan et al. and co-workers 

synthesized a novel hierarchical porous nanoflower-like nanocomposite by doing CQDs into 

CuS nanostructure (CuS@CQDs).109 For this purpose, two different methods namely the 

impregnation combined method (ICM) and solvothermal synthesis method (SSM) was utilized 

to obtain CuS@CQDs nanocomposite. As shown in Figure 5a, the BET analysis revealed that 

these nanocomposites presented an improved surface area of 111.2 m2 g−1 than that of the 

pristine CuS (22.8 m2 g−1). Moreover, pore size distribution measurements demonstrated the 

presence of an abundance of mesopore structures for nanocomposites (Figure 5b). The 

electrode fabricated using CuS@CQDs nanocomposite displayed a higher specific capacitance 

and a power density of 920.5 F g−1 and 397.75 W kg−1, respectively, which attributed to the 

nanocomposites that plausibly afford ample electroactive sites as well as enable the transport 

of electrolytes and electrons as established from the cyclic voltammetry (CV) and charge-

discharge profiles (Figure 5c and d). Moreover, the device exhibited long-term stability 

remaining  92.8% of its original performance after 10,000 charge-discharge cycles.109 

Likewise, nickel sulfide (NiS) and CQDs (NiS-CQDs) nanocomposite prepared from lemon juice 

using the facile hydrothermal method. The structural investigation demonstrated that these 

nanocomposites exhibited porous structure with an improved surface area of about 40% 

higher compared with its pure NiS nanostructures. As seen from the electrochemical 

measurements, these nanocomposite revealed improved charge transfer kinetics, surface 

area, and charge-discharge stability compared to that of pure NiS nanostructures. 

Additionally, NiS-CQDs nanocomposite displayed a higher specific capacity compared to that 

of pristine NiS electrodes as confirmed from the current density vs specific capacitance plots 

(Figure 6a and b).117 Besides, the improved multiple cyclic stability after 2000 cycles with a 

high energy and power density were observed for the nanocomposite due to the synergistic 



effect between CQD and NiS.117 Similarly, the other nanocomposite materials based on CQD 

and transition metal sulfides such as  CQDs/MoS2@ZnS118, copper-tin sulfides-CQD 

(CTSs@CQDs)119 have been employed to construct electrodes in supercapacitors. 

 

Figure 6: Specific capacitance vs current density measurements of NiS-CQDs nanocomposite 

(a) and pure NiS (b). Reproduced with permission from ref 117. Copyright 2018 American 

Chemical Society.  

Apart from nanocomposite strategy, the doping of CQDs with different heteroatoms has also 

been shown to be efficacious in improving the specific capacitance and life cycle of energy 

storage devices. The effect of different dopants such as N120-123, P124, 125, B & P126, O and I127 

on the photoelectronic properties of carbon-based materials and the essential mechanism 

has been extensively investigated. Wang et al. prepared nitrogen-doped carbon quantum 

dot/polyaniline (N-CQD/PANI) nanocomposites using the chemical oxidative polymerization 

method and further used it as an electrode material for supercapacitors. The N-CQD/PANI 

nanocomposites demonstrated higher specific capacitance and cycling stability compared to 

that of the PANI or CQD which was attributed to the improved electrical conductivity and 

electrochemical properties of nanocomposites.128 Aneeya et al. fabricated supercapacitors 

with high energy and power density which exhibited robust cyclic stability over 5000 cycles 

by sandwiching reduced graphene oxide (rGO) and nitrogen, sulfur co-doped CQD (N, S-

CQDs). It demonstrated that the synergistic effect between the electron-rich heteroatoms 

and rGO could greatly enhance the active sites for the electrochemical reactions device.129  

Careful preparation of innovative three-dimensional networks (3D) aerogels or hydrogels-

based electrodes is being done to reduce the potential issues caused by the metal oxide-



based electrodes and to achieve excellent electrochemical energy storage properties through 

enlarging the surface area of the electrocatalyst. Hange and co-workers fabricated a flexible 

solid-state supercapacitor by using a highly porous, conductive, and three-dimensional (3D) 

interconnected network that was prepared from reduced graphene oxide hydrogel/carbon 

dots (rGH/CDs). The rGH/CDs electrodes with 130 μm thickness deliberated specific 

capacitance of 264 F g−1 and stability over >5000 charge-discharge cycles. The authors stated 

that the CQDs electrode in the device can be served as an electron acceptor and electron 

donor which may plausibly moderate the charge transfer resistance at the interface thereby 

enhance electron transport.130 For the first time, the hollow, high electrical conductivity, and 

high surface area aerogel were prepared by Jingying et al. using heteroatom such as N, P co-

doped CQDs/rGO. Herein, authors claimed that the incorporation of the CQDs into the N, P-

doped rGO could cause a better synergistic effect between nanocomposite which in turn, not 

only enhance the electrical conductivity by providing ma large numbers of electrons to the π-

conjugated system of rGO but also increase the active sites for the increase of specific surface 

area. As a result, the asymmetrical device with the architecture of N, P-CQDs/rGO exhibited 

a specific capacitance of 453.7 F g−1 at 1 A g−1 and outstanding stability over >10,000 charge-

discharge cycles.  

In 2019, Ping et al. developed a novel cyano-metallic framework (CMF)-derived Co3O4-

NiO/graphene foam (GF) electrode composites by using binder-free solution immersion and 

following thermal treatment. Benefiting from the synergistic effect of metal oxide and 

graphene nanocomposite the resulting electrode demonstrated the improved specific 

capacitance of 766 at 1 A g−1 which was ascribed to the high pseudocapacitance of Co3O4-NiO 

and better electrical conductivity of the GF, respectively. Noticeably, the device fabricated 

using Co3O4-NiO/GF electrode composites exhibited excellent stability about 5000 charge-

discharge cycles.131 Apart from the above-mentioned metal oxide/sulfide nanocomposites, 

other several novel 2-dimensional (2-D) carbon materials such as carbon nanofibers132, 

carbon nanotubes133, S-CQD/PANI100, 134, reduced graphene oxide decorated with CDs 

(rGO/CDs)135, 136, CDs-graphene137, GQDs138, graphitic carbon nitride (g-C3N4)139, and 

MXene140 have also been discovered as an electrode in supercapacitors. The carbon material 

is used in catalysis has the advantage of being inexpensive, as well as good conductivity and 

long-term stability.  



Generally, CQDs are blended with another electrocatalyst to form nanocomposites with 

improved porosity, surface area, electrical conductivity, and other electrochemical 

properties. When CQDs are mixed with transition metal oxide/sulfides or various 

heteroatoms, these nanocomposites act as both electron donors and acceptors thus enlarge 

the overall performance of devices by providing more surface-active sites. Therefore, more 

research is expected to synthesize stable and profitable electrodes by making novel 

nanocomposites using the heteroatom doping strategy because this approach is rather simple 

and provides more active sites for electrochemical performance and even mesmerizing 

synergetic properties.  

3.2. Photovoltaics 

Photovoltaic technologies (PV) are vital components of today's and tomorrow's renewable 

energy sources. PV tend to provide the most rational avenues for meeting the projected rise 

in global energy demand over the next 25 years as compared to other methods of generating 

electricity.  To achieve more sustainable and renewable energy, the availability of such 

technologies must be maximised.  To date, research into novel electrocatalysts, light-

harvesting materials, and device modification engineering has enhanced the power 

conversion efficiency (PCE) of thin-film PV technologies.103, 141-144 Nonetheless, a few 

remaining issues, such as low photon absorption of sensitizers, poor ability to collect 

electrons, and lack of conductivity of the electrodes, along with their low efficiency and 

stability, stymie wide implementations of these technologies. To conquer this issue, it is of 

paramount importance to use carbonaceous catalysts to obtain high-performance devices by 

improving their conductivity. Benefited from its excellent tunable energy levels, photon 

absorption, and electron excitation, electron acceptors, and donor ability, the CQDs are 

explored as a promising material for optoelectronic and energy storage applications. Table 2 

summarizes the photovoltaic performance of different solar cells with CQDs as a 

photosensitizer. Further, the CQDs are capable of the capture and harness sunlight which 

makes them potential sensitizers for photovoltaic technology.145 Owing to their superior 

photophysical and optoelectronic properties, CQDs have been utilized to modify photoanode, 

counter electrode (CE), or dye/QDs sensitizer in photovoltaic applications.145-148 

3.2.1. DSSCs/QDSSCs 



In recent years, the use of CQDs in dye-sensitized-solar cells (DSSCs) and quantum-dot-

sensitized solar cells (QDSSCs) has been made to develop efficient and profitable light-

harvesting materials. For example, Yuanyuan et al. fabricated highly efficient solar cells by 

combining long persistence phosphors (LPP) with biomass-converted CQDs (LPP-CQDs) which 

were derived from inexpensive soybean powders using the hydrothermal method. It 

observed that the resulted LPP-CQDs architecture capable of harvesting an adequate amount 

of light thus emitted monochromatic green light even in the dark condition when applied in 

the solar cell. The device with LPP-CQDs sensitizers achieved efficiencies as high as 7.97%. 

Moreover, it stated that these CQDs could be served in all-weather conditions and can be 

capable of converting photons to electricity in the daytime and the dark.149 For example, 

Rama et al. fabricated efficient DSSCs based on the ZnO photoanode by employing N-doped 

CQDs (NCQDs) as a sensitizer. The device with ZnO-NCQDs architecture resulted in improved 

power conversion efficiencies (PCEs) of 1.18% which was higher than that of the ZnO device 

alone (0.88%). The improved efficiencies of devices were mainly reflected from the enhanced 

short-circuit current density (JSC) which redirected from the increased light absorption as well 

as effective electron-hole separation.150 N-CQDs can serve as a donor material, broaden 

absorption spectrum and also perform the important function of charge transfer kinetics.151 

The charge collection efficiency, electron transport time, and electron diffusion length meso-

TiO2 photoanode were greatly improved by incorporating the fluorescent CQDs into the dye 

sensitizer.152 Based on the optical and electrochemical measurements, the authors proposed 

that CQDs could be served as dual functions of light-harvesting material and enable the 

electron electron-transport channel in the dye-sensitized N719-TiO2 film (Figure 7a). 

Nevertheless, the enhanced light-absorption was confirmed from IPCE curves in which the 

CQDs modified photoanode disclosed much higher absorption than those of pristine N719-

TiO2 film in the long-wavelength region (Figure 7b). When these photoanodes assemble in the 

device and are illuminated under the sunlight deliberated efficiencies of 8.70% which was 

21% higher than those of pristine N719-TiO2 film (7.25%), as revealed from photocurrent 

density–voltage (J–V) curves measurements (Figure 7c). As well, a variety of CQDs and 

heteroatom doped CQDs have been investigated as sensitizers in DSSCs.153-157 Liu et al. 

established that the implementation of the energy-graded designs of heteroatom doped 

CQDs is a favorable approach to construct the defect-free absorbers for DSSCs. For that 

reason, the authors prepared S and N co-doped biomass-converted CQDs from the 



hydrothermal method. The resulting DSSCs with suitable energy level alignment exhibited 

high photovoltaic performance due to the enhanced electron extraction and broaden solar 

absorption region.157 

On the other side, there are few reports which demonstrated that CDs modified photoanode 

can promote the flat band potential of the metal oxide semiconductor and also enhance the 

amount of dye adsorption.158 Herein, authors showed that the smaller-sized ZnO 

nanoparticles were greatly increased the dye adsorption of N719 dye because of its higher 

surface area which helps to faster the photo-induced charge separation process.  The green 

and water-soluble CDs were prepared from rosemary leaves using an economic and facile 

hydrothermal approach by Behzad et al. The as-synthesized were served as an efficient 

photosensitizer by modifying the TiO2 photoanode. The resulting CDs modified 

TiO2@CDs/N719 device exhibited photovoltaic efficiencies of 7.32% which was much than 

that of the untreated device (3.25%).159 Tesfaye et al. fabricated highly efficient p–n 

heterojunction DSSCs by introducing CQDs as an additive in the p-NiO/n-ZnO film.160 The p–n 

heterojunction alignment contributed to the effective separation of the electron-hole and 

promote the photon-to-charge conversion and rapid charge transfer kinetics. As a 

consequence, of appropriate band-energy alignment and improved charge transfer kinetics 

higher performance of 13.02% was accomplished for n-ZnO/Cdot/p-NiO film compared with 

untreated devices.    

Apart from the above-mentioned sensitizers and photoanode modifiers, the use of CQDs to 

control the photophysical and electronic properties of the CE material has been established 

as an operative way to improve the performance of devices. Accordingly, in 2017, Zhu and co-

workers presented the strategy of interfacial engineering of metal selenide-based CEs with 

the incorporation of the CQDs.161 The bifacial DSSCs assembled with CQDs-based CoSe CEs 

exhibited high efficiency of 7.01%, due to the enhanced optical transmission and wide 

absorption of CEs. The formation of CoSe alloyed structure and subsequent CQDs deposition 

was confirmed by scanning electron microscopy (SEM) and photoluminescence spectra, 

respectively. Further, it was proposed that a large number of photogenerated electrons were 

accumulated under solar light exposure which could enhance the electron density of CoSe 

catalyst thereby encourage the reduction of triiodide-iodide (I3− to I−) redox couple. Duan et 

al. fabricated high-performance bifacial DSSCs through bi-tandem CQDs strategy in CoSe CEs. 



For this purpose, the aqueous solution of  CQDs was deposited on the transparent CoSe CEs. 

It was observed that both CoSe and CoSe-CQDs exhibited higher transmittance than that of 

its reference (Pt) CE. The devices that illuminated under the front and rear conditions revealed 

an enhanced performance of 8.54% and 6.55%, respectively, compared with that of the 

untreated device (6.03%) because of the effective reduction of I3− species in presence of the 

electron-enriched CoSe CEs.162 Recently, in 2021, Ali and co-workers developed a novel 

scalable and efficient catalyst by depositing NCQDs over the multiwalled carbon nanotubes 

(MWCNTs) by using microwave-assisted technique and used it as a CE in DSSCs. TEM analysis 

revealed that the NCQDs were successfully deposited over the MWCNTs. Benefiting from the 

electron-rich surface and auxochromic nature of doped N the electronic properties and 

surface reactivity of the MWCNTs were greatly improved. When NCQDs-MWCNTs were 

employed as CE, the higher efficiencies of 9.28% were realized than that of pristine MWCNT 

CE e (6.17%) due to the enriched charge accumulation near the Fermi level and effective 

reduction of I− species.163 

Similar to that of the DSSCs, the CQDs were also used as a sensitizer in the QDSSCs to boost 

their photovoltaic performance. For the first time, Zhao et al and coworkers synthesized up 

and down-convention luminescences Er-doped CQDs (E-CQDs) using a hydrothermal 

approach and used it as a sensitizer in QDSSCs application. They applied different layers of 

CdS QDs and E-CQDs over TiO2 photoanode by using successive ionic layer adsorption and 

reaction (SILAR). The efficiencies of 0.43% were obtained for the CdS/Er-CQDs/TiO2 

photoanode which was higher than that of the CdS/TiO2 photoanode due to the improved 

light absorption and electron transport.164 Ping et al. introduced N-doped CQDs (NCQDs) into 

the CdS QDs and resulted in 40.9% higher performance compared to its reference device 

sensitized using pristine CdS QDs. The higher performance was attributed to the greatly 

improved absorption amount of film which could significantly decrease the back transfer of 

photo-induced electrons at the photoanode/electrolyte interface.165 In 2017, by using a 

simple hydrothermal method Guo et al. prepared CQDs from different carbon precursors 

namely glucose (G-CQDs), citric acid (C-CQDs), and pollen (B-CQDs), and investigated its effect 

on different photovoltaic parameters.166 Resulting from the broad absorption in the solar 

spectrum and better charge kinetics, the improved efficiencies were deliberated for the 

CQDs-based sensitizers.  



 

 

Figure 7: (a) A schematic illustrating the role of the CQDs in the N719‐sensitized TiO2 film; (b) 

incident photon‐to‐current efficiency (IPCE) spectra and, (c) photocurrent density–voltage (J–

V) curves of the pristine TiO2 and CQDs incorporated TiO2‐photoanode. Reproduced with 

permission from ref 167. Copyright 2016 Wiley-VCH.   

3.2.2. Perovskite solar cells (PSCs) 

In addition to DSSCs and QDSSCs, the use of CQDs in PSCs has been well established as a hole 

transport material (HTM) as well as for the control of charge recombination, in which the 

CQDs were used to modify the interfacial properties. The concept of the CQDs was proposed, 

many further endeavors have been undertaken to underlay its mechanism and increase the 

performance of the perovskite solar cell (PSC). For example, the first report of CQDs as a hole 

transport material (HTM) was proposed by Paulo et al. in 2016.142 They prepared solution-

processed CQDs from citric acid by hydrothermal approach and used them as an additive in 



the methylammonium lead iodide (MAPI) perovskite. The electrochemical measurements 

revealed that the appropriate the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) levels of the CQDs contributed to the effective hole 

transfer and suppress the leaking of the electron from the perovskite to CQDs. Benetti et al. 

fabricated highly efficient and stable PSCs by incorporating CDs on the graphene oxide 

(GO).168 Their findings suggest by applying an adequate amount of the CDs, the work function 

of GO could be shifted down which in turn not only faster the rate of hole injection but also 

suppresses the electron-hole recombination dynamics. As shown in Figure 8a, steady-state PL 

curves analysis perceived that with the incorporation of CDs over the perovskite film, the 

lifetimes of the corresponding PL curves were considerably decreased due to the enriched 

hole extraction from the perovskite film. Likewise, the shortest decay lifetime was obtained 

for the CDs-perovskite film which enlightened the improved charge transfer kinetics than 

those pristine perovskite film (Figure 8b).  As a result of improved hole extraction and 

decreased recombination higher efficiencies of 16.2% were delivered for the GO-CDs HTM 

compared to that of GO HTM (14.7%). Further, it observed that the GO-CDs are effective to 

longer the device stabilities due to the adequate down-converting properties of CDs which 

could assist in eliminating the soaking effect on the perovskite film. In another report, Kim et 

al. demonstrated that CQDs introduced p-type metal oxides, namely, nickel oxide (NiO) could 

be served as an efficient HTM in PSC.169 In their work, it was witnessed that the oxygen and 

the nitrogen-rich surface of the CQDs contributed to enrich the electronic properties of the 

NiO and appropriately match with the work-function of the perovskite and conducting glass 

thereby formed cascade type charge transport in planar p-i-n type PSCs. As depicted in Figure 

8c; time-resolved PL (TRPL) spectra indicated that NiO@CQD perovskite film exhibited a lower 

average PL lifetime than NiO which directed higher hole-extraction rates in NiO@CQD 

perovskite film. As a result, improved photovoltaic efficiencies from 15.66% to 17.02% were 

observed for CQDs@NiO fabricated PSCs. Moreover, the devices that fabricated using 

CQDs@NiO were validated long-term stabilities of 192 h than bare NiO which attributed to 

the protective layer of the CQDs that obstruct the atmospheric moisture as well as reduce the 

hole accumulation process in perovskite film Figure 8d. 

 

 



 

Figure 8: (a) Photoluminescence spectra and (b) transient PL decay curves based on the 

pristine GO and CDs modified GO (GO-CDs) in perovskite solar cells. Reproduced with 

permission from ref 170. Copyright 2019 Elsevier. (c) PL decay curves (d) Normalized 

photovoltaic efficiency variation of perovskite-coated pristine NiO and NiO:CQDs. 

Reproduced with permission from ref 171. Copyright 2020 Elsevier. 

In addition to this, CQDs with surface-rich properties have also been used to enlarge the light-

harvesting and passivate the grain boundaries of perovskite film.172, 173 Accordingly, Ma et al. 

added CQDs in the perovskite material and found that the CQD can not only broaden the 

absorbance of the perovskite layer but also suppress the intrinsic defect of perovskite film 

because of the positive interaction between the Pb2+ ions and carbonyl groups on CQD.172 As 

a consequence, higher efficiencies of 18.24% were obtained for CQDs added perovskite film. 

Additionally, the CQDs added perovskite exhibited better performance stability of about 48 

h. The CQDs synthesized by using different precursors such as acetone (A-CQD) and citric acid 

(C-CQD) were applied as additives to control the growth rate of perovskite film by Xu and co-



workers.174 SEM images (Figure 9a-c) showed that the existence of the different functional 

groups on the  A-CQDs surface resulted in the improved grain size,  crystallinity, and better 

hydrophobicity of perovskite film than C-CQDs. Whereas, the existence of more hydrophobic 

alkyl groups on the surface of CA-CQDs inhibits the grain sizes of film. Further, the AFM 

investigation showed that surface roughness values following the order pristine perovskite 

films (10.3 nm), A-CQDs films (14.5 nm), and CA-CQDs films (8.55 nm), respectively (Figure 

9d-f). The performance of as high as 13.28% and 7.85% was acquired for the A-CQD and C-

CQDs based device. Also, A-CQD-based devices exhibited long-term stability and retaining 

90% of their original performance after 200 h. A similar kind of efficiency and stability 

enhancement was observed by Wen et al. with the introduction of CQDs in the MAPI solution 

which was attributed to the enriched crystallinity and grain size of MAPI film as well as 

suppressed carrier recombination process.175 Aside from this, there have few reports showing 

that the use of CDs as an interface modifier layer or interface engineering provides 

straightforward access to reducing the charge injection/extraction energy barrier, hindering 

the recombination associated with charges, also better the charge transfer kinetics.176, 177 Han 

et al. fabricated simple, economic, stable, and HTL-free PSCs by using carbon‐electrode that 

was prepared using a low-temperature painting technique.176 Further, the authors were 

deposited CQDs in the perovskite layer and carbon electrode which was functioned as an 

interface modifier. It was demonstrated that CQDs could not only assist the hole transfer 

towards the carbon electrode but also reduce the defect states in the perovskite layer, which 

in turn improved the photovoltaic performance up to 13.3%.  

Similar to supercapacitors, CQDs nanocomposite with other metal oxides/sulfide catalyst 

enrich the active surface sites by enlarging the specific surface area and electrical conductivity 

of electrode material and as well, it helps in maintaining the overall device performance over 

a long period by providing internal protection. Additionally, benefited from the superior 

photophysical and optoelectronic properties CQDs assist in improving light-harvesting 

efficiency through absorbing a large number of photons in a wide solar spectrum. Also, CQDs 

are capable of extending the life-time of the devices by providing a protective layer against 

moisture. In the last few years, CQDs have also been implemented to enhance the electron 

or hole extraction, to enlarge the light-harvesting, and to passivate the grain boundaries of 

perovskite film. However, it should be noted that the underlying mechanism has not been 



well understood. Therefore, it is essential to reasonably evaluate the several factors that 

affect the process, such as charge extraction, the effect of dopants in CQDs sensitizers as well 

as charge-recombination process to improve the overall performance and stability of devices. 

 

Figure 9: Top-view SEM (a-c) and AFM images (d-f) of the pristine perovskite film, acetone-

derived CQDs (A-CQDs), and citric acid-derived CQDs (CA-CQDs) film, respectively. 

Reproduced with permission from ref 174. Copyright 2021 Elsevier. 

Table 2: Photovoltaic Performance of different Solar Cells with CQDs as a photosensitizer.  

Device Type Source 
JSC 

(mA cm-2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 
Note Reference 

  Uncoated 0.083 0.015 0.34 0.0004 
 

 

  Chitin 0.530 0.175 0.35 0.032  

CQDs improves the visible 

light absorption in ZnO 

nanorods 

 

  Chitosan 0.500 0.275 0.44 0.061  

QDSSCs Sensitizer Gluscose 0.153 0.255 0.44 0.017 
147 

  Chitosan-

Chitin 0.674 0.265 51.9 0.077 
 



  Chitosan- 

Gluscose 0.054 0.300 0.38 0.006 
  

  TiO2 0.057 0.409 0.4 0.009 CODs exhibits excitation 

depend behavior owing to 

their plentiful functional 

groups on the surface 

 

  Citric acid 0.082 0.414 0.603 0.02  

QDSSCs Sensitizer Glucose 0.148 0.375 0.535 0.029 166 

  Bee pollen 0.35 0.416 0.726 0.11  

  MeOH 0.493 0.39 0.55 0.11 CODs advances the charge 

transport kinetics 

148 

QDSSCs Sensitizer butyrolactone 0.532 0.38 0.64 0.13  

QDSSCs Sensitizer Soyabean 0.03 0.347 66.1 7.97 - 
149 

QDSSCs Sensitizer ZnO/NCQD 5.48 0.343 0.52 1.18 enhanced light absorption 
150 

  N719 16.5 0.734 0.7 8.5 NCQDs acts as donor 

material and enhance 

charge separation efficiency  

 

DSSCs Sensitizer N719/NCQDs 17 0.735 0.72 9.15 151 

  N719 21.26 0.691 0.61 8.7 Better the charge collection 

efficiency and electron 

diffusion length of TiO2 

 

DSSCs Sensitizer N719/NCQDs 16.12 0.74 0.60 7.25 152 

DSSCs Sensitizer CQDs 0.33 0.37 28 0.03 N doping enhanced 

photocatalytic activity of 

NCQDs/TiO2  

153 

  N-CQDs 0.69 0.46 43 0.13  

DSSCs Sensitizer PEG-CQDs 19.59 0.717 70.4 9.89 enhanced absorption  
154 

  N719 13.77 0.72 69.9 6.90 
Improved light-harvesting 

and charge extraction 

 

DSSCs Sensitizer NCQD/N719/ 

CQD/SCQD 
17.4 0.738 70.4 

9.04 157 

  ZnO@N719 0.52 0.30 0.57 0.16 
Improved e+/h- pair 

separation efficiency 

 

DSSCs Sensitizer ZnO@N719/C

QD 
2.34 0.67 0.59 

5.92 158 



  TiO2 7.92 0.765 0.73 3.25 
Extend absorption from UV 

to NIR 

 

DSSCs Sensitizer TiO2/CDs 16.94 0.788 0.74 7.32 159 

  CoSe 15.73 0.712 0.720 8.06 

Promote reduction of I3- to I- 

 

DSSCs CE CQD/CoSe       17.64 0.733 0.702 9.08 161 

  CoSe 15.47 0.718 70.83 7.87 
Enhanced electron density 

at CE 

 

DSSCs CE CQD/CoSe        16.79 0.732 69.46 8.54 162 

  MWCNT        16.5 0.70 53.5 6.17 Facilitate charge transfer 

and  exhibits electrolyte 

binding capacity 

 

DSSCs CE NCQD@ 

MWCNT 
16.5 0.75 75 

9.28 163 

3.3. Lithium ion batteries  

Lithium-ion batteries (LIB) are a smart energy storage system and, due to their special 

characteristics such as lightweight, lighter, economically efficient, high energy density, and 

long cycle life, they have enhanced commercial demand for different consumer power 

sources and electric or hybrid vehicles.178-180 However, many LIBs electrode materials 

experience a rapid capacity fading during the charge-discharge process and poor rate 

performance, which are owing to self-aggregation, uncontrolled volume expansion in the 

electrode material, dissolution, formation of solid electrolyte interface layer over the 

electrode, and fast increased charge transfer resistances during cycles. In terms of the LIBs 

electrode materials, low coulombic efficiency, electrolyte depletion, and safety issues are 

common.181-183 Recently, these kinds of challenges in the LIBs electrode materials were 

addressed by compositing with CQDs with LIBs electrode materials, by modifying the surface 

states and the internal structures of electrode materials to enhance the LIB's next-generation 

efficiency.  

Because CQDs help in increasing the conductivity of electrode materials, increase in the active 

surface sites over the electrode materials which account for the increase in the surface area 

and wettability of electrode material and besides that, it helps in controlling the volume 

expansion of electrode material during the charging-discharging process.184 For example, 



Prasath et al. employed bismuth oxide (Bi2O3) and CQDs nanocomposite as an anode material 

for LIB's.113 These nanocomposites exhibited higher electrical conductivity and surface area 

compared to that of either Bi2O3 or CQDs. As a result, the coin cell constructed with Bi2O3-

CQDs revealed a better discharge capacity of 1500 mAh g–1 at 0.2C as well as maintained 

about 100% of its coulombic efficiency even in the 2500th cycle. In another work, Zhang et al. 

established that the heteroatom doping into CDs could be a promising strategy to enlarge the 

surface area and electrochemical capability of carbon-based electrocatalyst.185 In order to 

achieve this, the author's synthesized a novel 3D porous nitrogen-rich carbon catalyst by 

doping nitrogen in CDs (N-PCFs). The structural investigation revealed that N-PCFs exhibited 

a pore diameter of about 0.5–100 nm and a large surface area of 483.7 m2 g–1 as confirmed 

from the SEM and Brunauer–Emmett–Teller (BET) analysis Figure 10a, b. The anode 

constructed using N-PCFs displayed contribution of capacitive behavior as well holds excellent 

rate capability in  0.01–3.0 V potential window, as witnessed from the corresponding CV 

curves displayed in Figure 10c. Furthermore, the N-PCFs anode demonstrated superior cycling 

capability retaining 840 mAh g–1 at 2 A g–1 after 1000 cycles in LIBs which was much better 

compared to its reference anode Figure 10d. 

A similar kind of results was observed by Jing et al. with the coating CQDs surface of Mn3O4 

particle.186 In their study, it stated that the CQDs coating that performed by using an 

alternating voltage electrochemical route caused the structural change in the Mn3O4 from 

particle to nano-octahedra structure which in turn significantly improved the surface area and 

electrochemical properties of resulting Mn3O4-CQDs nanocomposite. Benefited from the 

higher surface area, the nanocomposite greatly enhanced its discharge capacity in 

comparison with only the Mn3O4 particles which were revealed from the charge-discharge 

profile Figure 11a. As a consequence, high-performance LIBs especially high specific capacity 

(934 mA h g−1) and improved cycling stability retaining 99% capacity under a large current 

density of 100 mA g−1 was deliberated which was higher than that of the individual samples 

when these nanocomposite applied as an anode Figure 11b. For sodium-ion batteries (SIBs), 

coulombic efficiency of as high as 91% was achieved from a CDs anode that was derived from 

the supernatant of hydrothermal carbonization (HTC).187 Kumar et al. synthesized the novel 

anode by depositing Sn nanoparticles decorated with Sn@CDs on the copper foil.51 This anode 



showed improved electrochemical properties and better coulombic efficiencies which were 

attributed to the reduced pulverization effects.  

In addition, due to its strong dimensional stability, peculiar morphology, and high surface 

areas, highly conducting carbon-based materials such as graphene and CNTs or their 

nanocomposites are also investigated as anode materials. Besides, the utility of these 

materials as an effective anode material for LIBs can also be improved by defect engineering, 

such as increasing defects, increasing the grid disorder, and pores generation. However, these 

deficient graphenes and CNTs could be aggregated after a while due to intense correlations 

between van der Waals and high surface energy. If the surface of these highly conducting 

graphene and carbon nanotubes is functionalized with carbon-based carbon dots, a 

hybridized graphene and carbon nanotube composite is formed. The functional groups (-OH 

and COO-) on the graphene quantum dots create the negative charge over the surface of CNTs 

and avoid the aggregation of CNTs due to the same charge molecules repel to each other, 

besides these functionalized CNTs contributing to increase the massive Li-ion storage sites. 

These hybridized graphenes and CNTs showed higher performance than their individual 

components. It will not improve the number of active sites, but it will also help to reduce 

mechanical stress due to changes in volume during the charge-discharge process. Graphene 

quantum dots functionalized CNTs were synthesized by Zhao et al. using the hydrothermal 

process and subsequent heating at 400 and 800 °C in an H2/Ar atmosphere.188 The synthesized 

hybrid GQDs wrapped CNTs (GQDs@CNTs) are used as anode materials for Li-Ion battery 

applications, and they have a high specific capacity (700 mAhg1 at 100 mAg-1 after 100 cycles) 

and rate performance. Even at a high current density of 1,000 mA·g-1, the reversible specific 

capacity remained at 483 mAh·g-1 after 350 cycles.  

 



 

Figure 10: (a) N2 adsorption-desorption isotherms; inset of image (a) representing the pore 

sizes distribution curves of N-PCFs (b); CV curves at various scan rate (c) and (d) Cycling 

performances along with coulombic efficiencies of N-PCFs. Reproduced with permission from 

ref 185. Copyright 2019 American Chemical Society.  

On the other side, much of the research has been done to address the problem of sluggish 

ion transfer, low energy density, and poor cycling stability by modifying cathode with carbon-

based materials such as graphene, PANI, CNT, CQDs, and doping of transition metals.189 As 

same as the anode, the functionalization of CNTs/graphene resulted in the capacity and cycle 

stability life. Appropriately, Chen et al. shown that the use of graphene-CNTs facilitated Li-

ions diffusion and improve electron-ion mobility by generating conductive pathways for 

charge transfer.190 In the same way, PANI modified cathodes are demonstrated to enhance 

the lithium-ion diffusion rate in LIB’s by avoiding the agglomeration of cathode material.191 

The fact that, however, is a challenge with the performance of most of these carbon-based 

cathode materials is that they suffer from the problems of poor conductivity and slow charge 

transfer dynamics. Until further studies are being employed to improve these compounds to 

obtain more optimal electron mobility thus electrochemical performance by the addition of 



CQDs. Here is the main role of the CQDs to solve the conductivity problem of the cathode and 

anode materials as well as it helps to control the volume expansion during the intercalation 

and deintercalation of ions increases in the cycle stability of electrode material and also 

improve the capacity of electrode materials.184  For example, aiming to solve the poor 

conductivity and rate capability of the electrode, Liu et al. and coworkers modified 

Na3V2(PO4)2F3 by using CQDs that were prepared using a facile solvothermal route.192 It 

observed that appropriate tuning of the reaction time and CQDs amounts greatly contributed 

to morphology, crystal structure, and electron-ion mobility. Benefiting from the higher 

surface area and rapid electron transport a higher performance of 126.6 and 84.7 mAh g−1 at 

0.2C and 50C, respectively, was achieved for the Na3V2(PO4)2F3@CQDs cathode. Additionally, 

these cathodes maintained their performance over a long period retaining 90.2% capacity 

6000 cycles at 30C. Hu et al. have shown that the issues such as rapid polysulfides dissolution, 

loss of the active material, and shuttle reaction in lithium-sulfur (Li–S) batteries have been 

resolved by coating CQDs over coated sulphur.193 Particularly, the sulfur cathode modified 

from polyethyleneimine‐functionalized CDs (PEI‐CDs) has shown great ability to bind the 

polysulfides species and significantly enhanced lithium-ion conductivity thus obtained a high 

current density of 8 mA cm−2. 

 

Figure 11: (a) Galvanostatic charge-discharge curves and (b) Comparison of cycle retention 

characteristics between pristine Mn3O4 and Mn3O4-CDs nanocomposites. Reproduced with 

permission from ref 194. Copyright 2015 The Royal Society of Chemistry.  

Similar to that of supercapacitor and PV applications, the nanocomposite strategy is an 

auspicious strategy to achieve economic and electrochemically rich i.e. high specific area and 



highly conductive electro catalysts. Additionally, it plays an important role in optimizing the 

morphology and surface properties of nanocomposites.  

3.4. Hydrogen evolution reaction  

Hydrogen is one of the best alternative renewable energy sources among other energy 

sources because it is carbon-free along with having a high energy density. Here is we can 

generate the hydrogen in two ways one is photo-catalytically water splitting and another one 

is the electrocatalytically water slitting.195-198 In the photocatalytic hydrogen evolution, 

hydrogen is generated with the help of sunlight fall on the catalyst and in the case of 

electrocatalytic hydrogen evolution, hydrogen is generated with the help of voltage applied 

to the catalyst.199 Nowadays, CQDs used as a catalyst for the hydrogen generation using a 

photocatalytic and electrochemical process. As, it has all the required properties for both 

process such as large surface area, multiple active edges such as COOH, OH, CHO, NH2. Thus, 

they can contribute to increase the wettability of catalyst and also contribute to coordination 

with metal to form the metal-carbon dots composite200, 201, defect sites, rapid electron 

transfer, tunable photoluminescence (PL)202, and form the holes and electron by absorbing 

UV and visible light.203 Besides these unique properties, they are cost-effective and size-

controllable.59, 204 Here we have discussed some recently reported articles on the CQDs-based 

composite materials.  

Elsayed et al. synthesized the metal-free photocatalyst by implanting the nitrogen-doped 

CQDs (NCQDs) polymer (PS-PEGCOOH) using a simple chemical route.205 In comparison to PS-

PEGCOOH, the prepared NCQDs covered by PS-PEGCOOH heterostructure material 

demonstrate a 5-fold hydrogen evolution efficiency in visible light. This enhanced hydrogen 

evolution efficiency of heterostructures catalyst due to the incorporated NCQDs help in 

enhancing the charge separation and the photocatalytic efficiency of PS-PEGCOOH. They are 

also demonstrated that after implantation of NCQDs over the PS-PEGCOOH, the 

recombination of generated charge almost double compared to un-implanted PS-PEGCOOH. 

Furthermore, these increased charges help in enhancing the stability of excited 

electrons. Likewise, Zhou et al. constructed g-C3N4 quantum dot/a-TiO2/r-TiO2 by simple 

mixing method of g-C3N4, anatase TiO2, and rutile TiO2 powder in water with the help of 

sonication method.206 The optimized QCN/a-TiO2/r-TiO2 heterojunctions showed improved 

photocatalytic H2 and O2 evolution, with the hydrogen evolution rate (49.3 mol h-1) being 11.7 



times that of bare P25 under visible light irradiation, and ample catalytic stability, as 

demonstrated by recycling studies. The significantly increased photocatalytic activity was 

attributed to the synergistic effects of alignment of energy levels at interfaces, dimensionality, 

and heterojunction component. The main role of the g-C3N4 quantum dot to promote the 

separation and transfer of the photogenerated electron-hole pairs due to a similar kind of 

band structure and strong coupling with TiO2/r-TiO2 heterojunction. Moreover, it contributes 

to absorbing the photon from the visible region and enhances the photogenerated charges.  

In another report, Shen et al. used hydrothermal and subsequent chemical treatment with a 

reducing agent to create the graphene quantum dots-transition metal nanoparticles (Rh, Pt, 

and Ru) composite.207 These synthesized composites were used to photocatalytic hydrolysis 

of NaBH4 and NH3BH3 for hydrogen evolution. For GQDs-RhNPs, GQDs-RuNPs, and GQDs-

PtNPs, the turnover frequency is 656, 384, and 281 mol H2 mol cat-1 min-1, respectively. The 

GQDs in this composite act as a stabilizing agent for transition metal particles, which 

contributes to the increased reusability of the HER catalyst without a noticeable decrease in 

catalytic activity. Nasir et al. successfully prepared the Au/HBTiO2/g-C3N4 QD’s composite by 

plasmonic Au NPs and g-C3N4 Quantum Dots (QD’s) loading on the branched TiO2 fibers.208 

The composite exhibits significant improvement in photocatalytic hydrogen evolution, 

producing approximately 2.22 mmol g-1 h-1 hydrogen. The composite sample reveals the 

19.5 % quantum efficiency to produce hydrogen at the light of 420 nm. This increased 

photocatalytic hydrogen efficiency due to the synergistic effect of all individual components 

and here g-C3N4 QDs contribute to enhancing the composite optical properties in order to 

absorb visible light and it helps to reduce the bandgap of Au/HBTiO2/g-C3N4 QD’s composite. 

Additional information related to the performance studies of CQDs and their composites for 

electrocatalytic HER is summarized in Table 3.  

Table 3: Performance studies of CQDs and their composites for electrocatalytic HER.  

Catalyst Overpotential 

(η10) mV 

Current density 

(mA/cm2) 

Electrolyte Tafel slope 

(mV/dec) 

Reference  

RuP2/1.03CQDs-900 26 10 1M KOH 61.65 209 

Ni5Mo3P@CDs3 183 10 0.5 M H2SO4 41.04 210 

Ni–Cu/RCQDs/GCE −200 10  0.5 M H2SO4 83 211 



Ru@CQDs800 65 10 1M KOH 63 212 

3-CQDs/MnxNi5-xP4 31 10 1M KOH 41 213 

N-CQDs-17h 341  10 0.5 M H2SO4 126 214 

RuNi/CQDs 13 10 1 M KOH 40 215 

Pt-CQDs/Gr-C400 38 10 0.5 M H2SO4 40 216 

g-C3N4 (NS/QD) /MoS2 

(NSt) 

280 2 0.5 M H2SO4 88 217 

NDCDs-AgNi alloy NPs 

500 

79 1 0.5 M H2SO4 368 218 

n-Pd@NDCDs/GC -291 10 0.5 M H2SO4 135 219 

RuNi/CQDs-600 13 10 1 M KOH 40 215 

18 10 1 MPBS 76 

59 10 0.5 M H2SO4 55 

Pd@G-NS 32 10 0.5 M H2SO4 33 220 

1%Pt/CQDs/CNT 29 10 0.5 M H2SO4 22 221 

Au/Cdot nanohybrid 150 10 0.5 M H2SO4 54 222 

Ru1CoP/CDs1000 51 10 1 M KOH 73.4 223 

Ru1CoP/CDs1100 49 10 0.5 M H2SO4 52.3 223 

NiCoPt/Graphene-dot 45.54 10 0.5 M H2SO4 33.90 224 

Pt-QDs/MWCNT-BF4 

(30V) 

35.3 10 0.5 M H2SO4 34 225 

N-GQDs/GF -72 10 0.5 M H2SO4 84 226 

30 mg/L CQDs@NiCoP 108 10 0.5 M H2SO4 80 227 

CQDs/MoP 210 20 1 M KOH 56 228 

N–C@Co NPs600 137 10 0.5 M H2SO4 110.3 229 

134 10 1 M KOH -- 

GQD-Mo-Ni3S2/NF 68 10 1 M KOH 68 230 

CDs/NiCo2S4/Ni3S2/NF 127 10 1 M KOH 148 231 

NCDs/Ni3S2/NF 

composites 

187 20 1 M KOH 127 232 

CuCo2O4@CQDs 331 10 1 M KOH 65 233 



3.5. Oxygen evolution reaction  

Oxygen evolution reaction is one of the half parts of the hydrogen fuel cell to generate 

hydrogen. The oxygen evolution process is sluggish because, OER mandated the high 

overpotential to evaluate oxygen from the water, in which an O-O a covalent bond is formed 

by four electrons transfer process.234, 235 Here well-known Ir and Ru-based catalysts can easily 

break water molecule and form the O-O bond easily.236, 237 However, there are some 

downsides with these catalysts such as high cost and scarcity, which limits their large-scale 

application and commercial. Whereas transition metal-based catalyst is a non-precious 

alternative catalyst for oxygen evolution, but this catalyst is not completely released to large-

scale production of oxygen due to its poor activity.238-240 Nevertheless, few research groups 

demonstrated that this issue could be bottlenecked by incorporating carbon-based materials 

with a transition metal.241, 242 In recent years, the CQDs nanocomposites have shown excellent 

catalytic activity towards the oxygen evolution because of CQDs that could not only improve 

the electronic conductivity of nanocomposites but also protect it from the corrosion of metal 

oxide and oxidation during water splitting.243  

Chang et al. synthesized the single atomically anchored iron-on graphene quantum dots by 

using hydrothermal and subsequent use the simple chemical method to prepare composite 

and the prepared material used as electrocatalyst for electrocatalytic OER.244 The optimized 

1.5 Fe(NO)2-N-GQDs composite demonstrates overall excellent electrocatalytic activity 

compared to the N-GQDs, RuO2, and various concentrations of iron-loaded Fe(NO)2-N-GQDs, 

the 1.5 Fe(NO)2-N-GQDs catalyst required only 270 mV overpotential to achieve 10 mA/cm2 

current density. Moreover, it shows a very low Tafel slope (48 mV/dec) and a highly stable i-t 

curve for OER for 4 hours. They have claimed that excellent OER activity is due to the 

synergistic effect of both Fe(NO)2 and N-GQDs. The main role of N-GQDs to increase the 

conductivity of composite material and provide a large surface area to accumulate the charge 

which contributes to the increase in the oxygen evolution concentration. In another work, Bai 

et al. prepared the CdP2–CDs–CoP nanoarrays over the nickel foam using hydrothermal and 

subsequent, as prepared film heated at 450 C in the presence of 1 g sodium hypophosphite 

powder in a tube furnace.245 The prepared film demonstrates the excellent OER activity in 1 

M KOH electrolyte compared to the individual and without the added CdP2-Cop composite 

film. It takes just 285 mV overpotential to reach a current density of 10 mA/cm2 and has a 



small Tafel slope (81.7 mV/dec). The excellent OER activity attributed to the quasi-zero-

dimensional CDs enriches the structure/composition, exposes more active sites for 

electrocatalytic reactions, and improves the conductivity.  

The carbon-dots@metal organic framework composite (CQDs@MOF) was synthesized by 

Rehman et al. using hydrothermal methods and was investigated as a catalyst for oxygen 

production. In comparison to state-of-the-art electro-catalytic systems i.e. RO2 and IrO2, 

prepared CQDs@MOF to give excellent OER operation in 1 MKH electrolyte solution.246 The 

prepared composite catalyst only needed output of 1.55V to achieve a current density of 10 

mA/cm2 and it has a low 62 mV/dec Tafel slope. It also has a high OER stability of up to 40 

hours and up to 100 CV cycles. These excellent results are attributed to the use of CQD 

composites, which help to increase the conductivity and stability of MOF. Tian et al. used a 

microwave-assisted hydrothermal approach to build varying amounts of carbon-quantum-

dots-embedded MnO2 nanoflowers.247 The synthesized CQDs0.15-MnO2 composite exhibits 

excellent electrocatalytic behavior, requiring just 343 mV overpotential to achieve 10 mA/cm2 

current density and a very low Tafel slope of 43.6 mV/dec. This increases electrocatalytic 

activity due to the integration of CQDs with MnO2, which helps to increase active surface 

areas, improved conductivity, and rapid charge transfer pathways, resulting in not only 

significantly enhanced electrocatalytic activity but also high stability (35 hours) for OER.  

Zhong et al. used a simple chemical reaction to create cobalt(III) tetraphenylporphyrin (CoP) 

nanowires (NWs), which were then converted in situ into zero-dimensional CoP/NGQDs 

nanocomposites by adding nitrogen-doped graphene quantum dots (NGQDs) as the template 

and dopant.248 Extensive experiments show that NGQDs-limiting self-assembly of CoP 

molecules along the axial path, followed by the creation of Z-scheme CoP/NGQDs 

heterojunctions, is critical for effective photocatalytic oxygen evolution. These un-

agglomerated CoP nanowires are effectively interacting with the light and increase the 

stability of photoinduced charge in CoP/NGQDs than the CoP nanowire. Table 4 shows the 

performance of CQDs and their composites for electrocatalytic OER. The advantages of 

combining CQDs with transition metal-based materials composite to enhance the catalytic 

properties of transition metal-based materials for hydrogen and oxygen evolution reactions 

have been briefly discussed in Sections 3.4 and 3.5. 

 



Table 4: Performance studies of CQDs and their composites for electrocatalytic OER. 

Catalyst Overpotential 

(η10) mV 

Current density 

(mA/cm2) 

Electrolyte 

 

Tafel slope 

(mV/dec) 

Reference  

CQDs/SnO2–Co3O4 575 10 1M KOH 60 249 

NiFeOx©NC 195  10 1M KOH 33 250 

1.5 Fe(NO)2-N-GQDs 270 10 1 M KOH 48 251 

CdP2–CDs–CoP 285 10 1 M KOH 81.77 252 

CQDs@MOF 320 10 1 M KOH 62 253 

CQDs0.15-MnO2 343 10 1 M KOH 43.6 247 

NiFe LDHs@GQDs  189 10 1 M KOH 23.6 254 

N-GQDs/NiFe-LDH 279 10 1 M KOH 47 255 

Co(OH)2@NCDs 296 10 1 M KOH 70.5 256 

CQDs decorated 

Ba0.5Sr0.5Co0.8Fe0.2O3-

δ 

350 10 1 M KOH 66 257 

N–C@Co NPs600 304 10 1 M KOH -- 229 

GQD-Mo-Ni3S2/NF 326 20 1 M KOH 69 230 

N-GQDs)/Co3O4 330 10 0.1 M KOH 71 258 

CDs/NiCo2S4/Ni3S2/N

F 

116 10 1 M KOH 99 231 

NCDs/Ni3S2/NF 

composites 

340 200 1 M KOH 67 232 

CuCo2O4@CQDs 290 10 1 M KOH 64 233 

CoFe-CDs 308 10 1 M KOH 60.9 259 

Co3O4-δ-QDs 270 10 1 M KOH 38.8 260 

 

4. Future research directions and Conclusion  

Luminescent CQDs are intriguing newcomers to the nanomaterials world in various energy 

applications. In this paper, the key synthesis methods and photochemical properties of CQDs 

are discussed, and their application in the field of energy is emphasized. The effect of various 

synthesis methods on the physical, chemical, optical, and electronic properties of CQDs are 



discussed. CQDs have several imperative applications in the prospective field of energy 

storage and conversion, which are a result of their unique and intrinsic characteristics. There 

is growing recognition among researchers and the scientific community of the importance of 

using a greater capacity and green conversion of energy. In the recent course of years, studies 

on the use of CQDs or CQDs modified nanomaterials have greatly expanded. Among all the 

synthesis methods, hydrothermal and electrochemical methods have the upper hand due to 

ease of composition and morphology control. In these methods, large surface are and uniform 

particle size can be obtained. The size, shape, surface functional groups, and heteroatom 

doping of CQDs can all affect their specific electronic and chemical structures. Note that the 

extent that doping and modification causes an increase in electrical conductivity, improves 

their physiochemical properties. Because of its astonishing optoelectronic properties that can 

separate charge carriers that have low light absorption and tuneable bandgap, the 

incorporation of CQDs into nanomaterials enhances the ability of extraction of solar cells to 

become more efficient. CQDs have a large surface area and high electron mobility, which is 

highly advantageous for the absorption of light in a wide spectrum therefore; they are often 

used as photo-sensitizers or active layers for photovoltaic devices. On the other side, the 

CQDs modified electrodes are outstanding at counter electrodes that alleviate volume 

expansion, boost ion diffusion rate, and enhance the electronic double layer kinetics, as well 

as improving interfacial electrical conductivity and electrochemical performance when 

applied in Li/Na ion batteries. Furthermore, the energy density, specific capacitance, and 

conductivity of supercapacitors could be dramatically increased by blending CQDs with 

conducting polymers, carbonates, as well as activated carbon materials. Thus, CQDs are 

accountable for providing more active sites in such structures and sites (either by creating 

new ones or activating existing ones).  

However, progress has been made in this area in the development of CQDs and their uses in 

recent years, and the issue is not yet resolved. CQDs expand in extremely wide ranges when 

no particular size limit is imposed on their growth. Additionally, there are unknown properties 

in the CQDs that have yet to be investigated and it also leaves their nano-sized chemical and 

physical nature undefined which in turn restricts their application in energy storage devices. 

Another urgent issue facing CQDs industrialization and synthesis is that must be confronted 

is the fast development of the sources of their raw materials. Apart from this, the ability to 



reduce the manufacturing cost of CQDs is that this lack of standardization, which now hinders 

their large-scale application and commercialization. The ultimate goal is to combine 

environmentally clean, inexpensive, minimal toxicity, and efficient methods of production. 

There are still places where further development can take place to expand the progress made 

in this synthesis. This kind of development in particular has an abundance of opportunities 

where green chemical combinations are involved, where inexpensive production processes 

can be used. 

Typically, CQD nanocomposites contributed to shortening the charge transfer pathways and 

maintain the cycle stability of electrode material because of its improved crystal structure and 

surface properties. Taking into consideration the above-mentioned advantages and 

limitations, more research expected in designing cost-efficient and environment-friendly 

nanocomposites using CQDs for delivering high energy density and stable electrodes for 

energy storage applications. Although CQDs have shown to have a role in energy application, 

several critical problems and obstacles yet to addressed for a thorough understanding of the 

underlying mechanism and process, and important knowledge of electrochemical 

performance. First, CQDs with high quantum yields are still hard to come by. Future research 

endeavours should concentrate on increasing the high quantum yield as well as chemical and 

photostability. Secondly, application-focused research should at the same time on improving 

the quality, selectivity, and robustness of CQDs for energy-driven platforms. We anticipate 

the production of more cost-effective, simple, and revolutionary synthetic methods, as well 

as novel promising energy applications, in the future to better realize the potential of these 

increasingly important carbon materials. 
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