
“©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



Context-Aware Fog Computing Implementation for
Industrial Internet of Things

Adel Atieh
Faculty of Engineering and IT

University of Technology, Sydney (UTS)
Sydney, Australia

adel.atieh@student.uts.edu.au

Priyadarsi Nanda
Faculty of Engineering and IT

University of Technology, Sydney (UTS)
Sydney, Australia

priyadarsi.nanda@uts.edu.au

Manoranjan Mohanty
Faculty of Science

University of Technology, Sydney (UTS)
Sydney, Australia

manoranjan.mohanty@uts.edu.au

Abstract—The connectivity of devices has increased in the last
decade enabling multiple innovative applications and solutions to
serve industries and societies. This has solved multiple challenges
and facilitated the improvement of methodologies and techniques
adapted by humanity. One of the newly created paradigms that
changed industries and technology is the Industrial Internet
of Things (IIoT). IIoT is currently being adapted by various
industries creating interactive supply chain ecosystems through
the use of cloud computing. The size and distributions of these
ecosystems introduced latency and Quality of Service (QoS)
issues for edge devices sending data to the cloud. This research
paper explores a paradigm called “Fog Computing” which aims
to reduce the latency between IIoT devices and the cloud by
deploying a “cloud-like” computing layer closer to the IIoT
devices. In addition, a Context-Aware implementation of fog
computing is proposed in this paper to provide the most op-
timised service to edge devices. Furthermore, this paper includes
various experiments that examine the different context-awareness
perspectives this paper proposes for fog computing. The results
and outcomes of these experiments show reduction in latency and
automated resource scaling from the use of context-awareness
with fog computing over cloud computing for IIoT.

Index Terms—Fog Computing, Industrial Internet of Things
(IIOT), Context-Aware, Cloud Computing, Quality of Service
(QoS)

I. INTRODUCTION

Internet of Things (IoT) is a digital model that explores
the enablement of connectivity between objects and devices
through the Internet. These devices include home consumer
devices, commercial devices and industrial devices. By con-
necting large number of devices together and collecting enor-
mous data from every device, businesses and organisations
become more aware of their environments and ecosystems.
This enables the improvement of existing products and delivers
smarter solutions to their consumers and partners [1].

The large amount of data collected has assisted organisa-
tions in realising their true potential and influenced industries
through operation enhancement and integrations for more
customer satisfaction. Due to this, the IIoT model started to
be utilized widely across organizations to enhance monitoring
and connectivity between organization assets [2]. This involves
the replacement of currently deployed Industrial Control Sys-
tems (ICS) environments with smarter and more interactive
devices to communicate with next-generation IT systems. ICS
environments are deployed in critical infrastructures serving

multiple sectors. These systems require real-time interactions
between devices in order to function without any issues. Any
errors occurring in these environments can have significant
physical consequences and impact on national safety and
services provided to the nation as a whole [3], [4]. Therefore,
ensuring appropriate network and communication is essential
to maintain sufficient functionality of these systems.

This research paper proposes a fog computing solution
powered by Context Awareness API (CAAPI) that would
ensure IIoT devices are connected to the closest fog servers.
Moreover, to establish the cloud capabilities within Fog Com-
puting, Kubernetes is used to run and autoscale container-
ised applications. Such implementation ensures appropriate
resources are present to be utilised by the solution.

The remaining of this paper is organized into six sections.
Section II presents existing works on fog computing and
conducts a thorough review of these works. Section III ex-
plains and discusses the existing issues with IoT environments
connected to cloud and goes through the proposed fog com-
puting design and its context awareness capabilities. Section
IV describes the experimental setup and implementation of
the IIoT fog computing solution Proof of Concepts (PoCs).
Section V shows the results produced by the PoCs and Section
VI provides an analysis of these results. Finally, Section VII
draws conclusions from the results on the use of fog computing
and discusses future work and capabilities that can be added
to the Fog Computing solution.

II. LITERATURE REVIEW

A. Cloud Computing

Cloud computing is a service offering that has been intro-
duced by technology providers such as Amazon Web Services
(AWS), Microsoft and IBM to provide computing, storage
and network resources to organizations [5]. Along with the
advances in technology and the introduction of IoT to various
industries, communication technologies are also evolving to
support the next generation of smart ecosystems. However,
cloud computing has inherent physical limitations related to
the long propagation distance between the end device and the
cloud data centres. Also, the high number of routing hops
to the cloud data centres can result in multiple places of



processing delays adding to the latency related to the physical
distance [6].

B. Fog Computing

Fog computing is defined as a virtual layer providing
services for end devices and acts as the broker layer between
the end devices and the cloud [7]. It is a technology paradigm
that aims to extend the capabilities of the cloud to the IoT
devices [8]. It provides programmability and orchestrated
management and automation of services to the IIoT solution.
Multiple fog computing use cases have been mentioned in
various papers covering Smart Grids [9], Connected vehicles
[9] and Healthcare [10]. Fog computing aims to provide
various capabilities to the IoT deployments that focus on the
following aspects [11], [12]:

• Distributed applications
• Low-latency and location-based awareness
• Context-Awareness
• Scalable according to the resource utilization
As the fog computing layer is made close to the end devices,

low latency is achieved with greater aspect of security and
network performance. This also reduces the total bandwidth
cost of networks leading to a more “greener” technological
ecosystem [7], [13]. Services provided by the cloud including
computation, network and storage services introduce perfor-
mance overheads and bottlenecks as they are being delivered
centrally [8].

C. Context-Awareness

Context-awareness is a characteristic that is implemented
through the collection of data from various sources and
thereafter analysed and modelled to gain different perspectives
of the deployed devices [14]. There are various definitions for
context-awareness, however the following definition is relevant
to this research [15]:

“A system is context-aware if it uses context to provide rel-
evant information and/or services to the user, where relevancy
depends on the user’s task.”

As mentioned in [14], there are two different types of
context that define the level of perspective and depth of
information gained from the data collected and are as follows:

• Primary context: Any information extracted from the col-
lected data without performing any data analysis and/or
operations on the data (Eg. GPS Coordinates, CPU uti-
lization, etc).

• Secondary context: Any information retrieved as a result
of analyzing and computing primary context data. This
includes the distance between two different IIoT devices
using their GPS coordinates.

One of the common methods used to standardise inter-
actions between different devices and applications is the
use of REST (REpresentational State Transfer) Application
programming interface (API). The use of REST API allows
interactivity between different systems using HTTP request
methods. An example of this interactivity is the use of REST
API calls to interact with Fog Computing gateways [16].

III. CURRENT STATE OF RESEARCH & RESEARCH
QUESTIONS

As it currently stands, IoT ecosystems connect to cloud
to send large amounts of data where computation and data
storage is performed. However, latency sensitive applications
suffer from factors that affect the Quality of Service (QoS),
Quality of Communications (QoC) and saturations such as
environmental factors [17]. These issues can affect IIoT
systems that provide critical services that require real-time
communication and sustainable management throughout their
life-cycle [18].

Previous studies and research papers have discussed and
explored Fog computing and demonstrated its potential over
cloud computing. Various latency and data rate evaluations
were performed by [16] using fog computing and cloud com-
puting lab setups. Results of these evaluations have revealed
the performance improvement using fog computing over cloud
computing due to the distance difference. Furthermore, the
solution proposed in [19] utilises the close proximity of fog
computing to offload mobile device computation and storage
of data to reduce the load on mobile devices. There have
been multiple models and frameworks that were explored
and implemented by different researchers for fog computing.
T.Gia [10] proposed a fog computing solution for a real-life
healthcare use-case. Moreover, M.Aazam [20] proposed a fog
computing model that focuses on dynamic resource estimation,
reservation and pricing.

While these features explored through the above papers en-
able solutions to improve and become more efficient, context-
awareness is required to combine all of these features and
utilise their metrics. This will allow fog computing to reach
its potential and thus benefit its hosted solutions. Our paper
aims to examine the following research questions:

• How can context-awareness help improve the perfor-
mance of a fog computing solution over a cloud com-
puting solution?

• What are the key aspects that can be considered for
context awareness in fog computing?

• What are the schemes that can allow fog computing to
establish context awareness of the environment?

IV. PROPOSED SOLUTION DESIGN

In this paper, we propose a fog computing solution that tar-
gets the challenges presented by cloud computing by deploy-
ing context-aware computing clusters close to IIoT devices. In
addition, the proposed fog computing solution is designed and
implemented similar to cloud computing by utilizing autoscal-
ing and load-balancing capabilities. The proposed solution
serving IIoT devices consists of the following three technology
layers similar to this paper [12]:

• Edge Layer: This layer involves all the different types
of industrial field controllers such as PLCs, RTU and all
other sensors that generate data or receive digital binary
commands to perform actions.

• Fog Layer: This layer provides computing and storage
services to the edge layer with inter-connectivity through



various networking capabilities. Upon receiving data from
the Edge layer, the Fog layer will perform analysis on the
data, filtering and cleaning of data.

• Cloud Layer: This layer hosts CAAPI that controls the
edge layer and fog computing systems centrally through
the continuous monitoring of systems.

In order to provide the key services running on fog com-
puting to the edge layer efficiently using context-awareness,
the following components are used:

• Fog Gateway
• Microservices clusters
• Context Awareness API (CAAPI)

The fog layer is distributed across different locations con-
sisting of Kubernetes clusters that aim to maintain the avail-
ability of the applications. Figure 1 shows the microservices
design of the fog and cloud layers.

Fig. 1. Fog & Cloud Microservices Solution Design

A. Fog Gateway

Fog gateways are determined to be one of the key com-
ponents of the fog computing architecture. Fog gateways are
positioned close to the end devices to provide them access to
computing resources. CAAPI is used to interact with the fog
gateways through API calls and create routes for specific IIoT
devices to their closest fog cluster.

B. Microservices Clusters

Microservices clusters are responsible for running, main-
taining and scaling up IIoT core applications automatically
using Kubernetes. Kubernetes developed by Google is used
for simulating fog computing, taking advantage of the vari-
ous orchestration and load scheduling capabilities to provide
highly scalable fog computing implementation with automated
geographic awareness [19], [21].

C. CAAPI

CAAPI is a REST API server hosted on the cloud to interact
with the edge layer to direct IIoT devices to the appropriate
fog cluster based on location and resource metrics. Context-
Awareness is achieved through the collection of the primary
context parameters shown in Table 1 below.

These primary context parameters are combined to construct
the secondary context parameters shown in Table 2. Using
these secondary context parameters, the following awareness
perspectives are established:

• Infrastructure Awareness
• Geographic Awareness
• Performance Awareness
1) Infrastructure Awareness: Microservices clusters consist

of multiple nodes to ensure hardware redundancy. Each node
hosts at least one pod running the required IIoT application(s).
A Horizontal Pod Autoscaler (HPA) is deployed in Kubernetes
to scale up the number of the IIoT application pods on based
on the chosen monitored metrics. The scaling up is performed
using the following algorithm [22]:

Pd = Pc ∗ (
Mc

Md
)

• Pc : The current number of pods

TABLE I
PRIMARY CONTEXT PARAMETERS

Parameter Source Summary
GPS coordinates IIoT & fog

server
Longitude and latitude coordi-
nates of an IIoT device and a fog
server

CPU Fog server CPU usage percentage of the fog
server

RAM Fog server RAM usage percentage of the fog
server

Request time - sent IIoT The time at which a data publish
is sent to a Fog Server

Request time - re-
ceived

Fog server The time at which a data received
by a Fog Server

Requests per minute Fog server The number of requests a fog
server receives from IIoT devices
per minute

TABLE II
SECONDARY CONTEXT PARAMETERS

Parameter Data Summary
Distance

• GPS coordinates
(fog server)

• GPS coordinates
(IIoT device)

Distance between an IIoT
device and a fog server.

Latency
• Request time – re-

ceived (fog server)
• Request time – sent

(IIoT)

Estimated time it takes a data
request to reach a fog Server
from an IIoT device and vice
versa.



• Mc : The current value for the measured metric
• Md : The desired value for the measured metric
• Pd : The required number of replicas to reach and

maintain Md

Autoscaling aims to emulate the PaaS & SaaS implementa-
tion of cloud service offering where these services autoscale
depending on the demand and utilization of cloud resources.

2) Geographic Awareness: The GPS coordinates are sent
to the CAAPI server from IIoT devices. These coordinates can
be referred to as GPS coordinate A for an IIoT device and GPS
coordinate B for a fog server cluster. In order to compute the
fog server clusters’ distances to these IIoT devices we used
the Haversine formula [24], [25]:

a = sin2(φB − φA

2
) + cos(φA) ∗ cos(φB) ∗ sin2(λB − λA

2
)

c = 2 ∗ a ∗ tan 2(
√
a,
√
1− a)

d = R ∗ c

• φA : Latitude coordinate of point A (radians)
• φB : Latitude coordinate of point B (radians)
• λA : Longitude coordinate of point A (radians)
• λB : Longitude coordinate of point B (radians)
• a : Haversine of angle c
• c : c is the central angle in radians
• d : distance between GPS coordinates A and coordinates

B in Kilometres (Km)
Once the minimum distance is found among the calculated

distances, the fog server cluster with the minimum calculated
distance is chosen to communicate with the IIoT device. By
keeping track of the GPS coordinates of the IIoT devices and
the fog server clusters, the fog layer establishes and gains
awareness of the environment.

3) Performance Awareness: Latency is calculated by con-
tinuously recording and calculating the difference between the
times of sending and receiving packets between IIoT devices
and fog servers. An average is then calculated to represent
an average latency per fog server. This represented using the
following equation:

t =

∑N
n=1 tFogn − tIIoTn

N

• tIIoT : The recorded time on IIoT device for sending the
request

• tFog : The recorded time on fog server for receiving the
request

• n : the number of the current transaction
• N : The total number of transactions
• t: Calculated average latency per fog server

V. EXPERIMENTAL DESIGN & IMPLEMENTATION

As this research explores fog computing and our context
awareness features, it is important to compare them to the
functionality and performance of cloud computing. The main
objectives of this experimental design are as follows:

• Measure and compare the latency between cloud com-
puting and fog computing.

• Examine the Infrastructure Awareness of fog computing.
• Examine the Geographic Awareness capability of fog

computing.
In order to achieve these objectives, the experimental design

for the proposed solution consisted of a fog lab setup and
a cloud lab setup. The solution implementation examined
the functionality of the experimental design and recorded the
results observed from the following tests:

• Latency Test
• Geographic Awareness Test
• AutoScaling Test

A. Experimental Design

1) Fog Lab Setup: In our experimental set-up we use
ThingsBoard as the IoT platform. We deployed Kubernetes for
data analysis and collection platform for the IIoT sensors. This
Kubernetes deployment makes use of 2 pods with ThingsBoard
Docker containers deployed in 2 nodes that are managed by a
master. The 2 nodes are Virtual Machines (VMs) with 1 vCPU
and 2GB RAM each. These pods are exposed externally as a
service using “NodePort” exposure. A Raspberry Pi 3 model
B+ board is used as the IIoT client which runs a Python Script
to communicate with the ThingsBoard servers. The network
connectivity was established via 2.4GHz wireless LAN using
Wi-Fi.

2) Cloud Lab Setup: Google Cloud was chosen for the
cloud setup as it has a native Kubernetes engine very similar
to the local Kubernetes engine. The setup is very similar to the
fog virtual lab setup except the service exposure to the outside
world is implemented using “LoadBalancer”. This involves the
use of a LoadBalancer for managing the traffic load between
the 2 nodes. We have chosen australia-southeast1-a as the
Google Cloud zone which is located in Sydney, Australia in
order to get the optimum latency between our IIoT client and
our cloud setup. The internet bandwidth used for connecting
the IIoT client and the cloud setup was as follows:

• Download ≈ 50 Mbps
• Upload ≈ 14 Mbps

B. Implementation

1) Latency Test: In this test we compare the number of
hops and the total latency for both deployments. As the fog
computing layer is closer to the IoT layer, we expect a latency
reduction with lower number of hops to the destination. The
following network latency and measurements are performed:

• Traceroute: is used to compare the hop count between
the fog and cloud deployments.

• Netperf: is used to send traffic with various packet sizes
to the fog and cloud deployments and measure the Route
Trip Time (RTT) to measure the latency.

2) Geographic Awareness: In this test we explore the
implementation of the geographic awareness characteristic of
CAAPI. This test is implemented using the fog virtual lab



by hard-coding the GPS coordinates on the IIoT device and
the Kubernetes clusters. A fog gateway was used to direct the
IIoT client to the closest Kubernetes cluster. We chose VYOS
for the fog gateway which is an open-source network gateway
based on Debian Linux distribution. VYOS has an open API
that allows the addition of routes and firewall rules [26]. We
deployed CAAPI in the Cloud layer using Python running a
Flask Server as a REST API server.

3) Infrastructure Awareness: This test examines the au-
toscaling behavior of CAAPI implemented by Kuberentes.
HPA was deployed on a Kubernetes fog cluster to measure
Thingsboard Application pods resource metrics.The key metric
value that we chose to maintain by HPA is the following:

• CPU Utilisation Percentage ≈ 50%

VI. EXPERIMENTAL RESULTS

A. Latency Test

1) Traceroute Test: The traceroute test for the cloud de-
ployment showed that there were multiple ISP hops between
the IIoT client and the cloud server. In contrast, the traceroute
test for the Fog servers reached the Fog cluster through the
fog gateway hop only. Table 3 shows the count of hops per
lab setup.

TABLE III
TRACEROUTE TEST RESULTS

Number of hops per lab setup
Fog Lab Setup Cloud Lab Setup

1 7

2) Netperf Test: The Netperf test was performed by sending
continuous data streams to the fog and cloud lab clusters with
various data packet sizes. As shown in Figure 2, the mean
latency for the cloud deployment is nearly 4-5 times higher
than the fog deployment mean latency. This is also reflected by
the measured transaction rates for both environments shown in
Figure 3. The transaction rate between the IIoT client and the
Fog Computing deployment is around 3-4 times higher than
the transaction rate for the Cloud deployment.

Fig. 2. Mean Latency Comparison between the local lab (Fog) and the cloud
lab

B. Geographic Awareness

This test was performed in various methods to explore the
various use cases of IIoT devices. When the IIoT device had

Fig. 3. Transaction Rates Comparison between the local lab (Fog) and the
cloud lab

static GPS coordinates, CAAPI sent the closest fog server’s
IP address and port number to the IIoT client. Once the IIoT
device GPS coordinates started varying, CAAPI was also able
to redirect the IIoT client to the closest fog server based on the
new GPS coordinates. However, the connectivity redirection
delay depended on the hard-coded period for sending the IIoT
client’s GPS coordinates to the CAAPI server which was 5
seconds. This means that the CAAPI server had a 5 seconds
delay until it becomes aware of the new GPS coordinates.
This can be changed depending on the nature of the IIoT
environment.

C. AutoScaling

The HPA engine was monitoring the utilization of CPU by
the ThingsBoard application. A load generator was used for
increasing the load to trigger the autoscaler to scale the number
of pods. Kubernetes HPA was configured to have a minimum
of 1 application pod and scale up to 10 applications pods.
Figure 4 shows the observed Fog server autoscaling behaviour
by the Kubernetes engine through monitoring the number of
application pods replicas against the CPU usage percentage
over time.

Fig. 4. Fog Computing Autoscaling behaviour by Kubernetes Engine over
time

VII. ANALYSIS

As expected from the latency test and similarly with the
results from [19], the measured latency between the IIoT



client and the Fog lab setup was around 4-5 times lower
than the cloud lab setup due to the shorter distance. The
major support factors that can allow fog computing to contin-
uously succeed is the context-awareness manifested through
the implementation of the different awareness perspectives
explored in this paper. As observed during the Geographic and
Infrastructure awareness tests, CAAPI was able to connect the
IIoT client to the closest fog server and Kubernetes autoscaled
the computing resources as required. Also, by continuously
measuring the latency, CAAPI would be able to choose the
most appropriate fog server for an IIoT device based on
its own performance reputation. This is done by measuring
average latency for a particular fog server across the various
communications it has with all IIoT devices. This means that
Performance Awareness can be combined with Geographic
Awareness to improve the context-awareness decisions made
by CAAPI. In addition, Infrastructure awareness can also be
combined with Performance awareness to achieve a better
QoS for all client devices. This leads to a Multi-dimensional
context-awareness by combining these awareness perspectives
to further improve the overall efficiency and performance of
fog computing over cloud computing.

VIII. CONCLUSION

The convergence of technology and the internet is growing
everyday leading to a continuous increase of data generation.
IIoT environments rely on the convergence of IT and OT
environment in order to send their sensors data and manage
IIoT devices centrally. This requires low latency networks
in order to accommodate for latency-sensitive environments.
Fog computing enables this convergence with close physical
proximity to the edge enhanced with context awareness to
reduce the latency to an optimal rate. Further work needs
to be done on designing a complete REST API based on
the OpenAPI standard for CAAPI. More importantly, security
needs to be an essential component in this design in order
to authenticate, authorize and audit all the devices and their
activities with CAAPI.

REFERENCES

[1] Sisinni, E., Saifullah, A., Han, S., Jennehag, U. & Gidlund, M. 2018, ’In-
dustrial Internet of Things: Challenges, Opportunities, and Directions’,
IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724-
34.

[2] Libow, E., Indurkhya, G., Kreger, H., Hahn, T., Niblett, P., Mike
Edwards, Wallace, T.S.S., Luthra, T., Menon, R., Schalk, K., Koupman,
E., Daly, G., Flaherty, R., Noller, D. & Kiradjiev, P. 2016, The IBM
Advantage for Implementing the CSCC Cloud Customer Reference
Architecture for Internet of Things (IoT), IBM.

[3] Nazir, S., Patel, S. & Patel, D. 2017, ’Assessing and augmenting SCADA
cyber security: A survey of techniques’, Computers & Security, vol. 70,
pp. 436-54.

[4] Hentea, M. 2008, ’Improving security for SCADA control systems’,
Interdisciplinary Journal of Information, Knowledge, and Management,
vol. 3, no. 1, pp. 73-86.

[5] Duan, Q., Yan, Y. & Vasilakos, A.V. 2012, ’A Survey on Service-
Oriented Network Virtualization Toward Convergence of Networking
and Cloud Computing’, IEEE Transactions on Network and Service
Management, vol. 9, no. 4, pp. 373-92.

[6] Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G. & Sun, L. 2015,
’Fog computing: Focusing on mobile users at the edge’, arXiv preprint
arXiv:1502.01815.

[7] Aazam, M. & Huh, E. 2016, ’Fog Computing: The Cloud-IoTIoE
Middleware Paradigm’, IEEE Potentials, vol. 35, no. 3, pp. 40-4.

[8] Sarkar, S., Chatterjee, S. & Misra, S. 2018, ’Assessment of the Suit-
ability of Fog Computing in the Context of Internet of Things’, IEEE
Transactions on Cloud Computing, vol. 6, no. 1, pp. 46-59.

[9] Bonomi, F., Milito, R., Zhu, J. & Addepalli, S. 2012, ’Fog computing
and its role in the internet of things’, paper presented to the Proceedings
of the first edition of the MCC workshop on Mobile cloud computing,
Helsinki, Finland, ¡https://doi.org/10.1145/2342509.2342513¿.

[10] Gia, T.N., Jiang, M., Rahmani, A., Westerlund, T., Liljeberg, P. &
Tenhunen, H. 2015, ’Fog Computing in Healthcare Internet of Things:
A Case Study on ECG Feature Extraction’, 2015 IEEE International
Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure
Computing; Pervasive Intelligence and Computing, pp. 356-63.

[11] Iorga, M., Feldman, L., Barton, R., Martin, M.J., Goren, N.S. &
Mahmoudi, C. 2018, Special Publication (NIST SP) - 500-325 Fog
Computing Conceptual Model National Institute of Standards and Tech-
nology (NIST).

[12] Hu, Y.C., Patel, M., Sabella, D., Sprecher, N. & Young, V. 2015, ’Mobile
edge computing—A key technology towards 5G’, ETSI white paper, vol.
11, no. 11, pp. 1-16.

[13] Zhu, C., Leung, V.C.M., Shu, L. & Ngai, E.C. 2015, ’Green Internet of
Things for Smart World’, IEEE Access, vol. 3, pp. 2151-62.

[14] Perera, C., Zaslavsky, A., Christen, P. & Georgakopoulos, D. 2013,
’Context aware computing for the internet of things: A survey’, IEEE
communications surveys & tutorials, vol. 16, no. 1, pp. 414-54.

[15] Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M. & Steggles,
P. 1999, ’Towards a better understanding of context and context-
awareness’, International symposium on handheld and ubiquitous com-
puting, Springer, pp. 304-7.

[16] Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K. & Buyya,
R. 2016, ’Fog computing: Principles, architectures, and applications’,
Internet of things, Elsevier, pp. 61-75.

[17] Wang, L. & Ranjan, R. 2015, ’Processing Distributed Internet of Things
Data in Clouds’, IEEE Cloud Computing, vol. 2, no. 1, pp. 76-80.

[18] Sajid, A., Abbas, H. & Saleem, K. 2016, ’Cloud-Assisted IoT-Based
SCADA Systems Security: A Review of the State of the Art and Future
Challenges’, IEEE Access, vol. 4, pp. 1375-84.

[19] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile
applications with fog computing,” in Proc. 12th Annu. IEEE Int. Conf.
Sens. Commun. Netw. Workshops (SECON Workshops), Seattle, WA,
USA, 2015, pp. 1–6.

[20] M. Aazam and E. Huh, ”Fog Computing Micro Datacenter Based
Dynamic Resource Estimation and Pricing Model for IoT,” 2015 IEEE
29th International Conference on Advanced Information Networking
and Applications, Gwangju, Korea (South), 2015, pp. 687-694, doi:
10.1109/AINA.2015.254.

[21] Santos, J., Wauters, T., Volckaert, B. & Turck, F.D. 2019b, ’Towards
Network-Aware Resource Provisioning in Kubernetes for Fog Comput-
ing Applications’, 2019 IEEE Conference on Network Softwarization
(NetSoft), pp. 351-9.

[22] Concepts, Kubernetes viewed 25/05/2020,
https://kubernetes.io/docs/concepts

[23] Horizontal Pod Autoscaler, Kubernetes viewed 25/05/2020,
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/

[24] Winarno, E., Hadikurniawati, W. & Rosso, R.N. 2017, ’Location based
service for presence system using haversine method’, 2017 Interna-
tional Conference on Innovative and Creative Information Technology
(ICITech), pp. 1-4.

[25] Monawar, T., Mahmud, S.B. & Hira, A. 2017, ’Anti-theft vehicle
tracking and regaining system with automatic police notifying using
Haversine formula’, 2017 4th International Conference on Advances in
Electrical Engineering (ICAEE), pp. 775-9.

[26] User Guide 2019, vyos.io, viewed 26/05/2020,
https://wiki.vyos.net/wiki/User Guide


	20xx IEEE
	05f69baf-5210-49b2-b621-2c95a70f8de4

