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Abstract The manufacturing sector is experiencing a

transformation to Industry 4.0. The authors are re-

searching 3D printable sensors to measure operating

conditions like wear, strain and temperature, as part

of a project to develop a large-scale multi-material ex-

trusion 3D printer to print a Gravity Separation Spi-

ral (GSS) - a piece of mining equipment that sepa-

rates minerals from slurry. This paper proposes a sensor

placement methodology for placing embedded sensors

in large 3D printed objects. Voxels, the 3D equivalent

of 2D pixels, are used to discretise the object and an op-

timisation routine optimally positions the 3D printable

sensors into a 3D printed object. The optimisation ob-

jectives that are used during sensor placement include

the information gain from the sensor, the ability to print

the sensor using a robot, and the ability to discourage
sensors being placed in important structural locations

by penalising these voxels. Finite element analysis is

employed to measure the information gain, while the

robot arm’s manipulability measures the capability to

print at each voxel location. The objectives are inte-

grated using 3D kernels, which are represented by vox-

els shaped in the size of the sensor and different weights

related to the intricate traces that need to be printed.

Using a weighted objective function the best locations

are chosen. A simulation environment has been devel-
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oped to simulate the printing and Matlab is used to do

the voxel-based calculations to identify the ideal loca-

tion for sensor placement.

Keywords Advanced manufacturing · Additive

manufacturing · 3D printing · Sensor placement

1 Introduction

The fourth industrial revolution, Industry 4.0 is pro-

viding businesses with the opportunity to create new

products and services to expand supply chains [1]. With

the introduction of the Internet of Things (IoT) and

cyber-physical systems (CPSs) in the industrial do-

main, industrial automation is undergoing a tremen-

dous change.
Additive manufacturing (AM), widely known as

3D printing, is a method of creating a physical ob-

ject from a 3D model by depositing material layer-

by-layer [2,3]. In recent years, AM has evolved from

a rapid prototyping tool to an end-product manufac-

turing method [4]. To overcome inherent drawbacks in

traditional mould-based manufacturing, a research and

development project is underway to develop a multi-

material extrusion [2] 3D printer with two industrial

robot arms to manufacture Gravity Separation Spirals

(GSS). These GSS are used in the mining industry to

separate minerals from a slurry. When a slurry is poured

into the spiral from the top, gravity and the shape of

the spiral separate minerals according to their specific

weight. The profile of the spiral is designed to target the

intended mineral type. GSS are traditionally manufac-

tured using mould-based techniques using material like

fibreglass and polyurethane. Customising the shape of

the spiral is uneconomical and time-consuming because

of the need to create new moulds and the manual labour
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(a) (b) (c) (d) (e)

Fig. 1: a) GSS manufacturing factory. b) Small scale (1:3) printer. c) Printed spiral using small scale printer.

d) Full-scale printer. e) 3D printed strain gauge using polylactic acid (PLA) base and carbon-based PLA for

conductive traces with extrusion printing.

required. Since current manufacturing methods require

manual labour, there is a potential health risk of expos-

ing workers to hazardous materials. Fig. 1a shows a GSS

manufacturing factory. A large-scale multi-material ex-

trusion printer is under development, which can be used

to print different polymer material like Polyamide (PA),

Thermoplastic polyurethane (TPU) and Polyethylene

terephthalate glycol-modified (PETG). There is a sep-

arate research project underway to identify the best ma-

terial based on abrasion, creep and accelerated weather-

ing tests. A team in UTS Rapido in collaboration with

Downer’s Mineral Technologies, supported by the Aus-

tralian Innovative Manufacturing CRC, have developed

a 1:3 scale 3D printer as shown in Fig. 1b. A printed

spiral using this printer is shown in Fig. 1c, and current

development towards the full-scale printer is shown in

Fig. 1d [5]. The full-scale printer has a 3 mm nozzle

diameter, print width of 5 mm and print accuracy of

± 0.3 mm. Since the printing process is executed radi-

ally in vertical layers without any support structures, a

novel radial slicing algorithm and a tool path planning

algorithm have been developed for this specific applica-

tion [6,7].

These GSS operate in various remote parts of coun-

tries. To make the GSS equipment more capable and

“smart”, different sensors are under development that

can be printed using extrusion-based printing inline or

mounted externally onto the spiral to measure various

parameters like temperature [8], wear [9] and strain [10,

11]. Fig. 1e shows a 3D printed strain gauge printed us-

ing an extrusion-based method and using carbon-based

conductive PLA and PLA base. Monitoring the operat-

ing conditions remotely allows for remote fault diagno-

sis, which reduces the need to send technicians to these

remote locations, and enables operational efficiency im-

provements through a real-time and detailed history of

usage. Placing conventional sensors (e.g. strain) inside

printed GSS requires either pausing the print and plac-

ing them, making poor layer adhesion, or making a cav-

ity to place them after the print, which changes the sur-

face quality of the GSS, thus reducing the performance

of mineral separation. Depending on the location, mak-

ing such a cavity might cause structural integrity is-

sues in the printed structure. For all 3D printed ob-

jects, printing sensors might not be ideal depending on

the print method, material and the nature of the ob-

ject. This paper focuses on providing a methodology for

sensor placement in 3D printed objects where printing

sensors have been chosen based on the print method,

material, sensor performance and the printer kinemat-

ics.

Structural health monitoring (SHM) can be defined

as the process of implementing methods to detect dam-

ages of various structures in civil, aerospace and me-

chanical engineering [12,13]. SHM plays a significant
role in detecting damages in large and complex struc-

tures to ensure serviceability and sustainability [12].

SHM systems help evaluate the conditions of the struc-

ture in order to avoid failures and to help to plan main-

tenance actions without operation disruptions [14]. GSS

operate constantly in mining sites and identifying prob-

lems early will help to maintain continuous operation.

Optimal sensor placement (OSP) directly impacts the

quality of the collected data and is, therefore, a criti-

cal aspect in SHM [12]. Without OSP, there is a risk

of false-positive detections that could result in unnec-

essary closure for maintenance, and affect operational

costs [14]. OSP helps to reduce the cost of the SHM

systems without compromising the quality of the moni-

toring approach [14]. Additionally, OSP provides a min-

imum number of sensor locations that will provide ad-

equate information to identify the required data [15].

In this research, finite element analysis (FEA) has

been used to obtain a distribution of the parameter of



Voxel-Based Sensor Placement for Additive Manufacturing Applications 3

interest in the structure. Robert et al. [16] developed

a method for an optimal layout design of sensor arrays

for SHM under uncertainty which includes FEA. Robert

et al. incorporated FEA, structural damage detection

algorithms and reliability-based optimisation concepts.

FEA-based OSP has been used to place sensors in build-

ings. Ting et al. [17] used FEA-based sensor placement

for the Dalian World Trade Building, and since the

number of degrees-of-freedom (DOF) is high, they used

a simplified multi-DOF system. Kammer [18] addressed

the sensor placement problem in large space structures

(LSS) from the standpoint of structural dynamics and

used collected data from the sensors to validate the LSS

finite element model (FEM). The updated FEM more

accurately describes the real structure.

The concept of the information gained from a sen-

sor in a certain location is a promising way to approach

sensor placement. Costas et al. [19] used information

entropy (IE) as a performance measure of the sensor

configuration. In their method, optimal sensor configu-

ration is designed as an optimisation problem, including

discrete-valued variables, which is then solved using se-

quential sensor placement algorithms. By selecting the

sensor setting which minimises the IE, it becomes pos-

sible to select an optimal sensor configuration [20]. Meo

et al. [21] used a method to maximise the information

by employing OSP methods based on covariance matrix

coefficients and energetic approaches.

There are various types of algorithms developed for

sensor placement. General sensor selection problems ad-

dressing reliability, observability, detectability and di-

agnosability are NP-complete and therefore, computa-

tionally expensive. Thus, other researchers have used

constraint-based objective function optimisation meth-

ods to reduce the computation complexity [15]. Addi-

tionally, different methods have been developed to re-

duce the complexity of complicated optimisation meth-

ods [22]. However, conventional gradient-based optimi-

sation methods are unable to handle multiple local opti-

mums efficiently and have difficulty in estimating global

minimum, and in recent years, OSP biological optimi-

sation techniques have been applied [15]. Other simi-

lar methods used for OSP are particle swarm optimi-

sation and ant colony optimisation [23,24]. Sequential

sensor placement method is another algorithm which

is a systematic and computationally efficient approach

for obtaining better sensor configurations [14]. How-

ever, it cannot be guaranteed to be the most optimum

method [25]. In this method, a fixed number of sensors

are placed in a given number of positions and computed

sequentially by placing one sensor at a time that results

in the highest reduction in the objective function [15].

The proposed sensor placement method in this paper is

an outranking multi-criterion decision-making method

similar to Preference Ranking Organisation Method for

Enrichment Evaluations (PROMETHEE) and Elimi-

nation and Choice Expressing Reality (ELECTRE).

PROMETHEE provides a ranking of a finite number

of alternatives from best to worst [26] and ELECTRE

lists potential alternatives and evaluates these using cri-

teria defined by the user [27]. Unlike classic optimisa-

tion methods, where a problem is formulated to a cost

function for an optimum, this method compares multi-

ple solutions criterion by criterion [27]. In the problem

addressed in this paper, there is a finite number of sen-

sor locations that need to be evaluated according to

the criteria defined in the objective function similar to

these methods.

In the area of sensor placement in 3D printed ob-

jects, Hwang at al. [28] used tactile objects covered with

black ink to experimentally identify areas where sensors

should be placed in 3D printed prosthetic hands. In this

method, after touching objects covered with ink, areas

on the gloved hand that had ink stains were identified

using image processing and recommended as ideal areas

for sensor placement on the prosthetic hands.

In this paper, a weighted approach was proposed to

combine multiple criteria for OSP. Values of the weights

and the computation of those weights play a fundamen-

tal role and they depend on the importance of each cri-

terion, which in turn depends on the application. This

paper does not suggest a specific approach to calculate

these weights. However, there are few methods to do

this. One method is similar to the method used in the

Analytic Hierarchy Process (AHP) which uses a pair-

wise comparison matrix to compare different criteria

and calculate weights [29]. In the ELECTRE method,

where alternatives are evaluated using criteria, the user

provides a weight to each one increasing with its im-

portance [27]. In the PROMETHEE method, determi-

nation of weights is an important step and assumes that

the decision-maker able to weigh the criteria properly

[26]. The method proposed in this paper to aggregate

different criteria is quite similar to PROMETHEE and,

different to AHP and ELECTRE method as it considers

pair-wise comparisons to compare different criterion.

However, it is possible to use a systematic weight cal-

culation method like in AHP to calculate the weights.

A sensor placement method that is suitable for a

particular application is not necessarily suitable for

other applications [15]. Decisions about where a 3D

printed embedded sensor should be located within a

larger 3D printed object is novel and different from con-

ventional sensor placement problems. There are addi-

tional factors that need to be considered in this applica-

tion. One factor is the ability of the robot arm to print
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(a) (b) (c) (d)

Fig. 2: a) Set of voxels with one voxel shaded. b) 3D voxels in a size of 3 x 6 x 5. c) Base voxels. d) Sensor voxels.

a sensor in a given place. The ability to print in a given

3D location can be determined by a robots manipula-

bility measure and this idea of “printability” has been

investigated for the project’s 3D printer in prior work

[6]. The printability measure has been used to quantify

the ability to print the 3D printed sensors in a partic-

ular place. Another factor is the design of the sensor.

Since traces (refer to dark lines in Fig. 1e) in sensors

needs to printed inline, the way they are arranged is im-

portant. Different sensor designs printing at the same

location require different dexterity levels for the robot

arm since the print head follows different paths. There-

fore, the sensor design should be considered as a fac-

tor in the sensor placement problem. A further factor

is the need to forbid or discourage sensor placement in

certain areas based on various reasons such as the struc-

tural impact from the sensor to the overall structure.

Since printing a sensor with a different type of mate-

rial in a load-bearing structure can reduce its structural

integrity, this aspect needs to be considered as well.

This paper presents a theoretical methodology

about a novel 3D printed sensor placement algorithm

for 3D printed objects using voxels where printing sen-

sors is ideal and chosen for the application. Voxels can

be described as the 3D equivalent of 2D pixels [30]. 2D

kernels have been used in image processing [31] and,

this paper proposes a way for voxels to be considered

as an extension of 2D kernels to 3D space for sensor

placement. The specific contributions is a sensor place-

ment algorithm which considers:

– Shape, volume and the design of the sensor.

– Information gain from the sensor.

– Ability of printing sensors in a given location.

– Discourage sensor placement in certain areas.

The remainder of the paper is organised as follows.

Firstly, Section 2 provides a mathematical background

and theory related to the work. Section 3 provides re-

sults of the experiment, Section 4 provides a discussion

about results and finally, Section 5 concludes the paper.

2 Methodology

2.1 Voxels

Voxels (volume pixels) are a 3D equivalent of 2D pixels

[30]. They represent a value in a regular grid in 3D-

space. Voxels have been used in various applications

like computer graphics, medicine and robot perception

[32,33,34]. The advantage of using voxels is that it re-

duces computationally expensive steps such as meshing,

mapping, volume integration and matrix-based solution

methods [35]. Fig. 2a shows set of voxels with one voxel

shaded.

2.2 Extension of 2D Kernels in to 3D Space

Kernel, in image processing, is a 2D matrix or a mask

used for different operations like blurring, sharpening

and edge detection [36]. Such a matrix is shown in

Fig. 3a, with the weight of a cell, Wi,j ∈ R, row num-

ber, j and column number i. The idea proposed in this

paper is to extend this 2D kernel into 3D space where

weight in a voxel, Wi,j,k and z-index is k. When the 2D

kernel in Fig. 3a is extended into 3D space by layer-

ing it three times, a 3D kernel with voxels is created as

shown in Fig. 2b.

2.3 Incorporating Aspects of Sensor Placement for 3D

Printing Using Voxels

The basic idea in this proposed method is to voxelise

(convert the 3D object to voxels) the sensor and the

object the sensor is to be placed in. This is followed

by finding a set of voxels in the shape and size of the

sensor and placing them in the object voxel set while

considering various constraints. Constraints are repre-

sented as a single objective function including all the
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necessary factors to evaluate a given location for sensor

placement suitability.

A sensor can be designed to have any arbitrary 3D

shape. As an example, consider a strain sensor which

has an overall shape of a cuboid with printed con-

ductive traces oriented in a “U” shape. Within this

cuboid, two types of voxels have been defined. Voxels

that surround the conductive traces are called base vox-

els (Fig. 2c), and voxels that overlap with conductive

traces are called sensor voxels (Fig. 2d). Two figures

(Fig. 2c and d) have been used to show these voxels

separately but they reside in the same cuboid. The rea-

son for defining two types of voxels is to assign separate

values of weights for each; the weight of a base voxel,

WB and the weight of a sensor voxel, WS . The size of

the voxels can be selected depending on the minimum

conductive trace width and required granularity. In 3D

space, consider a particular distribution of a property,

Xi,j,k ∈ R. This property can be one that the sensor is

designed to measure, such as strain in this case. The ob-

jective of this research is to incorporate aspects of the

design of the sensor, such as information gain, print-

ability and the ability to discourage sensor placement in

certain areas, into the sensor placement problem. The

following sections explain how these different aspects

are incorporated using voxels. For clarity, a single-layer

voxel set is used as an example. Fig. 3b shows the se-

lected kernel with weight values, where WB = 1 and

WS = 2. The sensor voxels are highlighted in grey

colour. Fig. 3c and d shows an example strain distri-

bution (Xi,j) in two different possible sensor locations.

2.3.1 Design of the Sensor

The 3D printed sensor has a shape, volume and an ar-

rangement of conductive traces associated with it. Since

conductive traces measure the parameter (e.g. temper-

ature, strain) encompassed by its volume, its size and

shape should be considered. Additionally, the volume of

the sensor should be considered since the sensor should

be able to be placed at a given location within the phys-

ical dimensions of the object. To consider this factor,

the overall volume and shape of the voxel set is chosen

to match the shape and volume of the sensor.

2.3.2 Information Gain

The parameter of interest that is to be measured can

be distributed in the object in different ways. There

can be places in the object at which the parameter

values are high enough to be measured. Placing sen-

sors without considering information gain will provide

less effective measurements. To estimate the amount

of information that can be extracted from the placed

sensor, the Finite Element Method (FEM) has been

utilised in this research to determine the distribution of

the parameter that needs be measured within the body

of interest. As conductive traces measure the parame-

ter in the object, a high-value parameter distribution

closer to the traces will provide a more accurate mea-

surement. The proposed weighting method accommo-

dates for this. Consider the 2D kernel (Wi,j) in Fig. 3b

and the two different, 2D distributions of a parame-

ter of interest in Fig. 3c and d. The kernel values in

Fig. 3b are denotated as Ai,j , and the kernel values

in Fig. 3d as Bi,j . In both locations, there are an equal

numbers of 1s and 3s, hence, ΣAi,j and ΣBi,j are equal.

However, Σ(Bi,j ·Wi,j) has a large value compared to

Σ(Ai,j ·Wi,j). Therefore, the proposed weighting kernel

method favours location B, even though both locations

have the same number of values.

2.3.3 Printability

When printing the required sensors inline, it is neces-

sary to print internal patterns with conductive traces

that vary depending on the sensor type. Hence, al-

though the selected place may be suitable in terms of

the information gain factor, it might be difficult to print

the sensor in that specific location. In the bespoke GSS

printer, robot manipulators are used to move the hot-

end nozzles. To quantify the ability to print at a given

location, a manipulability measure has been used previ-

ously [6]. The ability to move a robot manipulator easily

(dexterity) in any arbitrary direction in 3D space is re-

ferred to as its manipulability [37]. The manipulability

is a scalar measure where a higher value is better and in-

dicates a higher level of dexterity. This measure is based

on the Jacobian matrix of the manipulator. The Jaco-

bian maps joint angular velocity, q̇, to the end-effector

Cartesian velocity, v, as shown in (1), where q is the

joint angles [37]. This measure is initially proposed by

Yoshikawa [38] and is shown in (2). The manipulabil-

ity value is considered as another distribution in the 3D

space and used with the kernel to evaluate a given voxel

location. If the manipulability distribution in a voxel

set is Mi,j , the ability to print at that location (i.e. the

printability) can be calculated using Σ(Mi,j ·Wi,j) as

before.

q̇ = J(q)−1v (1)

m =
√

det (JJT ) (2)
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Fig. 3: a) General 2D kernel. b) Selected kernel. c) Location - A. d) Location - B.

2.3.4 Penalties to Discourage Sensor Placement

3D printed sensors might contain different materials

to the base material of the structure like carbon-based

conductive traces used in developed strain [10,11], wear

[9], temperature [8] sensors. Therefore, the sensor might

have different mechanical properties than those of the

structure depending on the type of the material and

printing processes used. Previously conducted exper-

iments in strain sensor printing using the extrusion-

based method with PLA base material and carbon-

based PLA for conductive material showed different me-

chanical properties than pure PLA material [11]. There-

fore depending on the material and printing process,

placing a sensor in certain locations might adversely af-

fect the structural characteristics of the larger printed

object. This would be problematic in a large, load-

bearing structure like a GSS and is thus a requirement

to be considered in the sensor placement process. Addi-

tionally, there may be places that the sensors should not

be placed based on other factors, such as attachment

points or for aesthetic reasons. Therefore, if required

and depending on the application, areas where sensors

cannot be placed should be considered during the sensor

placement. To represent these areas, another distribu-

tion, Ri,j ∈ {0, 1} is added to the 3D kernel, where a 0

value allows the placement of a sensor in the grid loca-

tion and a 1 value forbids placement. The percentage of

penalised voxels in a selected location is calculated as

per Eq. (3). The number of voxels in a given location

where sensors should not be placed is nr, the number

of base voxels is nb, and the number of sensor voxels is

ns.

nr/(nb + ns) (3)

2.4 Steps of Sensor Placement

The following are the steps in sensor placement incor-

porating the factors mentioned above and a flow chart

of these steps and output of each steps are shown in

Fig. 4.

2.4.1 Voxelise the 3D Printable Object

The volume of the printed object is converted into a set

of voxels, Vobj . The size of the voxel is user-defined and

depends on the actual size of the object and the size of

the sensor (length 69 mm, width 56 mm, height 7 mm).

2.4.2 Calculate Printability and Information Value

Distributions

Using printing simulation, a point cloud of manipu-

lability values, mx,y,z is generated where x, y, z are

the cartesian coordinates. This point cloud contains a

Cartesian location and a value of manipulability. The

point cloud values are then averaged to each volume in

a voxel. For each voxel in the set, there is a lower and

upper bound for x, y, z values which are represented by

x−, x+, y−, y+, z−, z+ where x− < x+, y− < y+, z− <

z+. Then, for each voxel the manipulability values are

averaged as shown in Eq. (4), subject to lower and up-

per bounds, where nmv is the number of manipulability

points within the voxel. The normalised manipulability

set, Xm is a collection of these averaged manipulability

values divided by the maximum voxel manipulability

value, mmax as shown in Eq. (5), and Eq. (6) where

the number of voxels are n. Similarly, a point cloud of

parameters like strain or temperature can be generated

using the results of a FEA so a distribution of informa-

tion, XI can be calculated.

mv1 =

∑
mx,y,z

nmv
(4)

mmax = max(mv1,mv2, . . . ,mvn) (5)

Xm = {mv1/mmax, . . . ,mvn/mmax} (6)

2.4.3 Select Sensor Location and Sensor Voxel Sets

From Vobj , select the subset of sensor location voxels,

Vloc (Vloc ⊆ Vobj) where each voxel set encapsulates the

entire sensor shape and thus necessarily has dimensions

which are at least as large as the sensor’s dimensions.

These voxel sets are spread through the whole object

in different orientations. This paper does not propose a
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Calculation of 

percentage of 

penalised voxels 

Selecting optimal 
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Fig. 4: Flow chart of the process.

method of initial sensor location or arrangement selec-

tion. These locations and orientations are guided by the

user who is informed by the requirements of the prac-

tical application. The user is responsible of selecting

suitable initial locations considering things like overlap-

ping sensors. This method simplifies the computations,

which is important when optimising for such large-scale

objects. These are all candidate sensor locations, where

the best ones are selected later. From each voxel loca-

tion set, Vl (Vl ∈ Vloc), a sensor voxel set, Vs (Vl ⊆ Vloc)

is selected in the shape of the conductive traces, and the

remaining base voxel set is Vb (Vb = Vl − Vs).

2.4.4 Calculating the Percentage of Penalised Voxels

From Vobj , a set of voxels is selected which is in the

areas where sensor placement is forbidden or penalised

Vr. For each Vl, the percentage of penalised voxels are

calculated as in Eq. (7).

2.4.5 Calculating and Optimising the Objective

Function Value for Each Location

The final step is to incorporate all these factors and

evaluate each possible location to select the best loca-

tions. To do this, an objective function to evaluate each

location has been proposed. When converting a sensor

shape to voxels, different locations might have a slightly

different number of voxels, since it is an approximation

of the original shape. Thus, for a given location, the

information and manipulability values have been calcu-

lated for the base and sensor voxel sets on a per voxel

basis, as shown in Eq. (8) to Eq. (11). Equation 12

shows the objective function where WR is the weight

for the penalised voxels. All the weights for different

factors can be tuned by the user depending on the im-

portance of the factors.

Rl =
|Vl ∩ Vr|
|Vl|

(7)

IB =

∑
XI ∩ Vb

|Vb|
(8)

IS =

∑
XI ∩ Vs

|Vs|
(9)

MB =

∑
Xm ∩ Vb

|Vb|
(10)

MS =

∑
Xm ∩ Vs

|Vs|
(11)

Cl = WB · IB + WB ·MB + WS · IS
+WS ·MS −WR ·Rl

(12)

After calculating the objective value for each loca-

tion voxel sets, the voxel sets are ranked from highest Cl

value to the lowest. Therefore, the location with high-

est Cl value is the most suitable location according to

the criteria and, depending on the requirement, mul-

tiple sensor locations can be selected as well from the

remaining ranked list.

3 Results

This section explains how the presented steps are im-

plemented along with the outputs. ANSYS software has

been used to perform the FEA, while Matlab software

does both the voxel computations and the robotic sim-

ulations with support from the Robotics Toolbox [39]

developed by Peter Corke.

3.1 Voxelisation of the 3D Printable Object

In this application, the 3D printable object is the GSS.

Using a CAD program (SolidWorks), a 3D model of
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(a) (b) (c) (d) (e)

Fig. 5: a) 3D model of the spiral. b) Voxelised 3D model of the spiral. c) A closer view of the voxels. d) Manipulability

point cloud with the colours representing the value of manipulability from orange to green and to blue indicating

the transition from high to low manipulability values. e) Example of penalised voxels where sensors placement is

discouraged are shown in red.

the GSS is exported to a stereolithography or Standard

Triangulation Language (STL) file. This 3D model is

shown in Fig. 5a. The dimensions of the spiral are 0.7 m

x 0.7 m x 1.4 m for width, length, and height, respec-

tively. The total spiral was voxelised with Matlab into

around 100 x 100 x 200 voxels. The voxelised full spiral

is shown in Fig. 5b and a closer view of the voxels are

shown in Fig. 5c.

3.2 Calculation of Printability

A simulation environment has been developed to simu-

late the robot performing 3D printing. This environ-

ment was developed in Matlab according to the ac-

Fig. 6: The simulation used to compute the manipula-

bility information during GSS printing [6].

tual dimensions of the printer. The kinematic model

of the industrial robots (ABB IRB 120) was defined

using Denavit–Hartenberg (DH) parameters and simu-

lated with Peter Corke’s Robotics Toolbox. Fig. 6 shows

the simulated printing of a single trajectory that has

been planned using a published radial slicing algorithm

[6]. The manipulability values can then be calculated

along the print trajectory using Eq. (2). These values

are stored with the corresponding cartesian location,

and then exported as a rich point cloud, as shown in

Fig. 5d. The point cloud is subsequently voxelised (i.e.

the printability values are averaged and normalised into

voxels), as explained in Section 2.4.2.

Fig. 7: ANSYS strain simulation result.
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Fig. 8: Normalised strain values: a) for Vl; b) for Vl in bottom-up view; c) for Vs in bottom-up view.

3.3 Calculation of Strain Information

FEA using the ANSYS software suite has been con-

ducted to determine the strain distribution in the spiral

structure as a result of the imposed loads on the GSS.

This can then be used in conjunction with an under-

standing of the capabilities of the previously developed

3D printable strain sensors [11,10].

Several modelling decisions were made in the exe-

cution of the FEA. A real GSS was approximated by a

swept profile for the purpose of this example. The re-

sulting 3D CAD model of a spiral, as shown in Fig. 5a,

was divided into hexahedral mathematical volumes in a

process referred to as “meshing”. To capture the strain

distribution sufficiently, two mesh elements through the

thickness of the spiral profile were imposed. The length

of the swept profile was divided into 500 mesh ele-

ments. The central column, which supports the helical

spiral shape in reality, was omitted for simplicity and

replaced by a zero-displacement boundary condition in

the model. The operational loads on a GSS were rep-

resented by a 10 kg downwards force distributed over

the spiral surface. Standard earth gravitational acceler-

ation was enabled in the simulation. Finally, the model

was assigned a linear-elastic material with a Young’s

Modulus of 201.8 MPa, a Poisson’s ratio of 0.49 and a

yield strength of 73.5 MPa.

The resulting elastic strain distribution of the AN-

SYS simulation is shown in Fig. 7. This result is also

exported as a point cloud, then voxelised (averaged and

normalised) such that it can be fused with the calcu-

lated printability value for each voxel location.

3.4 Select Sensor Location and Sensor Voxel Sets

As mentioned earlier, initial sensor locations have been

selected by the user based on the domain knowledge

and considering various aspects like overlapping sen-

sors to reduce the complexity of having a large number

of orientations and locations in a large structure. Using

Matlab, the Vloc set has been selected in a rectangular

shape (length - 9 voxels, width - 8 voxels), which is sim-

ilar to the base of the strain gauge. Then, for each Vl,

Vs in the shape “U” shape (length - 4 voxels, width - 5

voxels, thickness - 1 voxel) a strain gauge has been se-

lected. Fig. 8a shows all Vl that are selected and Fig. 8b

shows the bottom-up closer view. In Fig. 8a, some vox-

els sets are missing at the edge of the spiral, since strain

point clouds exported from ANSYS become sparse at

the end of the spiral. Thus, there are voxels without

any averaged strain values that cause blank spots in Vl.

In these experiments, the locations in Vl that contain

more than 80% empty voxels are removed. A plausi-

ble alternative solution could be to create a more finely

distributed point cloud. In Fig. 8c, sensor-encapsulating

areas sometimes have a slightly different number of vox-

els. This is due to errors that happen when approximat-

ing a shape with voxels. This error can be reduced by

increasing the granularity of the voxels.

3.5 Calculation of Percentage of Penalised Voxels

In this example, placing strain sensors at the outer di-

ameter of the spiral is not ideal since this area is not

subjected to a significant amount of strain from the

load thus a set of voxels closer to the inner diameter

are selected, as shown in Fig. 5e. As explained in the

Section 2.4.4, the percentages are then calculated for

each Vl.
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Fig. 9: Weighted normalised combined objective function values: a) for Vl; b) for Vs; c) histogram.

3.6 Objective Function Evaluation to Select Best

Locations

The weights in the objective functions have been tuned

according to the importance of different factors. For

the experiments the following values are selected WS =

3,WB = 1.5,WR = 1 for the weight of the sensor vox-

els, weight of the base voxels and weight of the pe-

nalised areas, respectively. Since printed traces measure

the strain they are subjected to, a higher weight value

for Vs has been assigned. As such, the weight values are

selected to bias towards more traces. After calculating

the value for the objective function for each Vl, each

location is ranked and the top ranking locations are se-

(mm)

(mm)

Z (mm)

Fig. 10: Six locations with highest objective value

(colours represent the weighted unit-less normalised

values).

lected depending on the number of sensors that need

to be placed. Fig. 9a and b show the calculated com-

bined value from the objective function for Vl and Vs.

There are 316 total sensor locations and Fig. 9c shows

the distribution histogram for the calculated combined

values of the objective function. The mean of the ob-

jective function value is 2.13, and the minimum and

maximum values are 0.41 and 5.65, respectively. From

Fig. 9a and b, it is clear that the locations near to the

centre is the most suitable because of its higher objec-

tive function value. Table 1 shows the six location with

the highest values where WIB = WB · IB , WMB =

WB ·MB , WIS = WS · IS , WMS = WS ·MS , WIR =

WR ·Rl. This observation aligns with the fact that the

highest values of manipulability and strain are also dis-

tributed in the same area, as shown in Fig. 5d and

Fig. 7. Additionally, Table 1 shows a value of zero for

WIR and this aligns with the observation that near the

central column, there are no voxels where sensor place-

ment is penalised (Fig. 5). A value of zero for WIR in-

dicates that the selected locations are sensible. Fig. 10

shows the six locations with the highest objective val-

ues meaning that they are the most suitable locations

for sensors, according to the criteria that were selected.

To compare different aspects in the objective function,

a spider plot has been created with all weight five as-

Table 1: Weighted values of the selected locations

Loc. WIB WMB WIS WMS WIR Cl

1 0.40 1.38 0.80 2.86 0 5.44
2 0.43 1.38 0.89 2.86 0 5.55
3 0.45 1.38 0.97 2.86 0 5.65
4 0.41 1.35 0.84 2.84 0 5.44
5 0.40 1.35 0.86 2.84 0 5.45
6 0.46 1.35 0.93 2.85 0 5.59
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pects, as shown in Fig. 11. Since all these locations are

not within the area where sensor placements are dis-

couraged, WIR is zero. From the Fig. 11, the change of

WIB is 0.06, WMB is 0.03, WIS is 0.17, WMS is 0.02,

Cl is 0.21 and therefore, each location is determined to

have similar values.

4 Discussion

Sensor placement is a critical aspect of structural health

monitoring. Optimisation of the sensor placement loca-

tions can improve the quality of the data and reduce the

instances of economically inefficient false positives [12,

14]. In this application, there are several factors specific

to 3D printed sensor placement in 3D printed objects

that need to be addressed. This paper proposed a way

to place 3D printed sensors into 3D printed objects by

considering the shape, volume and design of the sen-

sor, information gain from the sensors, ability to print

the sensors in the given locations, and areas where the

sensors should not be placed. To consider the shape

and the volume of the sensor, voxelisation of the sensor

and the object has been proposed and this methodol-

ogy has been demonstrated using a “U”-shaped strain

sensor. Since measuring strain is the goal of this sensor

placement, a FEM simulation has been performed to

determine the strain distribution in the GSS. To con-

sider the capabilities of the printer itself, a previously

proposed manipulability measure for 3D printing robots

[6] has been incorporated. A simulation environment

in Matlab with the actual dimensions of the printer

has been developed and used to simulate the printing

and generated a distribution of the manipulability as

a point cloud. To avoid placing sensors in certain loca-

tions, the offending voxels can be penalised. A weighted

WI
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S
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R
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1.35
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Fig. 11: Spider plot of selected top six positions

(weighted normalised values - no unit).

objective function has been used to combine all these

aspects according to the importance for a given applica-

tion. In the final step, a set of sensor locations with the

highest objective value has been selected. The objective

of this experiment is to identify ideal sensor locations

that consider all three criteria. The experimental re-

sults in Fig. 5d and Fig. 7 show that the strain and

manipulability distribution of the spiral has higher val-

ues near the central area of the spiral. Therefore, these

locations near the central area of the spiral should be

good locations to place sensors. From the experiment

results, as shown in Fig. 10 it is clear that the loca-

tions suggested by the proposed method align with this

observation. Additionally, Table 1 shows that the ob-

jective function values for these selected locations and,

by comparing these values with the histogram in Fig. 9,

it is clear that they reside in the highest values areas

compared to all other sensor locations. Therefore, these

selected locations are the best locations according to

the selected criteria defined by the weighted objective

function. The advantage of using this systematic ap-

proach, rather than placing sensors using observation,

is a broader applicability to more complex 3D printed

objects. The number of sensors in this research is se-

lected by the user but can be calculated based on the

amount of information extracted from the sensors in

relation to the total information available. Initial sen-

sor locations, weights in the objective functions were

selected by the user, based on the domain knowledge.

These problems are planned to be investigated in future

research. This proposed method can be generalised and

adapted to place any 3D printed sensor in any larger

3D printed object since voxelisation and the calculation

of manipulability is applicable for any robot arm-based

3D printing.

5 Conclusion

Optimal sensor placement is an important aspect of

structural health monitoring. Researchers have pro-

posed various methods to judge candidate sensor lo-

cations, like information gain, and different algorithms

to identify the optimal placement locations. This pa-

per addressed the optimal 3D printed sensor placement

in 3D printed objects. The proposed method is based

on objective functions that consider: the information

gain as calculated using FEA; the design of the sensor

using weighted voxels; the robots manipulability while

printing, or printability; and discouraging sensor place-

ment in certain locations by penalising these voxel sets.

The experimental results showed that the presented

method can be used to identify locations that incorpo-
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rate and optimise for all these factors when performing

3D printed sensor placement.
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