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Graphical Abstract 

 

The nanoworm-like nickel sulfides developed by a one-step solvothermal strategy exhibit great 

performance for overall electrochemical water splitting, and a low voltage of 1.563 V is required 

to attain a current density of 10 mA cm-2 in a two-electrode electrolyzer. 
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Abstract 30 

Developing cost-effective electrocatalysts for electrochemical water splitting (EWS) is appealing 31 

and challenging for sustainable water electrolysis. Currently, nickel sulfides are considered as 32 

promising candidates for EWS due to their low cost and high catalytic activity. However, the 33 

facile design of nickel sulfides with high catalytic performance is still highly demanded. In this 34 

study, we have developed a one-step solvothermal strategy to construct nickel sulfides as efficient 35 

water splitting catalysts. By taking advantage of the small size, abundant active sites, large 36 

electrochemical surface area, and good conductivity, the nanoworm-like nickel sulfides 37 

(NiS-NW/NF) exhibit better OER performance (a low overpotential of 279 mV to achieve 100 mA 38 

cm-2, Tafel slope of 38.44 mV dce-1) than the nanoplate-like analogues, as well as most of reported 39 

nickel sulfide-based electrocatalysts. Additionally, the NiS-NW/NF directly used as bifunctional 40 

electrodes for overall water splitting requires a low voltage of 1.563 V to attain a current density 41 

of 10 mA cm-2 with good long-term durability. This work provides a facile strategy for the design 42 

of efficient nickel sulfide-based electrocatalysts for energy conversion applications. 43 

 44 

Keywords: Nickel sulfides; Morphology; Solvothermal synthesis; Oxygen evolution reaction; 45 

Overall water splitting 46 
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1. Introduction 48 

Developing renewable energy technologies is an urgent issue to mitigate the impending energy 49 

crisis and the alarming environmental degradation. Electrochemical water splitting (EWS) is an 50 

efficient and clean way to produce hydrogen which is considered as a green energy carrier [1-3]. 51 

The EWS consists of two half reactions, the hydrogen evolution reaction (HER) at the cathode and 52 

the oxygen evolution reaction (OER) at the anode. Importantly, the efficiency of the EWS is 53 

highly dependent on the electrode materials, namely the catalysts. Noble metal (e.g., Pt, Ir, Pd, and 54 

Ru)-based catalysts have exhibited great performance for EWS, however the low reserve and high 55 

price of these materials significantly limit their commercial applications [4, 5]. As a result, it is 56 

imperative to develop low-cost and efficient electrocatalysts for EWS. To our delight, numerous 57 

earth-abundant materials have shown good catalytic performance for EWS [6], including 58 

transition metal-based materials [7-12] and metal-free materials [13-17]. Among these low-cost 59 

candidates, transition metal sulfides (TMSs) have attracted enormous attention as OER and HER 60 

catalysts due to the high intrinsic catalytic activity, good electrical conductivity, and structural 61 

stability.  62 

Nanoscale TMSs have been widely studied for EWS, but their catalytic performance is still 63 

inferior to that of precious metal-based materials. To further improve the catalytic properties of 64 

TMSs, various efficient strategies have been employed, including chemical component regulation 65 

[1, 18], morphology control [19, 20], defect engineering [21, 22], and hybridization [23, 24], etc. 66 

Recent studies show that the morphology of nanocatalysts has a prominent effect on the catalytic 67 

performance of TMSs [25]. For example, Wu et al. [26] compared the catalytic performance of 68 
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three zinc cobalt mixed sulfide nanostructures with different morphologies, including nanosheets, 69 

nanoplates, and nanoneedles. The one-dimensional Zn-Co-S nanoneedles exhibited higher 70 

catalytic activities toward both HER and OER than the analogues. This is because the integrated 71 

Zn-Co-S nanoneedle/CFP nanostructure can provide enhanced electrochemical active area, 72 

facilitate ion transfer, and gas evolution. Similarly, You and co-workers investigated the 73 

correlation between morphology and HER activity of a series of CoS with different morphologies 74 

(hollow nanoprism, broken nanoprism, and nanoparticle) [27]. The CoS nanoparticle shows the 75 

largest specific surface area and electrochemically active surface area (ECSA), and these features 76 

result in the improved accessibility of electroactive sites, enhanced mass/charge transport and 77 

accelerated release of gas bubbles, rendering its highest HER performance and good durability. As 78 

a result, it is of great significance to tune the morphology of catalysts, and thus improve the 79 

surface active sites and the structural stability [28]. Although TMSs with different morphologies 80 

for EWS have been documented, the morphology-control synthesis of efficient NiS catalysts with 81 

facile methods is still challenging. Additionally, the relationship between the 82 

morphology-controlled catalysts and their catalytic properties needs further explorations. 83 

Herein, we have developed a one-step solvothermal strategy to construct nickel sulfides as 84 

efficient water splitting catalysts. The morphology-dependent electrochemical performance is 85 

uncovered, and the nanoworm-like nickel sulfides (NiS-NW/NF) outperform the nanoplate-like 86 

counterpart. Benefiting from the small size, abundant active sites, large electrochemical surface 87 

area, and good conductivity, the NiS-NW/NF exhibits great OER performance (e.g., η100 = 279 88 

mV, Tafel slope = 38.44 mV dce-1) and good HER activity. When fabricated in a two-electrode cell, 89 
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only a voltage as low as 1.563 V was required to achieve a current density of 10 mA cm-2. 90 

2. Experimental section 91 

2.1.  Material synthesis 92 

The NiS nanoworms (NW) were prepared using a solvothermal method. Briefly, Ni foam (NF) 93 

with a thickness of 1 mm was ultrasonically treated with 1M HCl, followed by acetone (ุ99.5%, 94 

Sigma-Aldrich) and distilled water in order to remove the oxide layer. The growth solution was 95 

prepared by dissolving 2 mmol of thiourea (TU, ุ99.0%, Sigma-Aldrich) as sulfur source into 27 96 

ml of isopropanol alcohol (IA, ุ 99.5%, Sigma-Aldrich) under vigorous stirring at room 97 

temperature for 1 hour. After TU completed dissolved, 3 ml of glycerol (ุ 99.5%, Sigma-Aldrich) 98 

was added to the solution and continues stirring for another 30 min. Then, the mixed solution was 99 

transferred into a 50 ml autoclave followed by immersing NF (2 × 2 cm2) and placed at a 100 

conventional oven at 180 oC for 3 hours. After the reaction completed it allowed to be cooled 101 

naturally. Finally, the as-obtained materials were washed with water and ethanol several times and 102 

dried at the vacuum oven for 4 h at 60 oC. Similarly, the NiS nanoplates (NP) were synthesized 103 

when 30 ml of IA was used, without the addition of glycerol. A series of NiS samples were 104 

prepared via changing the dosages of IA and glycerol, and the total amount of IA and glycerol was 105 

controlled at 30 ml. 106 

2.2.  Structural characterization 107 

The structural morphology of the samples was analyzed using scanning electron microscopy 108 

(SEM, Zeiss Sigma 55VP). The crystal structure of the samples was determined by X-ray 109 
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diffraction (XRD) measurements on a Rigaku Smart Lab X-ray diffractometer operated at 40 kV 110 

using Cu Kα radiation. Transmission electron microscope (TEM) images were performed with a 111 

FEI Tecnai G2 F20 S-TWIN microscope with an acceleration voltage of 200 kV. The element 112 

composition of the material was analyzed by the X-ray photoelectron spectroscopy (XPS, Thermo 113 

K-Alpha+, Thermo Fisher Scientific, USA) with the Al (Kα) radiation. 114 

2.3.  Electrochemical measurements 115 

Electrochemical measurements were carried out with a CHI 760E electrochemical workstation. 116 

OER and HER activities were recorded in a three-electrode system with graphite rod as the 117 

counter electrode and Hg/HgO as the reference electrode in O2-saturated and N2-saturated 1.0 M 118 

KOH electrolytes, respectively. The as-prepared NF-supported samples were directly used as the 119 

working electrode. To prepare the IrO2 electrode, 5 mg of IrO2 powder (99.9%, Sigma-Aldrich) 120 

were dispersed in 1 mL of mixed solution (500 µL of water, 450 µL of ethanol, and 50 µL of 5 wt% 121 

Nafion solution). The 20 wt % Pt/C electrode was prepared with a similar process. After 122 

sonication for 30 min, a homogeneous ink was obtained. 100 µL of the ink was deposited onto a 123 

piece of acid treated NF. Linear sweep voltammetry (LSV) was performed at scan rate of 5 mV s–1 124 

for both HER and OER. The polarization curves were calibrated with 90% iR compensation to 125 

eliminate the solution resistance. All potentials measured were converted to a reversible hydrogen 126 

electrode (RHE) using the following equation: E vs RHE=E vs Hg/HgO + 0.098 V + 0.059 pH. 127 

Electrochemical impedance spectroscopy (EIS) was recorded at the open circuit potential over a 128 

frequency range of 10–1 to 105 Hz with an AC signal amplitude of 5 mV. The double-layer 129 

capacitances (Cdl) were calculated through cyclic voltammogram (CV) at different scan rates (i.e., 130 
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40, 60, 80, 100, and 120 mV s-1) in 1.0 M KOH. The Amperometric i-t curves were recorded to 131 

test the long-term stability of catalysts for both OER and HER, and for the overall water splitting. 132 

3. Results and discussion 133 

3.1.  Material characterizations 134 

 135 

Fig. 1 Schematic of the formation of NiS-NW/NF and NiS-NP/NF. 136 

Fig. 1 illustrates the synthesis procedure of the nickel sulfide samples, which only comprises a 137 

solvothermal sulfidization of direct growth of nickel sulfides on nickel foam. The appropriate 138 

addition of glycerol and IA as surfactants is the key for tuning the morphology of nickel sulfides. 139 

The nanoworm-like nickel sulfide sample (NiS-NW/NF) is obtained when a small amount (3 ml) 140 

of glycerol and 27 ml of IA are added as the solvent, while the nanoplate-like nickel sulfide 141 

sample (NiS-NP/NF) is formed with adding 30 ml of IA only. Compared with the NiS-NP/NF, the 142 

NiS-NW/NF possesses a smaller average size ( ~100 nm vs ~200 nm) and higher surface area (Fig. 143 

2a-b ). These features suggest that the NiS NWs may be more favorable for electrochemical 144 

reactions than the counterpart. In addition, the energy-dispersive spectroscopy (EDS) elemental 145 

mapping images of the NiS NWs (Fig. 2c) show the uniformly distribution of Ni and S. 146 
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 147 

Fig. 2 (a) SEM image of NiS-NW/NF, (b) SEM image of NiS-NP/NF, (c) SEM-EDS mapping of 148 

NiS-NW/NF, (d) XRD patterns of NiS-NW/NF, NiS-NP/NF and bare Nickel foam, (e) HRTEM image 149 

of NiS-NW/NF. 150 

The crystal structures of the as-prepared nickel sulfides were investigated with XRD. As depicted 151 

in Fig. 2d, most of the strong peaks in the XRD patterns of NiS-NW/NF and NiS-NP/NF are 152 

matched to Ni3S2 (JCPDS No. 71-1682) and NiS (JCPDS No. 86-2280), indicating that the two 153 

nickel sulfide samples are mainly composed of Ni3S2 and NiS. The diffraction peaks at 21.7º, 154 

31.0º, 37.7º, 38.2º, 44.3º, 49.6º, 50.0º, and 55.2º can be assigned to (1 0 1), (1 1 0), (0 0 3), (0 2 1), 155 

(2 0 2), (1 1 3), (2 1 1), and (1 2 2) reflection planes of Ni3S2, respectively; whereas those at 18.3º, 156 

30.2º, 32.1º, 35.7º, 40.4º, 48.8º, 50.1º, 52.6º, and 57.3º can be indexed to (1 -1 0), (1 0 1), (3 0 0), 157 

(0 2 1), (2 1 1), (1 3 1), (4 1 0), (4 0 1), and (3 3 0) reflection planes of NiS, respectively. Apart 158 

from Ni3S2 and NiS, the strong peaks of metallic Ni are still observed on the patterns of nickel 159 

sulfide samples, suggesting that the nickel foam is partially sulfurized. Further insights into the 160 
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nanostructure of NiS NWs are provided by the TEM analysis. Fig. 2e presents a typical high 161 

magnification TEM image of NiS NWs, the crystal lattices of NiS NWs can be indexed to Ni3S2 162 

and NiS with a clear interface. The lattice distances of 0.28 and 0.48 nm correspond to the (1 1 0) 163 

and (1 -1 0) crystal planes of Ni3S2 and NiS, respectively. The results from the TEM image are 164 

line with the XRD analysis. 165 

X-ray photoelectron spectroscopic (XPS) analysis was employed to ascertain the elemental 166 

composition and the electronic structure of the NiS-NW/NF sample. The survey spectrum 167 

suggests the presence of Ni and S elements in the sample (Fig. S1). As depicted in Fig. 3a, the 168 

appreciable peaks at 854.7 and 872.1 eV are attributed to the Ni2+ state, and the distinct peaks at 169 

856.1 and 873.7 eV are correspond to the Ni3+ state. These results suggest the co-existence of NiS 170 

and Ni3S2 in NiS-NW/NF [29]. Meanwhile, the high-resolution spectrum of S 2p in Fig. 3b 171 

displays three fitting peaks at 169.1 eV, 163.8 eV and 162.6 eV, which can be assigned to SO4
2-, S 172 

2p1/2 and S 2p3/2 in NiS-NW/NF, respectively, and the presence of SO4
2- is mainly due to surface 173 

oxidation. 174 

 175 

Figure 3. XPS spectra of NiS-NW/NF. (a) the Ni 2p spectrum and (b) the S 2p spectrum. 176 

3.2.  Electrocatalytic performance 177 

The oxygen evolution activity of the as-prepared nickel sulfide samples was examined in the 178 
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oxygen-saturated 1.0 M KOH solution. For comparison, the OER performances of acid treated 179 

bare NF and IrO2/NF were also tested under the same experimental conditions. As shown in Fig. 180 

4a, NiS-NW/NF requires a substantial lower overpotential of 279 mV to obtain 100 mA cm-2 181 

compared to NiS-NP/NF (300 mV), and IrO2/NF (315 mV). The peaks ranging from 1.3 to 1.4 V 182 

vs. RHE for the LSV curves of are ascribed to the oxidation of Ni2+ to Ni3+. Furthermore, at the 183 

anodic current densities of 200 mA cm-2 and 400 mA cm-2, the applied overpotential of 184 

NiS-NW/NF are 334 mV and 398 mV respectively, significantly lower than those of NiS-NP/NF 185 

(450 mV and 652 mV) (Fig. 4b). Fig. 4c shows that NiS-NW/NF delivers a lower Tafel slope 186 

(38.44 mV dce-1) than NiS-NP/NF (88.03 mV dce-1) and NF (89.51 mV dce-1), suggesting the 187 

OER kinetics of NiS-NW/NF is superior to the that of NiS-NP/NF and NF. These results of 188 

overpotentials and Tafel slopes reveal that NiS-NW/NF indeed exhibits efficient OER 189 

performances (η100 = 279 mV, Tafel slope = 38.44 mV dce-1), which are much better than 190 

NiS-NP/NF (η100 = 300 mV, Tafel slope = 88.03 mV dce-1). In addition, the OER activities (η100, 191 

Tafel slope) of NiS-NW/NF outperform most of recently documented nickel sulfide-based OER 192 

catalysts (Fig. 4d) [29-41], such as NiCoS/NF (370 mV, 145 mV dce-1) [36], Ni3N-Ni3S2 (404 mV, 193 

112 mV dce-1) [37], CoSx/Ni3S2@NF (373 mV, 105 mV dce-1) [38], P-doped Ni3S2/NF (306 mV, 194 

99 mV dce-1) [39], Ni3S4 (340 mV, 67 mV dce-1) [41]. 195 
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 196 

Fig. 4 (a) LSV curves of the OER performance of Ni foam, NiS-NW/NF, NiS-NP/NF, and IrO2/NF in 197 

1.0 M KOH at a scan rate of 5 mV s-1. (b) Comparison of overpotentials at 100, 200, and 400 mA cm-2 198 

of NiS-NW/NF, NiS-NP/NF, and IrO2/NF. (c) Tafel plots of Ni foam, NiS-NW/NF, NiS-NP/NF, and 199 

IrO2/NF. (d) Comparison of overpotential and Tafel slope of OER between the NiS-NW/NF and 200 

reported nickel sulfide-based catalysts. 201 

To probe the charge-transfer kinetics and the ECSA of catalysts, Cdl and EIS were measured. Cdl is 202 

a convincing parameter for the estimation of accessible active sites of electrocatalysts, as the Cdl is 203 

positively proportional to ECSA (ECSA = Cdl/Cs, where Cs is the specific capacitance). The Cdl 204 

was measured via CV scans in the non-faradic potential region (1.1 - 1.2 V vs. RHE) at various 205 

scan rates ( 40, 60, 80, 100, 120 mV/s) (Fig. 5a-c). The capacitive current density differences (△206 

j= (ja-jc)/2) at 1.15 V vs. RHE as a function of scan rate displays the Cdl values of catalysts (Fig. 207 

5d). The calculated Cdl values of NiS-NW/NF, NiS-NP/NF and NF are 39.42, 10.36, and 2.88 mF 208 

cm-2, respectively. The high Cdl value means NiS-NW/NF possesses a much higher ECSA in 209 
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comparison to that of NiS-NP/NF and NF, suggesting that NiS-NW/NF exposes more 210 

electroactive sites for the electrocatalytic water oxidation reaction. To further investigate the OER 211 

kinetics, EIS was also measured. Fig. 5e presents the Nyquist plots of NiS-NW/NF, NiS-NP/NF 212 

and NF. The Nyquist plot of NiS-NW/NF shows a smaller semicircle than that of NiS-NP/NF and 213 

NF in the high frequency region. The fitting results suggest that NiS-NW/NF exhibits a smaller 214 

charge transfer resistance (Rct) (4.84 Ω) than that of NiS-NP/NF (21.11 Ω) and NF (67.11 Ω), 215 

revealing faster charge transfer and the smaller charge transfer resistance of the NiS-NW/NF 216 

during the OER process.  217 

In this study, the chronoamperometry (CA) measurement was conducted at a constant potential of 218 

1.5 V vs. RHE to evaluate the durability of NiS-NW/NF toward OER. As depicted in Fig. 5f, the 219 

current density remains stable after 12 h running, and only about 5% current density loss happened 220 

on the NiS-NW/NF electrode. This result indicates that the NiS-NW/NF exhibits good stability 221 

under alkaline conditions. In addition, the XPS test was performed to examine the chemical state 222 

of the pre-catalytic and post-OER NiS-NW/NF. There is no obvious change observed for signals 223 

for the Ni species (Fig. S2) for the catalyst after the OER electrocatalysis. However, the S 2p 224 

spectra show that the intensity of S peaks decreases significantly after the long-term OER test (Fig. 225 

S3), indicating the surface oxidation of NiS-NW/NF. 226 
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 227 

Fig. 5 (a-c) Cyclic voltammograms of NiS-NW/NF, NiS-NW/NF, and nickel foam at different scan 228 

rates (from 40 to 120 mV s-1 with an increment of 20mV s-1). (d) Scan rate dependence of the current 229 

densities of NiS-NW/NF, NiS-NW/NF, and nickel foam at 1.15 V vs. RHE, (e) Nyquist plots at the 230 

open circuit potential, (f) Amperometric i-t curve of NiS-NW/NF at an applied potential of 1.5 V versus 231 

RHE. 232 

Moreover, the HER activity of NiS-NW/NF, NiS-NP/NF and NF was also measured in 233 

N2-saturated 1.0 M KOH. The overpotentials required to reach 20 mA cm-2 are determined to be 234 

224, 228, and 415 mV vs. RHE for NiS-NW/NF, NiS-NP/NF and NF, respectively (Fig. 6a). This 235 

comparison clearly shows that NiS-NW/NF exhibits a lower overpotential than NiS-NP/NF. 236 

However, the HER performances of NiS catalysts in this study are inferior to those of the 20 wt % 237 

Pt/C benchmark catalyst which only takes 92.6 mV to achieve a current density of 20 mA cm-2. 238 

Although the 20 wt % Pt/C catalyst exhibits the smallest Tafel slope (72.35 mV dec-1), the Tafel 239 

slope of NiS-NW/NF (116.24 mV dec-1) is lower than that of NiS-NP/NF (122.37 mV dec-1) and 240 
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NF (163.94 mV dec-1) (Fig. 6b). These results suggest that NiS-NW/NF exhibits improved HER 241 

activity compared to NiS-NP/NF, demonstrating the advantage of the dimensionally constructed 242 

heterogeneous nanoworm structure with multi-level interfaces. Moreover, the excellent HER 243 

performance of NiS-NW/NF is also attributed to abundant exposure of electroactive sites owing to 244 

the high surface area. Apart from the favorable HER activity, NiS-NW/NF also shows good 245 

durability in 1 M KOH. The results displayed in Fig. S4 suggest the electrocatalytic activity of 246 

hydrogen evolution decreases very little after 12 h electrocatalysis. 247 

As the synthesized catalyst showcases good electrocatalytic activities toward both OER and HER 248 

in the alkaline solution, a two-electrode single cell system was constructed using NiS-NW/NF as 249 

both cathode and anode to investigate its overall water splitting competency. For comparison, the 250 

performance of NiS-NP/NF was also tested. Impressively, the current density of 10 mA cm-2 is 251 

achieved obtained at a low cell voltage of 1.563 V over the NiS-NW/NF||NiS-NW/NF, which is 252 

smaller than that of 1.643 V over the NiS-NP/NF||NiS-NP/NF (Fig. 6c). At a constant potential of 253 

1.563 V, NiS-NW/NF shows a negligible change of current density after continuous operation for 254 

12 h (Fig. 6d), which indicates its great durability. As a catalyst for overall water splitting, the 255 

NiS-NW/NF shows favorable catalytic activity and structural stability, directing an efficient and 256 

large-scale synthetic strategy for binder-free catalysts in renewable energy conversion. 257 
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 258 

Fig. 6 (a) LSV curves of the HER performance of NiS-NW/NF, NiS-NW/NF, nickel foam, and 20 wt % 259 

Pt/C, (b) corresponding Tafel plots, (c) LSV curve of water electrolysis using NiS-NW/NF or 260 

NiS-NW/NF as both HER and OER electrocatalysts in a two-electrode configuration, (d) 261 

Amperometric i-t curve of NiS-NW/NF for water splitting at an applied potential of 1.563 V. 262 

4. Conclusions 263 

In summary, we have synthesized a nanoworm-like nickel sulfide nanostructure via a one-step 264 

solvothermal method. With a smaller size, larger electrochemical surface area, and lower charge 265 

transfer resistance, the as-prepared nanoworm-like nickel sulfides (NiS-NW/NF) perform better 266 

than the nanoplate-like counterpart. The NiS-NW/NF only takes a low overpotential of 279 mV to 267 

obtain 100 mA cm-2 for OER, exceeding most of reported nickel sulfide-based catalysts. In 268 

addition, when used as a bifunctional catalyst for overall water splitting, the NiS-NW/NF achieves 269 

a current density of 10 mA cm-2 at only 1.563 V with good long-term durability. This study 270 
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provides a facile and effective strategy for the design and development of cost-effective catalysts 271 

for water splitting. 272 
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Highlights 

1. The nanoworm-like nickel sulfides (NiS) were designed by a facile 

solvothermal process 

2. The solvothermal precursors govern the nanostructure of NiS 

3. The nanoworm-like NiS outperform the nanoplate-like counterpart for 

water splitting 

4. The nanoworm-like NiS exhibit good activity and stability for overall 

water splitting 
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