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The nanoworm-like nickel sulfides developed by a one-step solvothermal strategy exhibit great
performance for overall electrochemical water splitting, and a low voltage of 1.563 V is required

to attain a current density of 10 mA cm in atwo-electrode electrolyzer.
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Abstract

Developing cost-effective electrocatalysts for glmcthemical water splitting (EWS) is appealing
and challenging for sustainable water electrolySiarrently, nickel sulfides are considered as
promising candidates for EWS due to their low castl high catalytic activity. However, the
facile design of nickel sulfides with high catatypperformance is still highly demanded. In this
study, we have developed a one-step solvothermzégly to construct nickel sulfides as efficient
water splitting catalysts. By taking advantage loé small size, abundant active sites, large
electrochemical surface area, and good conductivig nanoworm-like nickel sulfides
(NiS-NW/NF) exhibit better OER performance (a lovemotential of 279 mV to achieve 100 mA
cm’?, Tafel slope of 38.44 mV ddgthan the nanoplate-like analogues, as well ag ofagported
nickel sulfide-based electrocatalysts. Additionalhe NiS-NW/NF directly used as bifunctional
electrodes for overall water splitting requirew lvoltage of 1.563 V to attain a current density
of 10 mA cn with good long-term durability. This work providedacile strategy for the design

of efficient nickel sulfide-based electrocatalyfsisenergy conversion applications.

Keywords:. Nickel sulfides; Morphology; Solvothermal synthesBxygen evolution reaction;

Overall water splitting
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1. Introduction

Developing renewable energy technologies is anntirigsue to mitigate the impending energy

crisis and the alarming environmental degradatiglectrochemical water splitting (EWS) is an

efficient and clean way to produce hydrogen whglkadnsidered as a green energy carrier [1-3].

The EWS consists of two half reactions, the hydnogeolution reaction (HER) at the cathode and

the oxygen evolution reaction (OER) at the anodgpdrtantly, the efficiency of the EWS is

highly dependent on the electrode materials, nathelgatalysts. Noble metal (e.g., Pt, Ir, Pd, and

Ru)-based catalysts have exhibited great perforenéancEWS, however the low reserve and high

price of these materials significantly limit themmercial applications [4, 5]. As a result, it is

imperative to develop low-cost and efficient electtalysts for EWS. To our delight, numerous

earth-abundant materials have shown good catalytidformance for EWS [6], including

transition metal-based materials [7-12] and met-fmaterials [13-17]. Among these low-cost

candidates, transition metal sulfides (TMSs) hatmaeted enormous attention as OER and HER

catalysts due to the high intrinsic catalytic atfivgood electrical conductivity, and structural

stability.

Nanoscale TMSs have been widely studied for EWS, their catalytic performance is still

inferior to that of precious metal-based materidts.further improve the catalytic properties of

TMSs, various efficient strategies have been enmgulpincluding chemical component regulation

[1, 18], morphology control [19, 20], defect enginag [21, 22], and hybridization [23, 24], etc.

Recent studies show that the morphology of nanlysatahas a prominent effect on the catalytic

performance of TMSs [25]. For example, Wu et a6][2ompared the catalytic performance of
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three zinc cobalt mixed sulfide nanostructures wlifferent morphologies, including nanosheets,
nanoplates, and nanoneedles. The one-dimensionaloZh nanoneedles exhibited higher
catalytic activities toward both HER and OER thhe &nalogues. This is because the integrated
Zn-Co-S nanoneedle/CFP nanostructure can provideneed electrochemical active area,
facilitate ion transfer, and gas evolution. SimyiarYou and co-workers investigated the
correlation between morphology and HER activityaaferies of CoS with different morphologies
(hollow nanoprism, broken nanoprism, and nanogajti27]. The CoS nanoparticle shows the
largest specific surface area and electrochemiealiiye surface area (ECSA), and these features
result in the improved accessibility of electroeetisites, enhanced mass/charge transport and
accelerated release of gas bubbles, renderinggtie$t HER performance and good durability. As
a result, it is of great significance to tune therpmology of catalysts, and thus improve the
surface active sites and the structural stabilgj.[ Although TMSs with different morphologies
for EWS have been documented, the morphology-cbsyrthesis of efficient NiS catalysts with
facile methods is still challenging. Additionally,the relationship between the

morphology-controlled catalysts and their catalptioperties needs further explorations.

Herein, we have developed a one-step solvothertnategy to construct nickel sulfides as
efficient water splitting catalysts. The morpholedgpendent electrochemical performance is
uncovered, and the nanoworm-like nickel sulfide$SENW/NF) outperform the nanoplate-like
counterpart. Benefiting from the small size, abunidective sites, large electrochemical surface
area, and good conductivity, the NiS-NW/NF exhilgteat OER performance (e.g400 = 279

mV, Tafel slope = 38.44 mV dégand good HER activity. When fabricated in a tiec&ode cell,



90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

only a voltage as low as 1.563 V was required toexe a current density of 10 mA ém

2. Experimental section

2.1. Material synthesis

The NiS nanoworms (NW) were prepared using a sodratal method. Briefly, Ni foam (NF)
with a thickness of 1 mm was ultrasonically treandth 1M HCI, followed by acetone=09.5%,
Sigma-Aldrich) and distilled water in order to revacthe oxide layer. The growth solution was
prepared by dissolving 2 mmol of thiourea (T£99.0%, Sigma-Aldrich) as sulfur source into 27
ml of isopropanol alcohol (IA,299.5%, Sigma-Aldrich) under vigorous stirring atomo
temperature for 1 hour. After TU completed dissdlvé ml of glycerol £99.5%, Sigma-Aldrich)
was added to the solution and continues stirrimgafmther 30 min. Then, the mixed solution was
transferred into a 50 ml autoclave followed by imsirg NF (2x 2 cnf) and placed at a
conventional oven at 18%C for 3 hours. After the reaction completed it a#uol to be cooled
naturally. Finally, the as-obtained materials weeshed with water and ethanol several times and
dried at the vacuum oven for 4 h at ®0 Similarly, the NiS nanoplates (NP) were synthesi
when 30 ml of IA was used, without the additionghjcerol. A series of NiS samples were
prepared via changing the dosages of 1A and glycanal the total amount of 1A and glycerol was

controlled at 30 ml.

2.2. Structural characterization

The structural morphology of the samples was amealyasing scanning electron microscopy

(SEM, Zeiss Sigma 55VP). The crystal structure led samples was determined by X-ray
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diffraction (XRD) measurements on a Rigaku Smati Karay diffractometer operated at 40 kV
using Cu K radiation. Transmission electron microscope (THMages were performed with a
FEI Tecnai G2 F20 S-TWIN microscope with an acedlen voltage of 200 kV. The element
composition of the material was analyzed by thea)Xghotoelectron spectroscopy (XPS, Thermo

K-Alpha’, Thermo Fisher Scientific, USA) with the Al ¢Kradiation.

2.3. Electrochemical measurements

Electrochemical measurements were carried out aitbHI 760E electrochemical workstation.
OER and HER activities were recorded in a threetelde system with graphite rod as the
counter electrode and Hg/HgO as the referenceretirin Q-saturated and Nsaturated 1.0 M
KOH electrolytes, respectively. The as-preparedsipported samples were directly used as the
working electrode. To prepare the yr@lectrode, 5 mg of Iropowder (99.9%, Sigma-Aldrich)
were dispersed in 1 mL of mixed solution (5000f water, 45QuL of ethanol, and 5QL of 5 wt%
Nafion solution). The 20 wt % Pt/C electrode wagpared with a similar process. After
sonication for 30 min, a homogeneous ink was obthil00uL of the ink was deposited onto a
piece of acid treated NF. Linear sweep voltammg@t8V) was performed at scan rate of 5 mV s
for both HER and OER. The polarization curves weakbrated with 90% iR compensation to
eliminate the solution resistance. All potentialsasured were converted to a reversible hydrogen
electrode (RHE) using the following equation: Erpe=E vs HgHgo + 0.098 V + 0.059 pH.
Electrochemical impedance spectroscopy (EIS) wearded at the open circuit potential over a
frequency range of I®to 1F Hz with an AC signal amplitude of 5 mV. The doulager

capacitances (§} were calculated through cyclic voltammogram (G¥ifferent scan rates (i.e.,
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40, 60, 80, 100, and 120 mW)sin 1.0 M KOH. The Amperometric i-t curves wereoeded to

test the long-term stabilitgf catalysts for both OER and HER, and for the alvevater splitting.

3. Resultsand discussion

3.1. Material characterizations

(\\,&S&la-mplnres

o/

2 mM thiourea,
180°C, 3 hours 27 mlIA

IA: Isopropanol alcohol

G: Glycerol NiS Nanoworms

Fig. 1 Schematic of the formation of NiS-NW/NF and NiS/NP.

Fig. 1 illustrates the synthesis procedure of the nickdfide samples, which only comprises a
solvothermal sulfidization of direct growth of n&ksulfides on nickel foam. The appropriate
addition of glycerol and A as surfactants is tleg kor tuning the morphology of nickel sulfides.
The nanoworm-like nickel sulfide sample (NiS-NW/NE)obtained when a small amount (3 ml)
of glycerol and 27 ml of IA are added as the sdiverhile the nanoplate-like nickel sulfide
sample (NiS-NP/NF) is formed with adding 30 ml Afdnly. Compared with the NiS-NP/NF, the
NiS-NW/NF possesses a smaller average size ( ~10@sn-200 nm) and higher surface areig.(
2a-b ). These features suggest that the NiS NWs mayndee favorable for electrochemical
reactions than the counterpart. In addition, thergydispersive spectroscopy (EDS) elemental

mapping images of the NiS NWKig. 2c) show the uniformly distribution of Ni and S.
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Fig. 2 (a) SEM image of NiS-NW/NF, (b) SEM image of NiS2MF, (c) SEM-EDS mapping of

NiS-NW/NF, (d) XRD patterns of NiS-NW/NF, NiS-NP/N&nd bare Nickel foam, (e) HRTEM image

of NiS-NW/NF.

The crystal structures of the as-prepared nickébes were investigated with XRD. As depicted
in Fig. 2d, most of the strong peaks in the XRD patterns i&-NW/NF and NiS-NP/NF are
matched to NS, (JCPDS No. 71-1682) and NiS (JCPDS No. 86-228@)icating that the two
nickel sulfide samples are mainly composed ofSNand NiS. The diffraction peaks at 21.7°,
31.0°, 37.7°, 38.2°, 44.3°, 49.6°, 50.0°, and ¥&al%e assigned to (1 0 1), (1 1 0), (00 3),19,2
(202),(113),(211),and (1 2 2) reflectidanes of NiS,, respectively; whereas those at 18.3°,
30.29, 32.1°, 35.7°, 40.4°, 48.8°, 50.1°, 52.6¢,54h3° can be indexed to (1 -1 0), (1 0 1), (3,0 0
(021),(211),(131),((@10), (401),and3(8) reflection planes of NiS, respectively. Apart
from NisS; and NiS, the strong peaks of metallic Ni are siilterved on the patterns of nickel

sulfide samples, suggesting that the nickel foamaigially sulfurized. Further insights into the
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nanostructure of NiS NWs are provided by the TEMlIgsis. Fig. 2e presents a typical high
magnification TEM image of NiS NWSs, the crystattilegs of NiS NWs can be indexed tos8l

and NiS with a clear interface. The lattice distof 0.28 and 0.48 nm correspond to the (1 1 0)
and (1 -1 0) crystal planes of §8 and NiS, respectively. The results from the TEMag®a are

line with the XRD analysis.

X-ray photoelectron spectroscopic (XPS) analysis vemployed to ascertain the elemental
composition and the electronic structure of the -NM¥/NF sample. The survey spectrum
suggests the presence of Ni and S elements inathpls Fig. S1). As depicted irFig. 3a, the
appreciable peaks at 854.7 and 872.1 eV are atdhio the Ni* state, and the distinct peaks at
856.1 and 873.7 eV are correspond to th& State. These results suggest the co-existencéSof N
and NS, in NiS-NW/NF [29]. Meanwhile, the high-resolutispectrum of S 2p irFig. 3b
displays three fitting peaks at 169.1 eV, 163.8ae4d 162.6 eV, which can be assigned ta°SGQ
2py and S 2p, in NiS-NW/NF, respectively, and the presence of’Si® mainly due to surface

oxidation.

QO
z
o
g
o

Intensity (a.u.)
Intensity (a.u.)

890 880 870 860 850 175 170 165 160
Binding Energy (eV) Binding Energy (eV)

Figure 3. XPS spectra of NiS-NW/NF. (a) the Ni 2p spectamd (b) the S 2p spectrum.

3.2. Electrocatalytic performance

The oxygen evolution activity of the as-preparedkei sulfide samples was examined in the
9
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oxygen-saturated 1.0 M KOH solution. For comparjsiie OER performances of acid treated
bare NF and IrgINF were also tested under the same experimentaitians. As shown irrig.

4a, NiS-NW/NF requires a substantial lower overpdtnsf 279 mV to obtain 100 mA cf
compared to NiS-NP/NF (300 mV), and ¥QF (315 mV). The peaks ranging from 1.3 to 1.4 V
vs. RHE for the LSV curves of are ascribed to tkiglation of Nf* to Ni**. Furthermore, at the
anodic current densities of 200 mA énand 400 mA cii, the applied overpotential of
NiS-NW/NF are 334 mV and 398 mV respectively, sigantly lower than those of NiS-NP/NF
(450 mV and 652 mV)Kig. 4b). Fig. 4c shows that NiS-NW/NF delivers a lower Tafel slope
(38.44 mV dc@) than NiS-NP/NF (88.03 mV dd¢ and NF (89.51 mV dé®, suggesting the
OER Kkinetics of NiS-NW/NF is superior to the thdt MiS-NP/NF and NF. These results of
overpotentials and Tafel slopes reveal that NiS-NW/indeed exhibits efficient OER
performances oo = 279 mV, Tafel slope = 38.44 mV dbe which are much better than
NiS-NP/NF 100 = 300 mV, Tafel slope = 88.03 mV dbe In addition, the OER activities){n,
Tafelslope) of NiS-NW/NF outperform most of recently doeented nickel sulfide-based OER
catalysts Fig. 4d) [29-41], such as NiCoS/NF (370 mV, 145 mV drf86], NisN-NisS, (404 mV,
112 mV dcé) [37], CoS/NisS@NF (373 mV, 105 mV décb [38], P-doped NS,/NF (306 mV,

99 mV dcé") [39], NisS, (340 mV, 67 mV dcé) [41].
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Fig. 4 (a) LSV curves of the OER performance of Ni fodis-NW/NF, NiS-NP/NF, and IrgNF in
1.0 M KOH at a scan rate of 5 m\.gb) Comparison of overpotentials at 100, 200, 40@ mA cn?
of NiS-NW/NF, NiS-NP/NF, and IrédNF. (c) Tafel plots of Ni foam, NiS-NW/NF, NiS-NRF, and
IrO./NF. (d) Comparison of overpotential and Tafel slopf OER between the NiS-NW/NF and

reported nickel sulfide-based catalysts.

To probe the charge-transfer kinetics and the EGS#atalysts, G and EIS were measuredy &

a convincing parameter for the estimation of adbéssactive sites of electrocatalysts, as thg<C
positively proportional to ECSA (ECSA =4, where G is the specific capacitance). Thg C
was measured via CV scans in the non-faradic gateregion (1.1 - 1.2 V vs. RHE) at various
scan rates ( 40, 60, 80, 100, 120 mVIy(5a-c). The capacitive current density differencés (
i= (ajo)/2) at 1.15 V vs. RHE as a function of scan raspldys the ¢ values of catalystd~{g.
5d). The calculated gvalues of NiS-NW/NF, NiS-NP/NF and NF are 39.42.36) and 2.88 mF

cm?, respectively. The high value means NiS-NW/NF possesses a much higher BESA

11
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comparison to that of NiS-NP/NF and NF, suggestihgt NiS-NW/NF exposes more

electroactive sites for the electrocatalytic wabeidation reaction. To further investigate the OER

kinetics, EIS was also measurédg. 5e presents the Nyquist plots of NiS-NW/NF, NiS-NP/NF

and NF. The Nyquist plot of NiS-NW/NF shows a seraiemicircle than that of NiS-NP/NF and

NF in the high frequency region. The fitting resudiuggest that NiS-NW/NF exhibits a smaller

charge transfer resistance§R4.84 Q) than that of NiS-NP/NF (21.1®) and NF (67.11Q),

revealing faster charge transfer and the smallargehtransfer resistance of the NiS-NW/NF

during the OER process.

In this study, the chronoamperometry (CA) measurgmeas conducted at a constant potential of

1.5 V vs. RHE to evaluate the durability of NiS-NV¥ toward OER. As depicted Fig. 5f, the

current density remains stable after 12 h runramgl, only about 5% current density loss happened

on the NiS-NW/NF electrode. This result indicateattthe NiS-NW/NF exhibits good stability

under alkaline conditions. In addition, the XPS tgas performed to examine the chemical state

of the pre-catalytic and post-OER NiS-NW/NF. Thaeyeo obvious change observed for signals

for the Ni speciesHig. S2) for the catalyst after the OER electrocatalysiswever, the S 2p

spectra show that the intensity of S peaks decsesggificantly after the long-term OER teBtd.

S3), indicating the surface oxidation of NiS-NW/NF.

12
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Fig. 5 (a-c) Cyclic voltammograms of NiS-NW/NF, NiS-NW/N&nd nickel foam at different scan
rates (from 40 to 120 mV'swith an increment of 20mV%. (d) Scan rate dependence of the current
densities of NiS-NW/NF, NiS-NW/NF, and nickel foaamh 1.15 V vs. RHE, (e) Nyquist plots at the

open circuit potential, (f) Amperometric i-t cureéNiS-NW/NF at an applied potential of 1.5 V vessu

RHE.

Moreover, the HER activity of NiS-NW/NF, NiS-NP/NBnd NF was also measured in
N,-saturated 1.0 M KOH. The overpotentials requiedeach 20 mA cifiare determined to be
224, 228, and 415 mV vs. RHE for NiS-NW/NF, NiS-NF/and NF, respectively=(g. 6a). This
comparison clearly shows that NiS-NW/NF exhibitdoaver overpotential than NiS-NP/NF.
However, the HER performances of NiS catalystis study are inferior to those of the 20 wt %
Pt/C benchmark catalyst which only takes 92.6 m\Adhieve a current density of 20 mA&m
Although the 20 wt % Pt/C catalyst exhibits the besa Tafel slope (72.35 mV déy the Tafel

slope of NiS-NW/NF (116.24 mV dékis lower than that of NiS-NP/NF (122.37 mV d¢and

13
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NF (163.94 mV ded) (Fig. 6b). These results suggest that NiS-NW/NF exhibitprowed HER
activity compared to NiS-NP/NF, demonstrating tlleaatage of the dimensionally constructed
heterogeneous nanoworm structure with multi-leveerfaces. Moreover, the excellent HER
performance of NiS-NW/NF is also attributed to atbamt exposure of electroactive sites owing to
the high surface area. Apart from the favorable H&fRvity, NiS-NW/NF also shows good
durability in 1 M KOH. The results displayed fig. $4 suggest the electrocatalytic activity of

hydrogen evolution decreases very little after Eldutrocatalysis.

As the synthesized catalyst showcases good elataigtic activities toward both OER and HER
in the alkaline solution, a two-electrode singld sgstem was constructed using NiS-NW/NF as
both cathode and anode to investigate its overatémsplitting competency. For comparison, the
performance of NiS-NP/NF was also tested. Impredgithe current density of 10 mA &nis
achieved obtained at a low cell voltage of 1.568Wér the NiS-NW/NINiIS-NW/NF, which is
smaller than that of 1.643 V over the NiS-NP|INFS-NP/NF fig. 6¢). At a constant potential of
1.563 V, NiS-NW/NF shows a negligible change ofreat density after continuous operation for
12 h fig. 6d), which indicates its great durability. As a cgsalfor overall water splitting, the
NiS-NW/NF shows favorable catalytic activity andustural stability, directing an efficient and

large-scale synthetic strategy for binder-freelgata in renewable energy conversion.
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Fig. 6 (a) LSV curves of the HER performance of NiS-NW/NES-NW/NF, nickel foam, and 20 wt %
Pt/C, (b) corresponding Tafel plots, (c) LSV curgé water electrolysis using NiS-NW/NF or
NiS-NW/NF as both HER and OER electrocatalysts intva-electrode configuration, (d)

Amperometric i-t curve of NiS-NW/NF for water spiitg at an applied potential of 1.563 V.

4. Conclusions

In summary, we have synthesized a nanoworm-lik&ehisulfide nanostructure via a one-step
solvothermal method. With a smaller size, largec&bchemical surface area, and lower charge
transfer resistance, the as-prepared nanowormmiiteel sulfides (NiS-NW/NF) perform better
than the nanoplate-like counterpart. The NiS-NWHwly takes a low overpotential of 279 mV to
obtain 100 mA ci for OER, exceeding most of reported nickel suMidesed catalysts. In
addition, when used as a bifunctional catalysofarall water splitting, the NiS-NW/NF achieves

a current density of 10 mA c¢mat only 1.563 V with good long-term durability. i§hstudy
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provides a facile and effective strategy for theigie and development of cost-effective catalysts

for water splitting.
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Highlights

. The nanoworm-like nickel sulfides (NiS) were designed by a facile
solvothermal process

. The solvothermal precursors govern the nanostructure of NiS

. The nanoworm-like NiS outperform the nanoplate-like counterpart for
water splitting

. The nanoworm-like NiS exhibit good activity and stability for overall

water splitting
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