
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 1109–1119

DOI: https://doi.org/10.2991/ijcis.d.200728.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

Research Article

Framework of Computational Intelligence-Enhanced
Knowledge Base Construction: Methodology and A Case of
Gene-Related Cardiovascular Disease

Yi Zhang1, , Mengjia Wu1, Hua Lin2, , Steven Tipper2, , Mark Grosser2, Guangquan Zhang1, Jie Lu1,*,

1Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, 61 Broadway, Ultimo, NSW 2007,
Australia
223Strands, Suite 105, 26 Pirrama Rd, Pyrmont, NSW 2009, Australia

ART I C L E I N FO
Article History

Received 26 Feb 2020
Accepted 03 Jun 2020

Keywords

Bibliometrics
Knowledge management
Computational intelligence
Cardiovascular disease

ABSTRACT
Knowledge base construction (KBC) aims to populate knowledge bases with high-quality information from unstructured data
but how to effectively conduct KBC from scientific documents with limited preknowledge is still elusive. This paper proposes
a KBC framework by applying computational intelligent techniques through the integration of intelligent bibliometrics—e.g.,
co-occurrence analysis is used for profiling research topics/domains and identifying key players, and recommending poten-
tial collaborators based on the incorporation of a link prediction approach; an approach of scientific evolutionary pathways is
exploited to trace the evolution of research topics; and a search engine incorporating with fuzzy logics, word embedding, and
genetic algorithm is developed for knowledge searching and ranking. Aiming to examine and demonstrate the reliability of the
proposed framework, a case of gene-related cardiovascular diseases is selected, and a knowledge base is constructed, with the
validation of domain experts.
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1. INTRODUCTION

Knowledge base construction (KBC), known as a process of fill-
ing knowledge bases with high-quality information from unstruc-
tured data [1], has been a long-standing need in industry sectors,
as well as a key research topic in the area of knowledge discov-
ery and management for decades, in which unstructured data is
well exploited for information retrieval [2]. In parallel, it is also a
common sense that scientific documents such as research articles,
patents, and academic proposals contain rich information in sci-
ence, technology, and innovation, despite potential difficulties in
analyzing complicated text data [3]. Given the circumstances, how
to conduct KBC from scientific documents becomes attractive for
not only researchers but also a wide range of other professions and
broad business sectors, which could benefit from a KBC process
which leads to improved understanding of emerging domains with
limited preknowledge.

Bibliometrics, known as the use of statistical approaches to analyze
scientific documents and explore empirical insights for decision
support [4], has been used in broad empirical studies for knowl-
edge discovery—e.g., profiling research domains [5], identifying
research topics [6], and tracking topic evolution over time [7]. Addi-
tionally, aiming to handle issues which result from managing big
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data such as scalability, uncertainty, and robustness, and domains
for which interests on intelligent bibliometrics are raised, empha-
sizes the refinement required of traditional bibliometric approaches
by incorporating intelligent techniques, e.g., topic models, network
analytics, neural networks, and othermachine learning approaches.
Such endeavors include dynamic topic detection and tracking [8],
word embedding-incorporated topic extraction [9], streaming data
analytics for identifying complicated semantic relationships among
research topics over time [10], etc. However, gaps between analytic
results of established bibliometric approaches and KBC still exist
such as how to design a KBC framework to systematically integrate
bibliometric models and effectively manage knowledge, and how to
implement the proposed framework for decision support in real-
world cases.

Aiming to address the above concerns, this paper proposes a frame-
work of KBC which applies computational intelligence techniques
through the integration of intelligent bibliometrics. Oriented to the
needs of constructing a knowledge base for emerging research top-
ics—i.e., a domain with insufficient preknowledge in practice but
which may contain rich supplementary sources in scientific doc-
uments, the authors developed and integrated the following steps:
1) a function of co-word analysis is used to profile a given domain
and identify research opportunities through topics that are repre-
sented by a set of research terms; 2) a function of coauthorship net-
work and link prediction is developed to recognize key entities (e.g.,
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researchers, institutions, and countries/regions) and recommend
potential collaboration partners based on their existing collabora-
tive relationships; 3) a function of scientific evolutionary pathways
(SEP) [10] is exploited to trace the evolution of scientific topics,
with the use of machine learning techniques and streaming data
analytics; and 4) a function of search engine is developedwith appli-
cable strategies to involved data sources, incorporating fuzzy logics,
word embedding, and genetic algorithm for knowledge representa-
tion and ranking.

Aiming to demonstrate the of this KBC framework in a clinically
knowledge-rich domain, a case study of gene-related cardiovascular
diseases was selected, and a knowledge base was constructed using
the functional steps outlined above, whichwas also validated by ref-
erence and iterative feedback from knowledgeable domain experts.

The rest of this paper is organized as follows: Section 2 reviews
related work in bibliometrics, KBC, and computational intelligence.
Section 3 presents the research framework and related methodolo-
gies. A case study of establishing the knowledge base of gene-related
cardiovascular diseases is given in Section 4. Technical implications,
possible applications, and limitations, as well as future directions,
are concluded in Section 5.

2. LITERATURE REVIEW

This section reviews related work from the following two aspects:
KBC and bibliometrics.

2.1. Knowledge Base Construction

KBC is defined as the process of populating knowledge bases with
high-quality information (e.g., objects, rules, and relationships)
from unstructured data [1], and data engineering and machine
learning techniques are widely used [11]. Considering KBC as a
practical issue, its applications could be traced in broad sectors such
as medical science [12], music industry [13], and customer services
[14]. There are also a number of KBC systems, acting as a toolkit for
general KBCneeds—e.g., Elementary [1], TinkerBell [15], and Fon-
duer [16]. Significantly, Deepdive as a benchmark of KBC provides
a database and machine learning-based solution for KBC needs of
technology companies, law enforcement agencies, and academic
researchers [2]. Similarly but targeting to incomplete knowledge
bases, knowledge base augmentation is specifically raised in the
area of semantic web, which emphasizes the extraction and identi-
fication of entities and relations [17,18].

2.2. Bibliometrics

Pioneered in the early 1960s by Derek Price for observing patterns
of scientific activities [19], modern bibliometrics is initially defined
as “the application of mathematics and statistical methods to books
and other media of communication” [20], and now various data
analytic techniques have been incorporated with traditional bib-
liometric models, involving indicators such as citation/co-citation
statistics, word co-occurrence, and coauthorships retrieved from
scientific documents [21]. Interactions between knowledge discov-
ery and bibliometrics started decades ago, oriented to specific enti-
ties (e.g., research domains, technologies, journals, and regions and

countries), in which bibliometric models were applied for trans-
ferring raw data to structured knowledge—e.g., identifying topics
and relationships [22,23], detecting and tracking emerging trends
[10,24], and investigating key players and their collaborative pat-
terns [25,26]. Significantly, machine learning techniques provide
new angles and solutions for tasks in knowledge representation,
classification, and clustering [9,10,27]. Intelligent bibliometrics are
then raised by emphasizing the “development and application of
intelligent models for recognizing patterns in bibliometrics” [28].

2.3. Computational Intelligence

Computational intelligence is an area of fundamental research and
practical studies exploiting a number of information processing
technologies, such as neural networks, fuzzy logics, and evolution-
ary computation [29]. With the rapid development and wide appli-
cations of neural networks, natural language processing (NLP),
together with deep learning techniques, creates solutions of com-
prehensively understanding free text in the real word [30]. Fuzzy
logics, rooted in Zadeh’s studies in the 1960s [31], helps repre-
sent the belongingness of an unknown object to a known category
via a grade of membership ranging between 0 and 1. The capa-
bility of fuzzy logics in handling uncertainty and fuzzy features
have been well recognized [32]—e.g., representing customer com-
ments [33] and describing user preferences [34] in the applications
of recommender systems. Additionally, fuzzy linguistics empha-
sizes the use of fuzzy logics in transferring subjective semantics into
numeric numbers and have been widely applied in a broad range
of industry and system management practices [35]. Evolutionary
computation closely relates to optimization problems, which pro-
vides further flexibility, adaptability, and robustness to problem-
solving [36]. Our paper, oriented to the task of KBC, incorporates
techniques of computational intelligence in supporting bibliomet-
ric models—e.g., word embedding techniques (with shallow deep
learning techniques) which are introduced for knowledge represen-
tation, the membership grades of fuzzy sets are used as an indicator
for ranking, and a genetic algorithm is exploited in handling a task
of multi-objective ranking.

3. METHODOLOGY

This paper aims to propose a framework of base construction
(KBC) for scientific and technological domains by applying com-
putational intelligence techniques through integrating intelligent
bibliometrics. The designed framework is given in Figure 1. which
is oriented to scientific documents, so as a result our framework
includes data collection and preprocessing and KBC that contains
four functions: 1) a function of topic analysis is designed for pro-
filing knowledge landscapes via research topics and their relation-
ships; 2) a function of network analytics is exploited to identify
key players in a given knowledge domain and detect potential col-
laborations among those key players through link prediction; 3) a
function of SEP involving streaming data analytics and machine
learning techniques is proposed for tracking knowledge trends and
predicting emergent research topics; and 4) a function of knowledge
searching and ranking is developed to filter scientific documents
from raw datasets, based on given criteria from domain experts,
combined with fuzzy logics, word embedding, and optimization
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Figure 1 Framework of computational intelligence-enhanced
knowledge base construction.

techniques used to assist in knowledge representation and similar-
ity measurements in the final analysis.

3.1. Data Collection and Preprocessing

This study focused on a number of data sources of scientific doc-
uments which we could investigate and may benefit from future
research in using this framework, such as theWeb of Science (WoS)
database and the PubMed database for academic articles, Der-
went World Patent Index (DWPI) database and the United States
Patent and Trademark Office (USPTO) database for patents, and
the National Science Foundation of the United States (NSF-US)
database for academic proposals. From a methodology perspective,
targeting specific knowledge domains in science and technology
required a search strategy to collect relevant scientific documents
and then the bibliographical information of scientific documents,
such as titles, abstracts, keywords, authors, and their affiliations,
will be extracted and analyzed. Specifically, NLP techniques can be
applied to retrieve terms (including words and phrases) from the
free text of titles and abstracts, and a term clumping processing [37]
is involved in removing noises and consolidating synonyms.

The outputs of this phase include lists of authors, affiliations, coun-
tries/regions, and cleaned terms, and each list also contain the num-
ber of scientific documents associated with these items.

3.2. Knowledge Base Construction

The KBC process is designed by integrating four specific functions.
With aid of co-occurrence analysis, text segmentation is used to
retrieve knowledge by extracting research topics and authorship is
exploited to identify key players and their collaboration patterns.
An approach of SEP is refined and adapted to tracking knowledge
trends and predicting emergent topics through machine learning
and streaming data analytics. Then, aiming to represent retrieved
knowledge, computational intelligence techniques including word
embedding, fuzzy sets, and genetic algorithms are involved in
knowledge searching and ranking.

3.2.1. Profiling knowledge landscapes

While a topic is defined a collection of terms representing similar
semantic meanings, the knowledge landscape of a given domain is
described as a set of topics and their relationships. Targeting to the
list of cleaned terms, co-occurrence analysis is applied for initially
measuring the relationships between terms [38], with a hypothesis
that if two words frequently appear together, they are similar [39].
The corresponding algorithm is described below:

• Given that T = {t1, … , ti, … , tn} is the list of cleaned terms and
term ti could represented by a vector C1 = {c1,i, … , ci,i … ,
ci,j, … , cn,i}, in which ci,j represents the frequency of the
co-occurrence between terms ti and tj in the dataset;

• The similarity Sim
(
ti, tj

)
between terms ti and tj could be

calculated by the Salton’s cosine [40], i.e.,

Sim
(
ti, tj

)
=

Ci ⋅ Cj

|Ci| ||Cj||

• A triangle similarity matrix ST is then generated, which records
the similarities between all pairs of terms in list T;

• A network Gt (T,Et) is constructed based on matrix ST, in
which each term is represented by a node while Et represents
the set of edges in the network and is filled with the similarities
Sim

(
ti, tj

)
.

• Regarding to the map of science [41], an approach of
community detection is applied to visualize the network
Gt (T,Et) through certain communities, which are then
identified as topics in a given domain.

Note that despite numerous text similarity algorithms in the litera-
ture, our pilot studies have examined that the cosine similarity algo-
rithm could achieve the best performance in bibliometric datasets
[42], and thus, the entire study of this paper exploits Salton’s cosine
algorithm for similarity measurements.

The science map as well as the network Gt (T,Et) are considered as
the outcomes of this function, which profile knowledge landscapes
of a given domain in a vivid manner. Additionally, the structure of
communities and terms provides a hierarchical solution to repre-
sent and organize knowledge and helps understand a domain at a
macro level.

3.2.2. Identifying key players and detecting
potential collaborations

The identification of key players follows the algorithm of co-
occurrence analysis presented above but using lists of cleaned
entities such as authorsA, research institutionsO, and countries/re-
gions R. Thus, the generated networks are denoted as Ga (A,Ea),
Go (O,Eo) and Gr (R,Er) respectively. Such science maps and net-
works visualize key players and their existing collaborations, as well
as their research groups that are identified as communities in the
maps.

A link prediction approach [43] is applied for analyzing the topolog-
ical structure of the generated networks to detect potential collabo-
rations for authors and research institutions. The basic assumption
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of link prediction approaches is that: if A and B links with C respec-
tively, A will link with B in the near future, and thus the task of link
prediction approaches is to fulfill those missing links with weights.

Considering two types of collaborative strategies—i.e., maintain-
ing existing collaborations and establishing new collaborations, two
lists of recommendation pairs will be provided, in which one is for
existing collaborators and the other is for potential collaborators
with whom they have never collaborated before.

3.2.3. Tracking knowledge trends and predicting
emergent topics

A general concern for knowledge trends is the potential change
underlying certain given knowledge over time. For example, in the
early 2000s and earlier, “data mining” mostly referred to studies
in database management and data warehouse, but now “data min-
ing” closely interacts with machine learning techniques which were
not common in those early days. Given this evolutionary history
occurs, our functional aim is to track knowledge trends and predict
emergent topics by considering such changes. The main function is
refined from the approach of SEP [10], for which related definitions
are given below:

Definition 1. A topic1 Tp (c, r, S) is a collection of scientific docu-
ments (we use “record” in the following description) and is geomet-
rically represented as a circle, in which c is its centroid identified as
the mean of the vectors of all involved articles a, r is its boundary
identified as the largest Euclidean distance between c and all other
articles, and S indicates its time slice.

Definition 2. Regarding a concept of “sleeping beauties” [44] for
identifying scientific innovation from the literature, a topic could
be either alive or dead.

Definition 3. The data corpusΦ consists of k time slices S, and each
time slice includes n articles.

The stepwise algorithm is described as follows:

Step 1: Set S0 as the initial time slice, and group all involved arti-
cles as one topic Tp (c, r, S0) and consider it as the initial topic of an
evolutionary pathway.

Step 2: Iteratively process the data corpusΦ as a simulated stream—
i.e., process one time slice once by analyzing its articles one by one.

Step 3: Measure the similarity sim
(
a,Tp

)
between a forthcoming

article a and centroids of all alive topics via Salton’s cosine [40]—
i.e.,

Sim
(
a,Tp

)
= a ⋅ c

|a||c|

Step 4: Assign article a to the most similar topic Tp, and calculate
the Euclidean distance E (a, c) between a and the topic’s centroid c.
If E (a, c) < r, the article will be directly assigned to the topic, or
else, the article will be labeled as “drift.” Then, return to Step 3 and
analyze the next article.

1Note that despite the fact that Sections 3.1.1 and 3.1.3 use the term
“topic,” but in Section 3.1.1 a topic is a set of terms while Section 3.1.3
highlights that a topic is a set of scientific documents. There is not any
conflict between the two definitions which are two types of definitions
for topics in bibliometrics.

Step 5: At the end of each iteration, set a topic as “dead” if it does
not receive any articles in two continuous time slices, which means
since this topic is generated, there is not any new knowledge accu-
mulated to it in the following time slice. Then, logically “live” top-
ics continue, given that it is in time slice Sx, we iteratively apply
an unsupervised K-means approach [3] to each topic and group
their assigned articles labeled with “drift” into certain sub-topics
Tp′

(
c′, r′, Sx

)
.

Step 6: Measure the cosine similarity between Tp′ and two sets
of topics—the assigned topic Tp and all dead topics Tpd. If
Sim

(
Tp′,Tp

)
> Sim

(
Tp′,Tpd

)
, the relationship between Tp and

Tp′ is defined as “descendent-predecessor,” or else, the “dead” topic
Tpd will be resurged and set as “alive,” and then, becomes the pre-
decessor of topic Tp′.

Step 7: Label topic Tp′ via the term with the highest similarities
with all other terms in this topic—if the term has already been used
by existing topics, choose its following terms.

Step 8: Update all alive topics by recalculating their centroid and
boundary and return to Step 2 until the stream ends.

The outcome of the SEP approach is a list of topics with informa-
tion such as labels, descriptions, involved terms and articles, and
“sleeping beauties”-related indicators (e.g., born time, dead time,
and resurgence). These topics could be visualized in a direct net-
work, in which each topic is represented by a node and weighted
edges represent the similarities between their connected nodes. It
is clear that this network provides a solution of tracing knowledge
trends by detecting such predecessor–descendant relationships
and predicting emerging topics by identifying topics of “sleeping
beauties.”

Note that the SEP approach exploited in this study mostly follows
the version presented in [10] but aiming to further omit human
intervention and adapt to practical needs by consulting with cer-
tain domain experts, we modified the algorithm from the following
aspects: 1) in Step 1, only one initial topic is grouped rather than
applying a K-means approach to group records in a given number
of topics; and 2) an unsupervised K-means approach is applied to
take the place of the hierarchical clustering approach in Step 5.

3.2.4. Criteria-based knowledge searching
and ranking

The function of criteria-based knowledge searching and ranking is
designed to conduct data argumentationwith limited expert knowl-
edge. The input of the function is a core collection of scientific doc-
uments, which may also be manually collected by domain experts
and indicates their existing knowledge base,2 and the task of this
function is to extensively collect relevant articles from the entire
dataset based on the core collection and return a set of relevant
articles.

Two ranking lists are initially generated—one is based on the cosine
similarities between the vectors of individual articles and the core
collection, which are created by a Doc2Vec model [45]; and the

2This setting is motivated by the finding that clinical practices usu-
ally record a relatively small number of academic articles collected for
their on-going cases. Thus, this function is to automatically extend this
small group of articles into awell-established dataset of similar articles.



Y. Zhang et al. / International Journal of Computational Intelligence Systems 13(1) 1109–1119 1113

other is based on the grade of membership that an individual arti-
cle belongs to the core collection, in which fuzzy sets are involved.
Then, the nondominated sorting genetic algorithm II (NSGA-II)
[46] is exploited to identify nonnominated solutions (i.e., consider-
ing amulti-objective optimization problem, solutions that are supe-
rior to the rest of solutions when all objectives are considered, but
are inferior to other solutions in one or several objectives [47]), con-
sidering both ranking criteria. The stepwise algorithm of this func-
tion is described as follows:

Step 1: A Doc2Vec model based on the Word2Vec model [45] is
applied to the entire data corpus (including the core collection Δ
provided by domain experts), and each article a is represented by
an abstract vector.

Step 2: A search strategy consisting of a set of search terms is pro-
vided by users, and a combinative search is conducted to return a
set P of articles a′ that coincide with the search strategy.

Step 3-1: The mean Mc of the core collection is calculated as Mc =
∑ a′, and then measure the cosine similarity between Mc and a′.
Return a ranking list R1 based on the similarities.

Step 3-2: Given thatΨa′ andΨ∆ is the set of specific tags (e.g., Mesh
terms and keywords) of one searched article and the core collec-
tion respectively, and F∆

(
a′
)
is the membership grade that article

a′ belongs to the core collection. The membership function F∆ is
defined as follows. Then, rank articles a′ based on the membership
grades and get a ranking list R2.

F∆
(
a′
)
= |Ψa′ ∩ Ψ∆|

|Ψ∆|

Step 4: Exploit the fast-nondominated-sort approach of NSGA-II
[46] to calculate the number of articles da′ that each article domi-
nates (i.e., inferior to article a′ in both ranking lists), and then rank
all the searched articles based on da′—i.e., the larger the higher, the
integrated calculation procedure is given in Algorithm 1.

Algorithm 1: Fast-nondominated-sort approach of NSGA-II to rank the
record results
Input: Set P of returned articles, Ranking list R1, and Ranking list R2
Output: Comprehensive Ranking R3
Steps:
1 For article a′ in P:
2 if R2 [a′] != 0: ← where R2 [a′] is the ranking value of a′ in R2
3 R3 [a′] = The number of mutual articles which are ranked behind a′
both in R1 and R2
4 else:
5 R3 [a′] = The num of articles ranked behind a′ in R1) / 2
6 R3 = P ranked by R3 [a′] for article a′ in P
7 end

The function provides a solution of augmenting a specified knowl-
edge base with limited expert support, in which semantic similari-
ties between scientific articles are exploited.

4. CASE STUDY

Aiming to demonstrate the reliability of the proposed framework
for KBC, a knowledge base for gene-related cardiovascular diseases
was constructed.

4.1. Search Strategy and Data
Preprocessing

Cardiovascular disease has become a key concern in the mod-
ern world and discovering the relationships between cardiovas-
cular diseases and human genes would be a key to provide new
angles to potentially diagnose, curatively treat or manage such dis-
eases. The explosion of literature in this field is evident via a simple
Google search of the public web domain using the simple search
[“cardiovascular disease” AND “genetics”] which returns “About
24,600,000 results (0.43 seconds)” Thus, gene-related cardiovascu-
lar disease has been an emerging topic inmedical science, genomics,
and related disciplines [48].

The PubMed database3 owned by the US National Library of
Medicine and National Institutes of Health is an open-access
database that includes more than 30 million items of biomedical
literature from Medline, life science journals and online books. It
has been widely used as a search engine and data source for both
academic research and professional practice sectors, and thus we
decided to choose the PubMed as the target database.

When considering search strategies, accuracy and coverage are the
two key foci of proposing empirical search strategies, so this case
study set coverage as the priority, and the proposed search strategy
that combines MeSH (Medical Subject Headings) terms, which are
specific tags in PubMed database, and free text in combinations as
follows:

(``Cardiovascular Diseases/genetics'' [Mesh] OR ``Cardiovascular
Diseases'' [Mesh] OR CVD OR Cardiovascular* disease*) AND

(``Genetic Phenomena'' [Mesh] OR Genome* OR Gene OR Genetic*
OR DNA OR RNA) AND (``2008/01/01'' [PDat]: ``3000/12/31''

[PDat])

With the aid of VantagePoint,4 the data-preprocessing was con-
ducted from two aspects: the removal and consolidation of
terms (including words and phrases), and the disambiguation of
author/affiliation names.

An NLP function5 integrated with the VantagePoint was applied
to the combined fields of titles and abstracts of the 142,877 arti-
cles, and retrieved 2,340,100 terms. A term clumping process step

3More information can be found on the website:
https://www.ncbi.nlm.nih.gov/pubmed/

4VantagePoint is commercial software used in text mining and
particularly in science, technology, and innovation text analysis.
Its involvement in this study includes its NLP function and a
light AND function. More details can be found on the website:
https://www.thevantagepoint.com/

5Note that since NLP is not a key focus of this study, in this paper
we simply used the NLP function integrated in VantagePoint. How-
ever, note that any existing NLP functions could adapt to the proposed
methods.
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was then used to remove noisy terms and consolidate technical syn-
onyms, from which 264,125 terms were identified as the key terms
of representing the knowledge base of gene-related cardiovascular
diseases. The stepwise results of the term clumping processing is
given in Table 1.

An author name disambiguation (AND) function was applied to
clean authors and affiliations. Its main foci include: 1) to consoli-
date different presenting formats of the same authors—e.g., “Boer-
winkle, Eric” and “Eric Boerwinkle”; 2) to consolidate the names
of all branches into the name of their head quarter—e.g., “St Vin-
cent’s Hospital, Sydney” and “St Vincent’s Hospital, Melbourne”;
and 3) to remove authors and affiliations that only appear once in
the dataset, since they will not have any co-occurrence instance.
Eventually, 162,817 authors and 11,321 affiliations were retrieved
from their raw lists, with 496,178 author names and 327,216 affil-
iation names respectively. In particular, 117 Australian affiliations
were identified from a raw 607-item list. The lists of cleaned authors
and affiliations would be the main inputs of identifying key players
in gene-related cardiovascular diseases.

4.2. KBC for Gene-Related Cardiovascular
Diseases

The construction of the knowledge base for gene-related cardiovas-
cular diseases includes profiling knowledge landscapes, identifying
key players and detecting potential collaborations, tracking knowl-
edge trends and predicting emergent topics, and criteria-based
knowledge searching and ranking.

4.2.1. Profiling knowledge landscapes

A co-term network Gt (T,Et) was constructed, including the top
5000 high frequency terms and 1,735,189 edges, with the aid of

Table 1 Stepwise results of the term clumping process.

Step Description #T

0 Raw terms retrieved through NLP 2,340,100
1 Remove single-word terms, e.g.,

“information”
2,121,328

2 Remove terms starting/ending with
nonalphabetic characters, e.g., “step 1”
and “1.5 m/s”

2,106,207

3 Remove meaningless terms, e.g.,
pronouns, prepositions, and
conjunctions

2,104,160

4 Remove common terms in scientific
articles, e.g., “research framework”

2,080,349

5 Remove terms appearing in only one
record

317,105

6 Consolidate terms with the same stem,
e.g., “information system” and
“information systems”

264,261

7 Consolidate synonyms based on expert
knowledge, e.g., “co-word analysis” and
“word co-occurrence analysis”

234,719

8 Consolidate synonyms based on given
rules, e.g., removing terms starting with
“existing”

201,512

9 Remove terms appearing less than 4 times; 81,581
NLP, natural language processing.
Note that #T: the number of terms.

VoSViewer [41],6 a smart local moving algorithm was applied for
visualizing the network, as given in Figure 2.

According to Figure 2, the knowledge landscapes of gene-related
cardiovascular diseases are illustrated by four core groups: coro-
nary artery diseases (blue nodes), atrial fibrillation (green nodes),
molecular mechanisms and heart failure (yellow nodes), and pro-
tective effects (red nodes). If targeting one specific node (e.g., atrial
fibrillation), its co-occurrent relationships with other nodes could
be observed as well, as given in Figure 3.

It is clear that this function provides a vivid way to profile the
knowledge landscapes of a given domain by identifying core topics
and their relationships.

4.2.2. Identifying key players and detecting
potential collaborations

Three coauthorship networks Ga (A,Ea), Go (O,Eo) and Gr (R,Er)
were generated respectively for individual researchers, research
institutions, and countries/regions of gene-related cardiovascular
diseases. As an example, the country-based coauthorship network
Gr (R,Er) is given in Figure 4.

As shown in Figure 4, the United States, the United Kingdoms,
France, the Netherlands, Australia, and China are leading the
research of gene-related cardiovascular diseases, and the strengths

Figure 2 Co-term network for profiling the knowledge landscape
of gene-related cardiovascular diseases.

Figure 3 Co-occurrence relationships of atrial fibrillation.

6The default setting of parameters in VoSViewer was exploited, which
has been examined in the above cited reference.
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Figure 4 Country-based coauthorship network for
identifying key players in gene-related cardiovascular diseases.

of their collaborations with other countries could be observed as
well. Similarly, based on the coauthorships, active researchers, insti-
tutions, and countries with strong collaborations with others could
be identified as the key players in a given domain.

Furthermore, since a coauthorship network could meet with the
requirements of complex networks [49], such as scale free and
small world, network analytics could also be applied to further
analyze the topological structure of the network. Considering an
institution-based coauthorship network Go (O,Eo) as an example
and choosing St Vincent’s Hospital (Australia)7 as a target institu-
tion, a resource allocation approach (as is has been proved that this
approach achieves better performance than other algorithms like
Adamic/Adar index and common neighbors [50]) was applied to
fulfill missing links in Go (O,Eo), which then could be facilitated
to detect potential collaborations between unconnected nodes. The
predicted further collaborators and potential collaborators in the
area of gene-related cardiovascular diseases for St. Vincent’s Hospi-
tal are given in Table 2.

This function creates a way to investigate the key players of a given
domain by identifying who they are, exploring how they collaborate
with each other, and predicting how such collaborations will be in
the near future.

4.2.3. Tracking knowledge trends and predicting
emergent topics

The refined SEP approachwas applied to the 142,877 articles, which
were simulated into a bibliometric data stream with 12 time slices,
covering the time period from 2008 to 2019. The SEP for tracking
knowledge trends of gene-related cardiovascular diseases is given
in Figure 5.

7St Vincent’s Hospital has several independent branches in Australia,
such as St VincentMelbourne, and St Vincent Sydney, but in this study,
we combined all these branches as “St Vincent’s Hospital.”

Table 2 Top 5 predicted further collaborators who have collaborated
before and top 5 predicted new collaborators in gene-related
cardiovascular diseases for St Vincent’s Hospital in the world.

Further Collaborators Pre. Str. Est. Coll.

1 Harvard Medical School 0.94 9
2 University College London 0.90 3
3 University of Oxford 0.89 8
4 Massachusetts General Hospital 0.86 5
5 Brigham and Women’s Hospital 0.85 7
New Collaborators Pre. Str. Est. Coll.

1 University of Michigan 0.61 0
2 Washington University School of Medicine 0.57 0
3 Radboud University Medical Center 0.55 0
4 Queen Mary University of London 0.54 0
5 Maastricht University 0.52 0

Note that Pre. Str.: Predicted Collaborative Strength; and Est. Coll.: Existing Collaborations.

208 nodes and 207 edges—i.e., their descendent-predecessor rela-
tionships were generated. Each node represents a specific topic,
with its detailed information on the year of born, the number of
articles, the number of terms, the value of term frequency inverse
document frequency (TFIDF) analysis, and the number of sur-
vival batches. Specifically, regarding the design of “sleeping beauty”
detection, four types of nodes were classified:

• Always alive, indicating a continuous interest from the
community to this topic.

• Resurgence and alive—i.e., the “sleeping beauties” which
became dead topics, then were awaken by the involvement of
possible new concepts, techniques, materials, and devices, and
are still a core interest of the community.

• Dead with resurgence, indicating former “sleeping beauties” but
have already become dead topics again.

• Dead without resurgence, indicating topics either which are
meaningless to the community or whose potential has not been
discovered yet.

The descriptive statistics of nodes in the four types are given in
Table 3. As shown, topics in resurgence and alive have the highest
average value of TFIDF, indicating its relatively high-quality and
emerging potential.

For a reference, the 14 topics in resurgence and alive and their related
information are provided in Table 4, and coinciding with the con-
cept of “sleeping beauties,” these topics are considered as emergent
topics in the area of gene-related cardiovascular diseases.

This function exploits streaming data analytics and machine learn-
ing techniques to draw the knowledge trends of a given domain and
the involvement of “sleeping beauty” detection creates a manner to
predict emergent research topics in the area.

Aiming to compare the benefits of the proposed method, we list
20 terms with the highest term frequency in Table 5. These 20
terms were collected from the term clumping process (i.e., Step 9 in
Table 1) andwere normally considered as the outcome of traditional
bibliometrics for identifying key research topics.
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Figure 5 Scientific evolutionary pathways for tracking knowledge trends of gene-related cardiovascular diseases.

Table 3 Descriptive statistics of SEP topics in four types.

Types #N Max Min Avg. S.D

Always alive 148 1.396 0.028 0.476 0.374
Res. and alive 14 1.400 0.203 0.766 0.405
Dead with res. 3 0.450 0.142 0.334 0.167
Dead without res. 43 0.890 0.017 0.276 0.219
SEP, scientific evolutionary pathways.
Note that #N: number of nodes;Max,Min, Avg. and S.D: themaximum,minimum, average,
and standard deviation of the term frequency inverse document frequency (TFIDF) values.

Table 4 ”Sleeping beauty” detection for predicting emergent topics in
gene-related cardiovascular diseases.

Category Born TFIDF #S

Risk factors 2010 1.244 9
Coronary artery disease 2011 1.229 7
Single nucleotide polymorphisms 2012 1.024 6
Sudden death 2013 0.570 4
Endothelial cells 2013 1.275 6
Metabolic diseases 2013 0.818 5
Prenatal diagnosis 2014 0.696 3
Protective effect 2014 1.400 3
Genome-wide association studies 2014 0.495 3
Stem cells 2015 0.707 4
Biological processes 2016 0.442 3
Multiple myeloma cells 2016 0.279 3
Action potentials 2016 0.337 3
Cardiac involvement 2016 0.203 3
TFIDF, term frequency inverse document frequency.
Note that #S: the number of survival years.

It is clear that the key outcome of the proposed method is Figure 5,
in which all terms in Table 5 could be identified, and then Table 4
provides a supplementary source to identify emerging topics (i.e.,
significant and within increasing interests to the community). Ini-
tially, the overlaps between Tables 4 and 5 (e.g., “risk factors” and
“coronary artery disease”) could the potential cross-boundaries in
emerging topics and key topics in the area of gene-related cardio-
vascular diseases. We conducted an extensive consultation with our

Table 5 Top 20 terms with the highest term frequency on gene-related
cardiovascular diseases.

No. Term No. Term

1 Cardiovascular disease 11 Endothelial cells
2 Heart failure 12 Multiple myeloma
3 Myocardial infarction 13 Protective effect
4 Oxidative stress 14 Ischemic stroke
5 Gene expression 15 Molecular mechanisms
6 Risk factors 16 Underlying mechanisms
7 Coronary artery disease 17 Cardiac function
8 Type 2 diabetes 18 Diabetes mellitus
9 Blood pressure 19 Mouse model
10 Cardiovascular disease risk factors 20 Protein expression

clinical and research experts, and they agreed with the results based
on their expertise and domain knowledge. They also concluded
the following observations and may anticipate our further studies:
1) the life of “sleeping beauty” terms may be due to more specific
knowledge requiring changes in use of terminology to define the
areas of emergent interest in clinical and research areas; 2) they
expressed no surprise that these topics and terms are evolving and
appear interesting for further research in papers such as this and for
validation in clinical settings i.e., the findings from the use of the
KBC are not discordant with clinical experts understanding of the
topics.

4.2.4. Criteria-based knowledge searching
and ranking

A user-friend interface was specifically designed for this function,
which consists of 2 sets of auto-completed input textboxes for search
terms, an input textbox for the expert knowledge-based core col-
lection, and an output panel for listing ranked relevant documents
searched from the entire dataset. The interface is given in Figure 6.
Specifically, there are five steps to utilize this interface:

Step 1: Import the full knowledge base—the dataset;

Step 2: Select a group of entities (including diseases, symptoms,
drugs, etc.), terms and/or another group of gene terms as inputs,
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Figure 6 Interface for the function of criteria-based knowledge
searching and ranking.

those selected terms are automatically combined by “OR” inside the
group and “AND” between the group to form search criteria, rep-
resenting the co-occurrence of 2 term-groups from a bibliometric
perspective.

Step 3: Click button “search,” articles which meet with the search
criteria will be retrieved and related bibliographic data is displayed
on the bottom panel.

Step 4: Pick out a set of core collection which contains one or more
article(s) from the dataset based on expert opinion and type in their
PubMed IDs, then click button “Confirm,” the details of picked set
will be displayed.

Step 5: Click button “Calculate Semantic Similarity” to calculate the
similarity of every single article in search results with the set of core
collection based on a pretrained doc2vec model. All the searching
results will be redisplayed and ranked by the similarity from high
to low in the text field of “Semantic Ranking Results.”

Step 6: Click button “Calculate MeSH Similarity” to calculate the
similarity of every single article in search results with the set of
core collection based on the num of mutual their MeSH terms. All
the searching results will be redisplayed and ranked by the num of
mutual MeSH terms from high to low in the text field of “MeSH
Ranking Results.”

Step 7: Click button “Comprehensive Ranking” to apply fast-
nondominated-sort approach of NSGA-II to the semantic and
MeSH ranking lists, a new comprehensive ranking list would be
generated. All the searching results will be redisplayed and ranked
by the new ranking value from high to low in the text field of “Com-
prehensive Ranking Results.”

This function directly interacts with users and provides a solution
of knowledge search and augmenting an existing knowledge base
with limited expert support.

5. DISCUSSION AND CONCLUSIONS

This paper proposes a methodology for developing a KBC frame-
work by applying computational intelligent techniques through
the integration of intelligent bibliometrics. Specifically, co-word
and coauthorship statistics were exploited for profiling research
domains, and identifying research topics and key players; network
analytics (e.g., link prediction approaches) were integrated for ana-
lyzing the topological structures of generated networks—e.g., rec-
ommending potential collaborators for individual researchers and
research institutions; streaming data analytics and learning tech-
niques were integrated for tracking knowledge trends and predict-
ing emergent topics; and the word2vec model was facilitated for
measuring the similarities between scientific articles. The demon-
stration of this framework in the case of gene-related cardio-
vascular diseases illustrates the feasibility and reliability of the
proposed method. Despite that certain existing techniques in bib-
liometrics and computational intelligence were exploited in the
proposed framework, modifications were conducted to adapt to
practical needs, such as the reduction of human intervention and
computational cost.

It is clear that KBC, as well as knowledge base argumentation, is a
fundamental step for developing recommender systems and other
practical applications. That is to say, this framework provides such
a solution of constructing and augmenting knowledge bases with
limited expert support and in an express manner, which could be
helpful in a wide range of application domains where knowledge
management and information systems can be usefully applied to
solve big data analysis problems. Additionally, despite a specific
focus on the areas of science and technology, with the aid of exter-
nal data sources, such as social media (e.g., Twitter), the framework
could be adapted to relatively general cases, such as user preference-
based behavior analysis and policy-oriented sentiment analysis.

Certain limitations of the proposed framework are noted and
remain for future studies, including 1) this framework concentrates
on the use of bibliographical information of scientific articles based
on abstracts and titles which, despite being valuable and commonly
acceptable for initial or quick review of articles, may not represent
the possible complications in analyzing full-text articles where the
analysis of the entire article may create a bonus for uncovering sen-
timents and semantics; 2) the construction of a new knowledge base
inherently lacks proven validation measurements, and thus future
research should develop approaches that combine qualitative and
quantitative methodologies for evaluating KBC methodology and
models of performance from multiple aspects, such as knowledge
coverage, the rate of information missing, and the accuracy of topic
extraction and further relationship identification; and 3) since this
is still a framework, further investigation is required to connect it
with studies of recommender systems and other applications.
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