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Abstract

We introduce STrain Resolution ON assembly Graphs (STRONG), which identifies strains
de novo, from multiple metagenome samples. STRONG performs coassembly, and
binning into metagenome assembled genomes (MAGs), and stores the coassembly
graph prior to variant simplification. This enables the subgraphs and their unitig
per-sample coverages, for individual single-copy core genes (SCGs) in each MAG, to be
extracted. A Bayesian algorithm, BayesPaths, determines the number of strains present,
their haplotypes or sequences on the SCGs, and abundances. STRONG is validated
using synthetic communities and for a real anaerobic digestor time series generates
haplotypes that match those observed from long Nanopore reads.
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Introduction
There is a growing realisation that to fully understand microbial communities it is neces-
sary to resolve them to the level of individual strains [42]. The strain is for many species
the fundamental unit of microbiological diversity. This is because two strains of the same
species can have very different functional roles. The classic example is E. coli, where one
strain can be a dangerous pathogen and another a harmless commensal [28]. The best
definition of a strain, and the only one that avoids ambiguity, is a set of clonal descen-
dants of a single cell [14, 46], but strain genomes by this definition can only reliably be
determined by sequencing cultured isolates or single cells [37]. The former is not repre-
sentative of the community and the latter is still too expensive and low-throughput for
many applications as well as producing only fragmentary genomes. For these reasons,
there is a practical need for efficient methods that can profile microbial communities at
high genomic resolution.
In contrast to 16S rRNA gene sequencing, shotgun metagenomics has the potential

to resolve microbial communities to the strain level. This is because it generates reads
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from throughout the genomes of all the community members. It also has the additional
advantages of reduced levels of bias and the capability to reconstruct genomes. There
are many methods for reference-based strain resolution from metagenome data [1, 42,
49], but they are, and will continue to be, limited by the challenge of comprehensively
isolating and sequencing the genomes of diverse microbial strains. Comprehensive refer-
ence genome databases may be possible for a few slowly evolving species or particularly
well studied pathogens but for the entirety of a complex community it is unlikely to ever
be tractable. For example, in a recent de novo large-scale binning study of the relatively
well-studied human gut microbiome, it was found that 77% of the species recovered did
not have a reference genome in public databases [38]. This suggests that even less of the
strain-level diversity in those samples would be represented in a genome database. These
observations motivate the need for de novo methods of metagenomic strain resolution.
In the metagenomics context, we adopt the definition of a ‘metagenome strain’ as a

clonal subpopulation with sufficiently low levels of recombination with other strains, that
it can be distinguished genetically from them. This does not require that recombination
between strains does not occur, rather that either because of physical separation or selec-
tion, it has not been sufficiently strong relative to the rate of mutation [47], to generate a
continuum of diversity throughout the genome. This means members of a ‘metagenome
strain’ may differ substantially from each other particularly in rapidly evolving accessory
regions and the subpopulation as a whole may descend frommultiple cells but with a core
genome that has descended from a single cell in the recent past. This is equivalent to the
definition of ‘lineage’ in [35]. For ease, in the discussion below we will refer to strain in
the metagenome context when properly we mean this looser definition of a strain as a
genetically distinct subpopulation.
De novo assembly of genomes from short read metagenome sequences remains

very challenging. Assemblies become fragmented for two reasons: firstly, low coverage
genomes will fragment through chance occurrences where sequence coverage drops out,
following Lander and Waterman statistics [18], secondly, if either intra or inter-genomic
repeats are present then the assembly graphs used to represent possible sequence over-
laps become very complex, and it is unclear which paths correspond to true genomes.
Both of these issues are particularly problematic for metagenomes, where there can be a
wide range of species abundances, and in a complex community a significant fraction of
the species may be at low coverage. The first challenge can be addressed by sequencing
more deeply. More difficult to address is the problem of repeats. Just as they do in iso-
late genome sequencing, intra-genomic repeats such as the 16S rRNA operon will lead
to uncertainty in metagenomic assemblies, but if multiple closely related strains from
the same species are present then they will possess potentially large regions of shared
sequence. If the strain genomes are of comparable divergence to the reciprocal of the
read length then very complex graphs will result, for typical short read sequencing (75-
150bp) this would be strains at around 98–99.5% sequence identity. The result is that it
is not possible to find long paths in the graph that can be unambiguously assembled into
long contiguous sequence or contigs. For this reason metagenome assemblies for strain-
diverse communities can comprise millions of contigs when made from short read data,
with the added drawback that in the metagenomics context we do not even know which
contig derives from which species. For species that contain multiple very similar strains
(> 99.9%), then we expect better assemblies but the variants are then too far apart to be
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linked or phased by Illumina reads. In that case we may resolve the large-scale genome
structure but not the sequences of the individual strains, which we will refer to as their
haplotypes.
Metagenomic contig binning methods attempt to mitigate the problem introduced

by standard metagenome sample processing approaches, wherein the origin of each
sequence read is unknown. Contig binning works because contigs deriving from the same
or similar genomes will share features that can be learnt without prior knowledge. These
features can be sequence composition, but it is also possible to use per-sample cover-
age depths of contigs as a more powerful feature, if multiple samples are available from
the same (or very similar) communities [2]. There are now numerous algorithms capable
of using both coverage across samples and composition to automatically cluster contigs
and determine from single-copy core gene (SCG) frequencies where the resulting bins
are good quality metagenome assembled genomes (MAGs) [3, 24]. These tools enable
genome bins to be extracted de novo from metagenomes, and are becoming crucial for
studying unculturable organisms, contributing to many exciting discoveries, such as the
description of the Candidate Phyla Radiation [9] or an improved understanding of the
diversity of nitrogen fixers in the open ocean [13].
The resolution of genome binning though, is limited by the resolution of the assembler,

with a typical maximum kmer length of around 100, the best case is that we can resolve to
about 1% sequence divergence, so that bins correspond to something between a species
and a strain. In the presence of strain diversity, those contigs that are shared across strains
will become a consensus of the strains present, in the ideal situation their sequence would
be that of the most abundant strain, but even this is not guaranteed. Contigs that are part
of the accessory genome and present in a subset of strains may be successfully binned
with the core genome, but they may not if they are too short or divergent in coverage.
Consequently, if multiple strains are present in the assembly the MAGs that result from
binning will be an imperfect composite of multiple strains.
Strains in a metagenome can exhibit variation in shared genes, such as inser-

tions/deletions and single-nucleotide variants or SNVs, as well as in their accessory gene
complements. Methods for finding haplotypes on shared genes mostly fall into one of
two types, either they operate on single samples independently [31], or they assume that
only a single strain is present in each sample and then examine the sharing of those hap-
lotypes across samples [36, 45]. The former will be limited by the challenge of resolving
haplotypes purely from overlaps at least for short reads, the latter will break down if sig-
nificant strain diversity exists within a sample. Recently, we introduced DESMAN [39]
to resolve subpopulations in MAGs using variant frequencies on contigs when multiple
samples from a community are available. This is similar to contig binning using coverage
but it can be viewed as a relaxed form of clustering closer to non-negative matrix fac-
torisation, because each variant can appear in more than one subpopulation haplotype.
Similar strategies had been proposed prior to DESMAN but using variant frequencies
on reference genomes e.g. Lineages [35] and Constrains [32]. DESMAN and other earlier
methods are all ‘linear mapping-based methods’ where metagenomic reads are mapped
onto a linear sequence, either a reference or consensus contig and the variant positions
identified. This has multiple drawbacks: firstly, the type of variant that can be represented
is limited to changes at a single base; secondly, mapping onto a linear sequence can be
challenging when there is variation present yielding unreliable results [21]; thirdly, it treats
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every variant as independent ignoring the co-occurrence of variants in reads, which is a
powerful extra source of information when strain divergence is greater than the inverse
of read length, when we would expect most reads to contain more than one variant. The
last issue can be addressed by keeping track of which variants appear in which reads but
that requires extra bookkeeping [20].
To address these limitations, we introduce a new method, STRONG (Strain Resolution

ON Graphs), for analysing metagenome series when multiple samples are available either
from the same microbial community e.g. longitudinal time-series or cross-sectional stud-
ies where the communities are similar enough to share a significant fraction of strains.
STRONG can determine the number of ‘metagenome strains’ in a MAG formed from
binning of a coassembly of all the samples, together with their sequences across multiple
single-copy core genes, which we refer to as strain haplotypes, and the coverages of each
strain in each sample. STRONG avoids the limitations of the variant-based approaches
by resolving haplotypes directly on assembly graphs using a novel variational Bayesian
algorithm, BayesPaths.
This graph-based approach allows more complex variant structure and incorporates

read information. The usefulness of graphs for understanding microbial strains has
been noted before, and efficient algorithms developed for querying complex graphs and
extractingmore complete representatives ofMAGs in the presence of strain diversity [10].
STRONG, however, is the first time that graphs have been used in an automated workflow
to actually decompose that strain diversity into haplotypes across multiple genes using
multiple samples. We compare STRONG to both the current state of the art, DESMAN,
and a recent single-sample method mixtureS [31] on synthetic microbial communities
and a real metagenome time series from an anaerobic digester. In the former case we vali-
date using the known genome sequences, and for the latter we compare abundant MAGs
with haplotypes derived independently from Oxford Nanopore MinION long reads.

Results
STRONG pipeline

The detailed pipeline is described in the Methods but the key steps are summarised in
Fig. 1 and reiterated here. We start from multiple samples of the same community and
jointly coassemble them with metaSPAdes, we save a high resolution graph (HRG) early
in the assembly process that preserves all the variant information in the coassembly. The
metaSPAdes assembly process then proceeds as normal and the resulting contigs are
binned either with CONCOCT, used for all the results generated here, or alternatively
Metabat2 [25]. We annotate the single-copy core genes in the contigs, allowing us to iden-
tify a subset of bins as MAGs. A novel algorithm was then developed to map these SCG
ORFs onto the HRG and extract the complete assembly subgraphs corresponding to the
genes of interest (“Methods - Relevant subgraph extraction” section). We obtained per
sample unitig coverages on these subgraphs by threading reads directly onto them. These
subgraphs were simplified with a noise filtering algorithm that used the MAG coverage
depths, calculated as the length weighted average of the contigs assigned to that MAG.
The simplified subgraphs contain all the information required for the BayesPaths algo-
rithm (“Methods - BayesPaths” section), that simultaneously solves for the number of
strains present, their coverage in each sample, and their sequences on the SCGs. SCGs
from the same MAG are linked through the binning process and jointly solved in the
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Fig. 1 STRONG pipeline. This figure illustrates the principal steps in the STRONG pipeline (see “Methods -
STRONG pipeline” section). Step 1) Co-assembly with metaSPAdes and storage of a high-resolution graph
(HRG). Step 2) Contig binning with CONCOCT or Metabat2 and annotation of single-copy core genes (SCGs).
Step 3) Mapping of SCGs onto the HRG and extraction of individual SCG assembly graphs together with
per-sample unitig coverages. Step 4) Joint solution of SCG assembly graphs from each MAG with BayesPaths
to determine strain number, haplotypes and per-sample coverages

strain resolution procedure to generate linked strain resolved sequences for each SCG.
We will refer below to the SCG sequences for a given strain as its haplotype. The pipeline
also applies DESMAN [39], to the same MAGs for comparative purposes, and will per-
form benchmarking if known genomes are available. It is important to note that some
SCGs will be filtered during the BayesPaths procedure, see “Methods” section, so that
sequence inference is only performed on a subset in the final output.
The primary output of the STRONG pipeline comprises a collections of MAGs com-

plete with strain number estimates, strain coverages across samples, and strain haplotype
sequences on the filtered subset of SCGs. It does not perform assignment of accessory
genes to strains. It will additionally perform taxonomic assignment ofMAGs using GTDB
[11] and generate phylogenetic trees for strains within MAGs and if evaluation genomes
are available generate metrics of strain quality.

Synthetic data sets

In order to provide an example metagenome data set with a known strain configura-
tion for each species, we created a synthetic community comprised of 100 strains, with
known genomes deriving from 45 species, with 20 species represented by a single strain,
10 with two strains, 5 with three, 5 with four and 5 species with five strains. We then
generated four data sets from this community with the same total number of reads (150
million 2X150 bp) but increasing sample numbers (3, 5, 10 and 15 samples). This config-
uration, where most species have a single strain, might be an appropriate approximation
to the human gut microbiome [45]. We denote these data sets Synth_S03, Synth_S05,
Synth_S10 and Synth_S15. For each sample number, random species abundances were
generated from a log-normal distribution, with strain proportions from a Dirichlet with
unit variance. Full details of the synthetic sequence generation are given in the Methods.
The STRONG pipeline was applied to each of these data sets in turn generating MAGs

for which strains were then resolved. In Fig. 2 we illustrate the STRONG output for a
single gene, COG0532 ‘Translation initiation factor IF-2’ [44], from one MAG, Bin_55
of the ten sample synthetic data set, giving the resulting decomposition of the assembly
subgraph into three strains. Noting that the strains were resolved in this MAG over 22
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Fig. 2 BayesPaths algorithm. This illustrates the BayesPaths algorithm for a single COG0532 from one MAG,
Bin_55 of the ten sample synthetic data set. The algorithm predicted 3 strains. We show the input to the
algorithm: A the unitig coverages across samples plus B the unitig graph without strain assignments. The
outputs of the algorithm are shown in C the assignments of haplotypes to each unitig, D the strain intensities
across samples, effectively coverage divided by read length (see “Methods - BayesPaths” section), and E
unitig graphs for each haplotype with their most likely paths. This algorithm is explained in detail in the
“Methods - BayesPaths” section

single-copy core genes simultaneously, and that for this 3.4 kbp gene the haplotypes were
found without errors.
To provide a comparison to STRONG we ran two other algorithms, the single sample

algorithm mixtureS [31], and our existing SNV based multi-sample algorithm DESMAN
[39]. STRONG and DESMAN utilising variant graphs and read-mapping respectively are
completely independent algorithms.We ranmixtureS with default parameters combining
the individual sample data sets so that the overall strain coverages were the same across
algorithms. In Fig. 3 we compare the algorithms in terms of their ability to correctly recon-
struct the number of strains in aMAG. By far themost reliable predictions were generated
by STRONG, although there was a tendency to be conservative and slightly underestimate
strain number. DESMAN did less well although it still outperformed mixtureS, which
exhibited no significant association between true and predicted strain number.
For each of the four synthetic data sets we considered only MAGs which were assigned

to species (see “Methods” section) with at least two strains - 20, 21, 25 and 23 MAGs,
from the Synth_S03, Synth_S05, Synth_S10 and Synth_S15 data sets respectively. For each
MAG we mapped the predicted haplotypes for the optimal strain decomposition for the
STRONG pipeline, DESMAN algorithm and mixtureS onto the known reference strains.
We then assigned each haplotype prediction to its best matching reference. The best such
match was denoted ‘Found’. If more than one predicted haplotype was matched to the
same reference, all but the best matching ‘Found’ strain were denoted as ‘Repeated’. If a
reference had no haplotype prediction that matched to it better than the other references,
it was denoted as ‘Not found’. For the aggregate across these MAGs we show the total
number of such strains for each of the four data sets in Fig. 4.
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Fig. 3 Actual versus predicted strain number for the synthetic community data sets. For each MAG we
compare the actual number of strains against the predicted number. The number in each tile gives the total
no. of MAGs observed with those values. The colour of a tile the divergence between true and predicted
strain numbers. Results are shown for all four data sets Synth_S03, Synth_S05, Synth_S10 and Synth_S15 with
increasing sample number and three algorithms, DESMAN, STRONG, and mixtureS. The results of Pearson’s
correlations are given in the title texts

STRONG consistently performs better than DESMAN and mixtureS in terms of num-
ber of strains in the ‘Found’ category, in total across all four samples it resolved 216 strains
vs. 208 for DESMAN i.e. a 3.8% increase and 40% more than mixtureS which resolved
just 154. It also had fewer ‘Repeated’ strains, 6 vs. 30 for DESMAN: a reduction of 80%
and as compared to 64 for mixtureS. The strains ‘Found’ were also reconstructed more
accurately, the per base error rate for the BayesPaths reconstructions averaged across
all MAGs and all data sets was just 0.052%, three times lower than that for DESMAN,
0.176%, and nearly ten times more accurate than mixtureS at 48.7%. This improvement
was observed for all four data sets (see Table 1 and Fig. 5).
STRONG was also better at predicting the strain relative abundances. Regressing true

abundance against predicted abundance gave an adjusted R2 of 0.85 averaged across sam-
ple numbers for STRONG vs. 0.81 for DESMAN. When this was restricted to MAGs
where the number of strains was correctly predicted, then both algorithms did better
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Fig. 4 No. of strains resolved by STRONG, DESMAN and mixtureS algorithms in the synthetic community data
sets. For MAGs with two or more strains we mapped haplotypes to the references and assigned each
predicted haplotype to its best matching reference. The best such match was denoted ‘Found’. If multiple
haplotypes matched to the same reference all but the best matching were denoted as ‘Repeated’. If a
reference had no predicted haplotypes matched to it, it was denoted as ‘Not found’. The bars give the total
numbers in each category summed over MAGs for the three methods (DESMAN, STRONG and mixtureS) and
the panels results for the four different data sets with increasing number of samples (Synth_S03, Synth_S05,
Synth_S10 and Synth_S15)

but STRONG still out performed DESMAN, with a mean R2 of 0.98 compared to 0.95.
STRONG filtered roughly 1/3 of the SCGs as outliers although the exact number varied
across the four data sets (see Table 1). Outlier SCGs were identified by coverage error
rates that exceeded those expected based on analysis of the median absolute deviations,
a procedure designed to identify contaminant SCGs introduced by incorrect contig bin-
ning (see “Methods” section). The method mixtureS does not predict abundances across
multiple samples so was not compared here.
The STRONG pipeline outperforms DESMAN, but it still misses strains that are

present. In total across all MAGs and data sets, 64/280 i.e. 22.8%, of strains were
missed by STRONG. Some of these, 7 out of 64, were below the minimum coverage of
detected strains (5.68), but most were not, suggesting that either they were not sufficiently
divergent in terms of nucleotides or coverage profiles to be detected. Examination of
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Table 1 Comparison of STRONG, DESMAN and mixtureS for strain reconstruction in the synthetic
community data sets

Method Data
set

MAGs #SCGs #fSCGs Found Not F. Rep. Err R2 fG

STRONG Synth_S03 20 33.18 19.71 45 20 3 0.069 0.81(0.99) 26/38 = 0.68
DESMAN 42 23 2 0.125 0.81(1.00) 26/38 = 0.68
mixtureS 35 30 8 0.706 — 8/38 = 0.21

STRONG Synth_S05 21 32.13 22.71 53 13 2 0.062 0.87(0.99) 29/38 = 0.76
DESMAN 50 16 9 0.222 0.83(0.96) 20/38 = 0.53
mixtureS 38 28 9 0.590 — 7/38 = 0.18

STRONG Synth_S10 25 32.05 22.72 58 19 0 0.036 0.84(0.99) 30/43 = 0.70
DESMAN 58 21 10 0.206 0.79(0.92) 25/44 = 0.57
mixtureS 43 36 7 0.279 — 9/44 = 0.20

STRONG Synth_S15 23 32.17 24.19 60 12 1 0.046 0.87(0.97) 34/42 = 0.81
DESMAN 58 14 9 0.144 0.81(0.92) 25/42 = 0.60
mixtureS 38 34 16 0.321 — 9/33 = 0.21

Data set: Results are shown for the four different sample numbers. MAGs: The number of MAGs reconstructed with more than
two reference strains. #SCGs: The average number of SCGs found in each MAG. #fSCGs The average number of SCGs after filtering
in STRONG. Found: Number of strains matched to a reference strain. Not F.: Number of reference strains that had no predicted
strain with a closest match to it. Rep.: Number of strains matching to a reference that already has a better match. Err: The average
error rate of the ‘Found’ strains in percentage base pairs. R2: Correlation between predicted and actual strain relative proportions
given as adjusted R2, the figure in parentheses is when restricted to MAGs where the number of strains was correctly
predicted.f G : the fraction of MAGs where the number of strains was correctly inferred

phylogenetic trees for the haplotypes and reference genomes constructed using the SCGs
revealed that in many cases ‘Not found’ strains had identical SCG haplotypes to those that
were resolved.
The BayesPaths algorithm used to resolve strains in STRONG uses variational inference

(see “Methods - BayesPaths” section), an approximate Bayesian strategy [7]. This has the
advantage of providing estimates of uncertainty in the inference of both the strain hap-
lotypes and their abundances. The algorithm predicts the marginal probabilities that a
given strain passes through a particular unitig. To provide a single sequence for the eval-
uation above and applications below we output the most likely path and hence sequence
for each strain. However, we also calculate an estimate of path uncertainty by sampling
many possible paths (default 100) consistent with the marginal distributions and calcu-
late the average number of nodes that deviate from the most likely path, we refer to this
as the divergence. For the ‘Found’ strains this correlates strongly with actual error rate
to the reference strain (Pearson’s correlation r = 0.54, p < 2.2e − 16 - see Additional
file 1: Figure S1). Thus the divergence is a useful prediction of uncertainty in the haplo-
type sequence inference, enabling us to estimate error rates in real data sets in the absence
of known reference sequences. Roughly speaking, the expected per base error rate is 0.01
times the divergence, so that a strain divergence of 0.1 predicts a 0.1% error rate. In real
data sets, the uncertainty estimates in the abundances are also useful, placing bounds on
the abundance of individual strains in each sample.
In Additional file 1: Table S3, we give approximate run times for each component of

the STRONG pipeline on the synthetic community data sets, using 64 threads on a stan-
dard bioinformatics server. The BayesPaths step is the most time consuming part of the
analysis (up to 36 hours), but it is still comparable to the initial coassembly. The only
part of the pipeline with substantial memory requirements is the initial coassembly with
metaSPAdes, the other steps are CPU limited.
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Fig. 5 Error rates for ‘Found’ strains against coverage depth for STRONG, DESMAN and mixtureS algorithms
in the synthetic community data sets. For the ‘Found’ strains we computed per base error rate to the
matched reference, this is shown on the y-axis, against strain total coverage depth summed across samples
on the x-axis, both axes are log transformed. The results are separated across methods (DESMAN, STRONG
and mixtureS) and sample number in the synthetic community

Limits of strain diversity resolvable by STRONG

The synthetic data sets considered above had at most five strains present for each species.
To determine the upper limit on the number of strains resolvable by STRONG we also
simulated a community with higher strain numbers. This comprised just twelve species
but with strain numbers that increased from five to a maximum of ten, with two species
with each strain number, i.e. 90 genomes in total. We generated four data sets using this
strain configuration, using the same strategy of increasing sample numbers (3, 5, 10 and
15 samples) as outlined above, but with a higher total read number (250 million 2X150
bp reads) to ensure that most strains had a coverage above the detection limit. We denote
these data sets Synth_M10_S03, Synth_M10_S05, Synth_M10_S10 and Synth_M10_S15.
We ran the complete STRONG pipeline on these four high strain diversity sets. We

do not present results from running the other two algorithms since they were signifi-
cantly less effective than STRONG on the lower diversity data sets, and we would not
expect that to change at high strain number. The pipeline generated 11 MAGs out of
the 12 species possible, for each of the data sets except for when five samples were
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Fig. 6 Strain numbers resolved by STRONG in the high strain diversity synthetic community data sets. A For
each MAG we compare the actual number of strains against the predicted number. The number in each tile
gives the total no. of MAGs observed with those values. The colour of a tile the divergence between true and
predicted strain numbers. Results are shown for all four high strain diversity data sets: Synth_M10_S03,
Synth_M10_S05, Synth_M10_S10 and Synth_M10_S15 for the STRONG algorithm only. The results of
Pearson’s correlations between actual and predicted strain number were for Synth_M10_S03 (r = 0.62, p =
0.04), Synth_M10_S05 (r = 0.57, p = 0.11), Synth_M10_S10 (r = 0.59, p = 0.05), and Synth_M10_S15 (r = 0.52, p
= 0.10). B The same data are shown but now for each tile we give the mean fraction of predicted strains that
were ‘Found’ i.e. mapped uniquely onto a reference strain

used (Synth_M10_S05) when 9 MAGs were obtained. In Fig. 6A, we compare actual vs.
predicted strain number for these MAGs across data sets. Overall, we did observe cor-
relations between the two, so that MAGs with more strains generally had more strains
predicted, but not the highly significant relationships we found in the less diverse syn-
thetic communities. The correlations also did not noticeably improve with increased
sample number. In contrast, the accuracy of the resolved strains did. From Fig. 6B we see
that the proportion of predicted strains that match uniquely to reference strains increased
for higher sample numbers and for one MAG in the 15 sample data set we predicted nine
strains with each uniquely mapping to a true reference. Themean error rate of the ‘Found’
strains decreased with sample number too, from a mean error rate of 0.31% for the three
sample data set Synth_M10_S03, to 0.27%, 0.18% and 0.12% for five, ten and fifteen sam-
ples respectively. As for the simpler synthetic communities, error rates decreased with
increasing strain coverage for all sample numbers (see Additional file 1: Figure S2).

Impact of variability in strain proportions across samples on reconstruction accuracy

The BayesPaths algorithm depends on differences in strain profiles across samples in
order to link unitigs into haplotypes. In some real communities, strain proportions may
actually be surprisingly stable, as discussed below. The synthetic communities analysed
above generated strain relative abundances in each sample from a Dirichlet distribution
with unit variance which is equivalent to a uniform distribution, this implies a high degree
of variability between samples. To relax this assumption and provide benchmarks in the
case where strains may have more stable proportions we generated an additional set of
benchmark examples. We used a Dirichlet distribution to first generate a mean strain
profile for each MAG and then generated the individual sample profiles from this, again
using a Dirichlet but with a precision, i.e. inverse variance parameter θ , that can be varied
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across data sets. The result is a hierarchical Dirichlet distribution for strain proportions,
that enables us to control the expected variability andmodel potentially more stable strain
proportions (see “Methods” section).
We generated three ten sample data sets all comprising the same ten species, each with

five strains, but with increasing precisions for the sample level Dirichlet corresponding
to reduced difference in profiles between samples. The first had θ = 1, which corre-
sponds to strain proportions that differ greatly from one sample to another, the second
θ = 10, and the third θ = 100, we denoted these Synth_T1_S10, Synth_T10_S10, and
Synth_T100_S10 respectively. The results of running STRONG on these three data sets
are summarised in Additional file 1: Table S4. We confirmed the expected reduction in
strain variability with increasing θ , by computing the average coefficient of variation in
strain proportions in each data set, which is simply the standard deviation in strain rela-
tive abundance divided by the mean. This decreased from 1.45 in Synth_T1_S10, to 0.65
in Synth_T10_S10, and 0.23 in Synth_T100_S10. This reduction in variability was not
accompanied by a clear reduction in the number of strains found, or number of MAGs
for which the correct number of strains was predicted (that is five), but there was a
decrease in the accuracy with which the strain haplotypes were reconstructed. The error
rate increased from pratically zero in Synth_T1_S10, to 0.086% at the intermediate θ value
Synth_T10_S10, to 0.38% for the most stable strain configuration, Synth_T100_S10.

Anaerobic digester time series

We next applied the STRONG pipeline to a real metagenomics time series, compris-
ing ten samples taken at approximately 5 weekly intervals, from an industrial anaerobic
digestion reactor (see Additional file 1: Table S5 and Methods for details). This provides
an evaluation community of intermediate complexity to test the pipeline’s capability to
resolve strains and reconstruct intraspecies dynamics. Each sample was sequenced on the
NovaSeq platform with 2x150 bp reads at a mean depth of 11.63 Gbp. One sample was
also run on a Nanopore MinION flow cell producing 43.78 Gbp of reads with a read N50
of 6,727 bp and a maximum length of 108 kbp.
CONCOCT binning produced 905 bins, of which 309 had 75% of SCGs present in

single-copy, which we designate MAGs. In total 11 of these MAGs exhibited overlap-
ping SCG graphs and were merged into 6 composite MAGs (see “Methods - STRONG
pipeline” section), so that 304 MAGs were actually used in the strain decomposition. We
calculated coverage depth per sample for each bin and then normalised by sample size to
obtain a community profile at each time point. Overall the reactor exhibited a clear shift
in community structure over time, despite consistent operating conditions, with sample
time explaining 48% of the variation in community structure (p = 0.001 - Additional
file 1: Figure S3). Of the MAGs, 110 had an abundance that changed significantly over
time (Bonferonni adjusted p-value <0.05 from Pearson’s correlation of log transformed
normalised abundance) and these were evenly split between those that increased (55) or
decreased in abundance (55).
We used the STRONG algorithm to resolve strains in the 304 MAGs. This is a complex

data set and running the complete pipeline took over 16 days, of which roughly 60% of
the time was spent on the BayesPaths strain resolution (see Additional file 1: Table S3).
The number of strains found varied between 1 and 7, with a mean of 1.7, shown as a
function of coverage depth in Fig. 7. In total 121 (39.8%) of these MAGs had more than
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Fig. 7 Number of strains resolved by STRONG against MAG coverage depth for the AD time series. Pearson’s
correlation between coverage depth and number of strains (r = 0.36, p = 1.004e− 10). The curve indicates a
LOESS smoothing

one strain, and there was a significant positive association between MAG coverage depth
and number of strains (r = 0.36, p = 1.004e − 10), which is expected, as low coverage
MAGs will be under-sampled. This correlation disappears though when we restrict to all
MAGs with a coverage greater than thirty (r = 0.19, p = 0.1023). On average 20.9 SCGs
were used after filtering for strain haplotype predictions.
For the 108 MAGs that had at least two strains with relative frequencies determined

in five or more samples we used permutation ANOVA to determine whether strain pro-
portions depended on sampling time. In total 13 of the MAGs had an adjusted p-value
<0.05 i.e. 12.0%. For these same MAGs 37 had a total coverage that changed significantly
over time with an adjusted p-value <0.05 i.e. 34.2%. Therefore the intra-species dynamics
are more stable than inter-species, with strain proportions remaining fixed as the MAG
coverages vary, this was true for 33 of the 37MAGs that changed significantly in coverage.
In Fig. 8, we use the Anvi’o program [16, 17] to summarise information on phy-

logeny, taxonomy, normalised coverages in the ten samples, and whether the MAGs
changed significantly in total abundance, together with the number of strains resolved by
STRONG and if those strain relative proportions changed significantly with time. This
was restricted to just those 114 MAGs with an aggregate coverage greater than twenty to
simplify the diagram.
The Nanopore sequencing provides us with a means to directly test the validity of the

STRONG haplotype reconstructions, at least for the most abundant MAGs. The most
abundant MAG, Bin_72, had an aggregate short read coverage depth of 2364.25, across
all the samples. This MAG was assigned to the phylum Cloacimonadota using the GTDB
taxonomy [11]. Interestingly, this is an example of a MAG which changes significantly in
abundance, decreasing over time, (adjusted p = 4.9e − 05) but where the proportions of
the three strains predicted varied less dramatically (R2 = 0.35 adjusted p = 0.089 - Addi-
tional file 1: Figure S4). We will focus on the longest SCG for which strains were resolved,
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Fig. 8 MAG summary for anaerobic digester time series. For the 114 MAGs with aggregate coverage > 20
we give their phylogeny constructed using concatenated marker genes together with their normalised
coverages in the ten samples. We also indicate which MAGs significantly increased (SigUp) or decreased
(SigDown) in total abundance (adjusted p < 0.05), their GTDB phylum assignment, no. of strains resolved by
STRONG and whether the strain abundances changed significantly over time (adjusted p < 0.05) using
permutation ANOVA (SigStrainChange)

COG0532, where the three strains are present in only two variants, haplotypes 0 and 2
being identical on this core gene. In Additional file 1: Figure S5 we give the short read
variant graph for this gene, which in this case is mostly simple bubbles, together with the
assigned haplotypes. In fact, across the 18 SCGs used to decompose strains, haplotypes
0 and 1 were most similar with 99.7% nucleotide identity. These two strains had 99.4%
and 99.1% identity with haplotype 2 respectively. That this pattern was not observed on
COG0532 may suggest some recombination in the evolution of these organisms.
In Fig. 9 we show for COG0532 both the Nanopore reads that map to this gene and

the three haplotypes inferred by BayesPaths, as an Non-metric Multi-dimensional Scal-
ing (NMDS) plot using fractional Hamming distances on the short read variant positions.
These are defined as the Hamming distance between two reads but only on the inter-
secting variant positions and ignoring gaps. We then normalise by the number of such
non-gap intersecting positions to give a distance between 0 and 1. The Nanopore reads
are consistent with the inference of two variants on this gene, as there are two clear clus-
ters observed, and the two modes of those clusters are close to those haplotypes. The
variation around the modes is caused by the high error rate of the Nanopore reads.
In order to provide a quantitative comparison of the Nanopore reads and the STRONG

predictions, we applied the EM algorithm defined in the Methods (Nanopore Sequence
Analysis) on the 1,603 Nanopore reads mapping to this COG (cluster of orthologous
groups). Examining the negative log-likelihood as a function of number of strains, it flat-
tens at two strains (see Additional file 1: Figure S6) and the two strains inferred exactly
match (100% identity over 2,313 bps) haplotypes 0/2 and 1 respectively. Furthermore,
STRONG in this sample predicted frequencies of 28.0% for haplotype 1. This closely
matched the Nanopore haplotype frequencies for this strain of 27.6%. We also ran the
Nanopore EM algorithm for all 18 filtered COGs in this bin separately. For the 11 COGs
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Fig. 9 Comparison of Nanopore reads to STRONG prediction for COG0532 from Bin_72. Non-metric
multidimensional scaling of Nanopore reads that mapped to COG0532 from Bin_72 of the anaerobic digester
time series (red) together with the three haplotypes reconstructed from short reads by STRONG (black 0, 1
and 2). Haplotypes 0 and 2 were identical for COG0532. Distances were calculated as fractional Hamming
distances (see text) on short read variant positions (see “Methods - Nanopore sequence analysis” section).
Blue dashed lines indicate read density contours

where more than one strain was predicted from the Nanopore reads, we compared the
STRONG and Nanopore predictions. For haplotypes 0, 1 and 2 exact matches were found
for 6, 7 and 4 SCGs respectively with average nucleotide identities across all genes of
99.89%, 99.89% and 99.82%.
For lower coverage MAGs we generally obtain a reasonable correspondence between

the STRONG haplotypes and Nanopore predictions. In most cases the number of strains
is comparable between the two, although the accuracy of matches reduces with decreased
Nanopore read counts, as we might expect. As an example, in Additional file 1: Figure
S7 we compare Nanopore reads with the five STRONG haplotypes from COG0072 of
Bin_846, a Firmicutes MAG in the AD time series. The short read variant graph for this
gene is shown in Additional file 1: Figure S8. The most abundant Nanopore mode clearly
matches STRONG haplotype 4, the most abundant strain in this sample, and there is also
some support for haplotypes 0 and 2. There is less evidence for strains 1 and 3, but these
are low abundance in this sample (see Additional file 1: Figure S9). This is confirmed
from the EM algorithm applied to the Nanopore reads matching this gene, where we
would predict four Nanopore haplotypes (Additional file 1: Figure S10). Comparing these
4 Nanopore strains to the STRONG predictions (see Additional file 1: Figure S11) we find
that three closely match: Nanopore haplotype 0 matched best to STRONG strain 4 with
98.8% nucleotide identity, Nanopore haplotype 1 to STRONG 4 with 99.9% identity and
Nanopore haplotype 2 to STRONG strain 0 with 99.7% identity. There is also a correspon-
dence in relative abundance, with the most abundant Nanopore haplotype 1 recruiting
82% of the reads vs 74% relative frequency for the corresponding strain haplotype from
STRONG.
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Discussion
We have demonstrated that on the synthetic data sets with relatively low strain number,
less than or equal to five strains per species, the STRONG pipeline and the BayesPaths
algorithm are able to accurately infer strain sequences on the SCGs and abundances
across samples. Performance does improve with increasing sample number in terms of
the number of strains resolved, but reassuringly even when only a small number of sam-
ples are available we are still able to accurately predict (with 0.068% per base error rate)
strains, and when ten or more samples are available we obtain error rates below 0.05%
i.e. 1 error in every 2000 bps from short read data. This is better performance than the
read-based DESMAN algorithm illustrating the advantage of a graph-based approach.
DESMAN in turn outperformed mixtureS [31], which is also read-based but uses only a
single sample, confirming the advantage of deconvolving across multiple data sets when
these are available. Strains are resolved more accurately as they increase in coverage (see
Fig. 5), and in fact, when coverages exceed twenty fold we can resolve strains very reli-
ably, with just 0.011% error rate averaged across strains in the ten sample low diversity
synthetic data set. This is sufficiently accurate for high-resolution phylogenetics.
There is a decrease in strain reconstruction accuracy when high levels of strain diversity

are present, in the data sets where every MAG had at least five strains, then the per base
error rate increased to 0.18% for ten samples. However, even in this situation correct
strain numbers were inferred in some instances, and at the higher sample number we did
on a number of occasions correctly determine up to eight or nine strains which probably
represents the upper limit for our approach. There was also a substantial decrease in
haplotype reconstruction accuracy when strain proportions became more stable across
samples, although those proportions were themselves accurately predicted. The latter is
important in the context of our observation of stable configurations such as these in the
AD time series. However, given these caveats regarding highly diverse or stableMAGs, we
believe that this pipeline will be useful whenever high quality de novo strains are required
from metagenome short read time series.
We do not present results comparing our approach to the strategy of simply recon-

structing strains as the most abundant haplotypes in individual samples, as used in
StrainPhlAn [45] or inStrain [36]. The implicit assumption in those methods is that one
strain dominates each sample, therefore the strain mixtures that we are testing are outside
their scope. Such a strategy will also inevitably fail to resolve any strains that are not the
most abundant at least somewhere, and furthermore will not estimate strain proportions.
They may be appropriate for some microbes in low strain diversity communities such as
the human gut but will not have the range of applicability of our approach.
This is to our knowledge the first algorithm capable of constructing strains from

metagenomes using assembly graphs frommulti-sample coassemblies. Graph-based hap-
lotype resolution has been applied to viruses [4] and for eukaryotic transcripts [5, 6], but
ours is the first algorithm to resolve strains across multiple gene subgraphs connected
through a contig binning procedure. The BayesPaths algorithm is also a substantial algo-
rithmic advance enabling coverage across multiple samples to be incorporated into a
rigorous Bayesian procedure that gives uncertainties in both the paths (i.e. the sequences)
and the strain abundances.
In addition, to the new strain resolution algorithm, BayesPaths, STRONG incorporates

a number of useful tools for large-scale variant graph processing, in particular, the tools
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for extraction of subgraphs that correspond to individual coding genes and the spades-
gsimplifier tool for error correction on those graphs. These can be applied to any graph
in the GFA format, and could therefore find applicability outside of the context of our
pipeline. This also means that in the future we could add alternative choices for the
coaseembly step, for instance replacing metaSPAdes with MEGAHIT [29].
The STRONG pipeline resolves strains in a MAG collection generated either by CON-

COCTorMetabat2. It will therefore bemost effective if a comprehensive set ofMAGs can
be generated from the coassembly for a particular community. The strain resolution by
BayesPaths does, however, include an additional SCG filtering step so even the low qual-
ity MAGs should be usable. Currently, we are restricted to core genes that are single-copy
and shared across all strains in a MAG.We can in theory use any such genes, specified by
a pipeline configuration file, so if a particular MAG is of interest the pipeline could be run
with a larger set of COGs that are SCGs for that MAG. There would be a cost in terms
of increased running time, which will increase with more genes and unitigs in a roughly
linear fashion.
The limitation to prokaryotes is perhaps more fundamental, the default choice of 36

COGs in STRONG is designed for bacteria and archaea. The pipeline cannot be simply
extended to eukaryotes by specifying a set of COGs that are appropriate for eukaryotes,
because even if a set of core COGs for eukaryotes could be specified, the ORF calling via
prodigal currently implemented, and the SCG subgraph extraction assumes prokaryotic
genes. There is no technical reason preventing an adaptation of the pipeline to eukaryotes
but it would require substantial further work and validation.
STRONG itself operates on prokaryotic MAG collections, but the strain resolution,

BayesPaths, could be applied to any set of SCGs from the same species, these could, if
MAG generation fails for a species of interest, be obtained by mapping SCG containing
contigs to a reference genome, and subgraphs extracted and processed as in the default
STRONG pipeline. This would require some reengineering but it is quite feasible. In fact,
even individual genes could be used for strain resolution without any binning at all, to
provide a lower resolution but more comprehensive picture of strain diversity in a com-
munity. These are both functionalities we plan to add to STRONG in the near future.
BayesPaths could also be used in other application areas, for example for finding viral
haplotypes.
The analysis of a time series from an anaerobic digestor illustrates the practicality of

our pipeline on a realistically sized data set. We should note though that to resolve strains
on these 304 MAGs took nearly 10 days using 64 threads on a standard bioinformatics
server (see Additional file 1: Table S3). The AD analysis also demonstrates the importance
of strain dynamics in a real microbial community with nearly 40% of MAGs exhibiting
strain variation, but this variation was relatively stable compared to the MAG dynamics
themselves. If strains are functionally redundant to one another we would expect signif-
icant neutral fluctuations over time. Therefore this could be evidence for intra-species
niche partitioning.
In general, we found a good correspondence between haplotypes inferred from

Nanopore reads and the STRONG predictions in the AD data set. For the most abun-
dant MAG, Bin_72, they matched very closely. In addition, the relative abundances of
strains were consistent across the two sequencing technologies, despite the use of dif-
ferent DNA extraction protocols, and the different biases inherent in library preparation
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and sequencing platforms. These technical elements in the data generation process are
known to introduce bias at the species level [12], but our findings suggest that intraspecies
abundance may generally be robust against such biases, which makes sense in that all the
strains of a species will have similar physical properties and genomic traits.
STRONG is an effective strategy to de novo resolve subpopulations at high phyloge-

netic resolution within MAGs, but as discussed in the Introduction, it is important to
add the caveat that the haplotype sequences obtained are not equivalent to those from
sequencing cultured isolates, where we can identify the resulting genome with a single
organism present in the original community. The metagenome strains, in the best case,
will correspond to different modal sequences of the target species, about which sub-
stantial unresolved variation may exist. They will correspond to peaks in the probability
distribution of all possible sequence configurations, and as such will provide important
insights into the naturally occurring variation, but there remains the question of how to
identify and quantify the unresolved variation surrounding those peaks. In the worst case,
when STRONG is applied to rapidly recombining microbes, such as those found in the
oceans [37], the resulting sequences may not even be real in the sense of characterising
any true individual.
This is likely to be more of an issue when STRONG is applied to spatial or cross-

sectional data sets, rather than time series, for the latter we expect to sample the same or
very similar clonal populations multiple times, but for the former local adaptation may
lead to variation in accessory genes even between populations that share a recent com-
mon ancestor. An additional unaddressed question is how to determine when this has
occurred, for now we would simply urge caution when using STRONG in cross-sectional
studies of rapidly evolving microbes, and suggest that the term ‘metagenome strain’ or
‘metagenome haplotype’ be used when referring to the output sequences. The same caveat
does of course apply to any current purely bioinformatics strategy for de novo resolu-
tion of genomes from metagenomes. Even if a single sample is used for binning and there
are no subpopulations, the resulting MAG is still a composite and not a strain in the
traditional microbiological sense [46].
An obvious extension of our algorithm would be to resolve the accessory genome into

strain genomes. This could be done on a per gene basis by relaxing the requirement that
every strain passes through every gene, but an approach that incorporates the path struc-
ture in the full metagenomic assembly would be more powerful. Use of the full assembly
may be possible in an efficient manner by factorising the variational approximation on
a per gene basis and allowing the solutions for one gene to depend on the expectations
across their neighbours. Or it may be that more computationally tractable versions of the
algorithm can be developed that will scale to larger graphs. In any case the issues dis-
cussed above of our inferred ‘strains’ containing unresolved variation will become more
pertinent when we extend our algorithm to the full genome, and it will be necessary to
consider not just the most likely genome associated with a subpopulation but also its
variants.
In the future we also plan to directly incorporate long read information into the strain

resolution rather than just using it for validation. It was encouraging therefore to see the
correspondence in strain frequencies between the two approaches. We are confident that
in the near future, through the combination of long reads with methods similar to those
we have introduced in STRONG, that complete metagenome de novo strain resolution,
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i.e. obtaining the complete genomes of all significant clonal subpopulations within a
species, will become a realistic possibility.

Conclusion
We have introduced a complete bioinformatics pipeline, STrain Resolution ON assem-
bly Graphs (STRONG), that is capable of extracting single-copy core gene variant
graphs from short read metagenome coassemblies for individual metagenome assembled
genomes (MAGs). We demonstrated how these graphs and associated per-sample unitig
coverages can be used in a novel Bayesian algorithm, BayesPaths, to find MAG strain
number, haplotypes and abundances. This approach achieves superior accuracy to variant
based methods on synthetic communities and predictions on real data that match those
from long Nanopore long reads.

Methods
Synthetic data set generation

The in silico synthetic communities were generated by first downloading a list of complete
bacterial genomes from the NCBI and selecting species with multiple strains present.
Genomes were restricted to those that were full genome projects, possessed at least 35 of
36 single-copy core genes (SCGs) identified in [3], and with relatively few contigs (< 5)
in the assemblies. Communities were created by specifying species from this list and the
number of strains desired. The strains selected were then chosen at random from the
candidates for each species, with the extra restrictions that all strains in a species were
at least 0.05% and no more than 5% nucleotide divergent on the SCGs from any other
strain in the species. This corresponds to a minimum divergence of approximately 15
nucleotides over the roughly 30 kbp region formed by summing the SCGs. The genomes
used are given in Additional file 1: Tables S1 and S2 and as a csv text file in Additional
file 2.
Each species indexed i was then given an abundance, yi,s, in each sample, s = 1, . . . , S,

which was drawn from a lognormal distribution with a species dependent mean and stan-
dard deviation, themselves drawn from a normal and gamma distribution respectively:

log(yi,s) ∼ N(μi, σi)

where:

μi ∼ N(μp, σp)

and:

σi ∼ Gamma(kp, θp).

For all the synthetic communities we used μp = 1, σp = 0.125, kp = 1 and θp = 1.
The species abundances were then normalised to one (y′

i,s = yi,s/
∑

i yi,s). For each strain
within a species its proportion in each sample was then drawn from a Dirichlet:

ρg,s ∼ Dirichlet(α) (1)

with α = 1 and g = 1, . . . ,G indexing G strains per species. This was the procedure used
for all the data sets except Synth_T1_S10, Synth_T10_S10, and Synth_T100_S10 where
we used a hierarchical Dirichlet first generating for each MAG an expected strain profile
for all samples:
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μi,g ∼ Dirichlet(α) (2)

with α = 1 but then in each sample the strain proportions were generated as:

ρi,s,g ∼ Dirichlet(μiθ), (3)

so that the mean strain proportions were μi with an adjustable precision θ .
This allowed us to specify a copy number for each genome g in species i in each sam-

ple as y′
i,sρg,s. We then generated 150 million paired-end 2x150 bp reads in total across

all samples with Illumina HiSeq error distributions using the ART read simulator [23].
The code for the synthetic community generation is available from https://github.com/
chrisquince/STRONG_Sim.

Synthetic data set evaluation

We can determine which contig derived from which reference genome by considering the
simulated reads that map onto it. We know which reference each of these came from,
enabling us to assign a contig to a genome as that which a majority of its reads derive
from. We can then assign each MAG generated by STRONG to a reference species as the
one which the majority of its contig’s derive from weighted by the contig length.

Anaerobic digester sampling and sequencing

AD sample collection

We obtained ten samples from a farm anaerobic digestion bioreactor across a period of
approximately one year. The sampling times, metadata and accession numbers are given
in Additional file 1: Table S5. The reactor was fed on a mixture of slurry, whey and crop
residues, and operated between 35-40°C, with mechanical stirring. Biomass samples were
taken directly from the AD reactor by the facility operators and shipped in ice-cooled
containers to the University of Warwick. Upon receipt, they were stored at 4°C and then
sampled into several 1-5mL aliquots within a few days. DNA was usually extracted from
these aliquots immediately but some were first stored in a -80°C freezer until subsequent
thawing and extraction.

AD short read sequencing

DNA extraction was performed using the Qiagen Powersoil extraction kit following the
manufacturer’s protocol. DNA samples were sequenced by Novogene using the NovaSeq
platform with 2x150 bp reads at a mean depth of 11.63 Gbp.

AD long read sequencing

Anaerobic digester samples were stored in 1.8 mL Cryovials at -80°C. Samples were
defrosted at 4°C overnight prior to DNA extraction. DNA was extracted from a starting
mass of 250 mg of anaerobic digester sludge using the MP BiomedicalTM FastDNATM

SPIN Kit for Soil (cat no: 116560200) and a modified manufacturers protocol. Defrosted
samples were homogenised by pipetting and then transferred to a MP bioTM lysing
matrix E tube (cat no: 116914050-CF). Samples were resuspended in 938 μL of Sodium
phosphate buffer (cat no: 116560205).
Preliminary cell lysis was undertaken using lysozyme at a final concentration of 200

ng/μL and 20 μL of Molzyme Bug LysisTM solution. Samples were mixed by inversion

https://github.com/chrisquince/STRONG_Sim
https://github.com/chrisquince/STRONG_Sim
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and incubated at 37°C for 30 min on a shaking incubator (<100 rpm). Lysozyme was
inactivated by adding 122μL ofMP bioMT buffer andmixing by inversion. Samples were
then mechanically lysed in a VelociRuptor V2 bead beating machine (cat no: SLS1401) at
5m/s for 20 seconds then placed on ice for five minutes.
Samples were centrifuged at 14000 g for five minutes to pellet the particulate matter

and the supernatant was transferred to a new 1.5 mL microfuge tube. Proteins were pre-
cipitated from the crude lysate by adding 250 μL of PPSTM (cat no: 116560203) and then
mixing by inversion. Precipitated proteins were pelleted for five minutes at 14000 g and
the supernatant was transferred to 1000 μL of pre mixed DNA binding matrix solution
(cat no: 116540408). Samples were mixed by inversion for two minutes.
DNA binding matrix beads were recovered using the MP bioTM spin filter (cat no:

116560210) and manufacturer based spin protocol. The binding matrix was washed of
impurities by complete resuspension in 500 μL of SEWS-M solution (cat no: 116540405)
and centrifuged at 14000 g for five minutes. The DNA binding matrix was then washed
for a second time by resuspension in 500 μL of 80% EtOH followed by centrifugation at
14000 g for five minutes. Flow though was discarded and centrifuged at 14000 g for two
minutes to remove residual EtOH. The binding matrix was left to air dry for 2 minutes
then DNA was eluted using 100 μL of DES elution buffer at 56°C. Elute was collected
by centrifugation at 14000 g for 5 minutes and stored at 4°C prior to library preparation.
Eluted DNA concentration was estimated using aQubit 4TM fluorometer with the dsDNA
Broad Range sensitivity assay kit (cat no: Q32853). 260:280 and 260:230 purity ratios were
quantified using a NanodropTM 2000.
A 1x SPRI clean up procedure was undertaken prior to library construction to fur-

ther reduce contaminant carry over. Input DNA was standardised to 1.2 μg in 48 μL
of H2O using a qubit 4TM fluorometer and dsDNA 1x High Sensitivity assay kit (cat
no: Q33231). Library preparation was undertaken using the Oxford Nanopore© Ligation
Sequencing Kit (SQK-LSK109) with minor modifications to the manufacturer protocol.
The FFPE/End repair incubation step was extended to 30 min at 20°C and 30 min at
65°C, while DNA was eluted from SPRI beads at 37°C for 30 min with gentle agitation.
The SQK-LSK109 long fragment buffer was used to ensure removal of non-ligated adap-
tor units and reduce short fragment carryover into the final sequencing library. The final
library DNA concentration was standardised to 250 ng in 12 μL of EB using a qubit 4TM

fluorometer and dsDNA 1 x High Sensitivity assay kit.
Sequencing was undertaken for 72 hours on an Oxford Nanopore© R 9.4.1 (FLO-

MIN106) flow cell with 1489 active pores. DNA was left to tether for 1 hour prior to
commencing sequencing. The flow cell and sequencing reaction was controlled by a
MinIONTM MKII device and the GUI MinKNOW V. 19.12.5. ATP refuelling was under-
taken every 18 hours with 75μL of flush buffer (FB). Post Hoc basecalling was undertaken
using Guppy V. 3.5.1 and the high accuracy configuration (HAC) mode.

STRONG pipeline

STRONG processes co-assembly graph regions for multiple metagenomic datasets in
order to simultaneously infer the composition of closely related strains for a particular
MAG and their core gene sequences. Here, we provide an overview of STRONG. We
start from a series of S related metagenomic samples, e.g. samples of the same (or highly
similar) microbial community taken at different time points or from different locations.
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The Snakemake based pipeline begins with the recovery of metagenome-assembled
genomes (MAGs) [26].We perform co-assembly of all available data with themetaSPAdes
assembler [33], and then bin the contigs obtained by composition and coverage profiles
across all available samples with CONCOCT [3] or alternatively Metabat2 [25]. Each bin
is then analyzed for completeness and contamination based on single-copy core genes,
and poor quality bins are discarded. The default criterion is that a MAG requires greater
than or equal to 75% of the SCGs in a single copy. While we currently focus on this com-
bination of software tools, in principle we could use any other software or pipeline for
MAG recovery, e.g. we could use MEGAHIT as the primary assembler [29]. For each
MAG we then extract the full or partial sequences of the core genes that we further refer
to as single-copy core gene (SCG) sequences.
The final coassembly graph produced by metaSPAdes cannot be used for strain resolu-

tion because, as with other modern assembly pipelines, variants between closely related
strains will be removed during the graph simplification process. Instead, we output the
initial graph for the final K-mer length used in the (potentially) iterative assembly fol-
lowing processing by a custom executable — spades-gsimplifier based on the SPAdes
codebase — to remove likely erroneous edges using a ‘mild’ coverage threshold and a tip
clipping procedure. We refer to the resulting graph as a high-resolution assembly graph
or HRAG.
The graph edges are then annotated with their corresponding sequence coverage pro-

files across all available samples. As is typical in de Bruijn graph analysis, the coverage
values are given in terms of the k-mer rather than nucleotide coverage. Profile compu-
tation is performed by a second tool for aligning reads onto the HRAG: unitig-coverage.
The potential advantage of this approach in comparison to estimation based on k-mer
multiplicity, is that it can correctly handle the results of any bubble removal procedure
that we might want to add to the preliminary simplification phase in future.
For each detected SCG sequence (across all MAGs) we next try to identify the subgraph

of the HRAG encoding the complete sequences of all variants of the gene across all strains
represented by the MAG. The procedure is described in more detail in the next section.
During testing we faced two types of problems here: (1) related strains might end up in
different MAGs and (2) some subgraphs might consist of fragments corresponding to
several different species. We take several steps to mitigate those problems. Firstly, we
compare SCG graphs between all bins, not just MAGs. If an SCG graph shares unitigs
between bins, then it is flagged as overlapping. If multiple SCG graphs between MAGs
(> 10) overlap then we merge those MAGs, combining all graphs and processing them
for strains together. Following merging any MAG SCG graphs with overlaps remaining
are filtered out and not used in the strain resolution.
After MAG merging and COG subgraph filtering we process the remaining MAGs

one by one. Before the core ‘decomposition’ procedure is launched on the set of SCG
subgraphs corresponding to a particular MAG, they are subjected to a second round of
simplification, parameterised by the mean coverage of the MAG, to filter nodes that are
likely to be noise again by the spades-gsimplifier program. This module is described in
more detail below. The resulting set of simplified SCGs of the HRAG for a MAG are
then passed to the core graph decomposition procedure, which uses the graph structure
constraints, along with coverage profiles associated with unitig nodes, to simultaneously
predict: the number of strains making up the population represented by the MAG; their
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coverage depths across the samples; paths corresponding to each strain within every
subgraph (each path encodes a sequence of the particular SCG instance).
A fraction of the SCGs in a MAGmay properly derive from other organisms due to the

possibility of incorrect binning i.e contamination. In fact, the default 75% single-copy cri-
terion allows up to 25% contamination. In addition, the subgraph extraction is not always
perfect. We therefore add an extra level of filtering to the BayesPaths algorithm, itera-
tively running the program for all SCGs, but then filtering those with mean error rates,
defined by Eq. 20, that exceed a default of 2.5 times the median deviation from themedian
gene error. Filtering on the median deviation is in general a robust strategy for identifying
outliers. As a result of this filtering the pipeline only infers strain sequences on a subset
of the input SCGs. We have found, however, that the number of SCGs for which strain
haplotypes are inferred is sufficient for phylogenetics.

Relevant subgraph extraction

Provided with the predicted (partial) gene sequence, T̄ , and the upper bound on the
length of the coding sequence, L, defined as 3α〈Ūn〉 where 〈Ūn〉 is the average length in
amino acids of that SCG in the COG database, and α = 1.5 by default. The procedure for
relevant HRAG subgraph extraction involves the following steps. First, the sequence T̄ is
split into two halves, T̄ ′ and T̄ ′′, keeping the correct frame (both T̄ ′ and T̄ ′′ are forced to
divide by 3). T̄ ′ and T̄ ′′ are then processed independently. Without loss of generality we
describe the processing of T̄ ′:

1. Identify the path P corresponding to T̄ ′ in the HRAG. We denote its length as LP .
2. Launch a graph search of the stop codons to the right (left) of the rightmost

(leftmost) position of T̄ ′ (T̄ ′′). The stop codon search is frame aware and is
performed by a depth-first search (DFS) on the graph in which each vertex
corresponds to a pair of the HRAG position and the partial sequence of the last
traversed codon. Due to the properties of the procedure and the fact that it deals
with DBGs, the actual implementation encodes frame state as an integer [0,2]
rather than the string of last partially traversed codon. Vertices of this ‘state graph’
are naturally connected following the HRAG constraints. The search is cut off
whenever a vertex with a frame state encoding a stop codon sequence is identified.
Several stop codons can be identified within the same HRAG edge sequence in
‘different frames’, moreover the procedure correctly identifies all stop codons even
if the graph contains cycles (although such subgraphs may be ignored in later
stages of the pipeline). This codon search procedure was originally implemented
for https://github.com/ablab/orf-search and used in [15].

3. The ‘backward’ search of the stop codons ‘to the left’ is actually implemented as a
‘forward’ search of the complementary sequences from the complementary
position in the graph. Note that, as in classic ORF analysis, while the identified
positions of the stop codons ‘to the right’ correspond to putative ends of the coding
sequences for some of the variants of the analyzed gene, positions of the stop
codons ‘to the left’ only provide the likely boundary for where the coding sequence
can start. In particular, left stop codons are likely to fall within the coding sequence
of the neighbouring gene (in a different frame). Actual start codons are thus likely
to lie somewhere on the path (with sequence length divisible by 3) between one of

https://github.com/ablab/orf-search
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the ‘left’ stop codons and one of the ‘right’ stop codons. For reasons of simplicity,
further analysis of edges on the paths between left (right) stop codons ignores the
constraint of divisibility by 3.

4. After the sets of ‘left’ and ‘right’ stop codon positions are identified along with the
shortest distances between them and the T̄ ′ path, we attempt to gather the relevant
subgraph given by the union of edges lying on some path of a constrained length
(see further) between some pair of left and right stop codons. First, for each pair
(s, t) of the left and right stop codon positions we compute the maximal length of
the paths that we want to consider Ls,t as
LP + minimal distance from s to start ofP + minimal distance from end ofP to t.
The edge e = (v,w) is considered relevant if there exists a pair of left (right) stop
codon positions (s′, t′) such that the edge e lies on the path of length not exceeding
Ls,t between s′ and t′, which is equivalent to checking that
min_dist(s′, v) + length(e) + min_dist(w, t′) < Ls,t . To allow for efficient checks of
the shortest distances we precompute them by launching the Dijkstra algorithm
from all left (right) stop codon positions in the forward (backward) direction. In
practice, the Dijkstra runs are initiated from the ends/starts of corresponding edges
and the distances are later corrected.

5. We then exclude from the set of relevant edges the edges that are too far from any
putative (right) stop codon to be a part of any COG instance. In particular, we
exclude any edge e = (v,w), such that the minimal distance from vertex w to any
of the right stop codon positions exceeds L.

6. After the sets of the graph edges potentially encoding the gene sequence are
gathered for T̄ ′ and T̄ ′′ the union of the two sets, ER, is then taken and augmented
by the edges, connecting the ‘inner’ ER vertices (vertices which have at least one
outgoing and at least one incoming edge in the ER) to the rest of the graph.

Initial splitting of T̄ into T̄ ′ and T̄ ′′ is required to detect relevant stop codons which are
not reachable from the last position of T̄ in HRAG (or from which the first position of
T̄ in HRAG can not be reached). In addition to the resulting component in gfa format,
we also store the positions of the putative stop codons, and ids of edges connecting the
component to the rest of the graph (further referred to as ‘sinks’ and ‘sources’).

Subgraph simplification
While processing SCG subgraphs from a particularMAGwe use the available information
on the coverage of the MAG in the dataset. In particular, we set up the simplification
module to remove tips (a node with either no successors or predecessors) below a certain
length (twice the read length) and edges with coverage below a limit that is the larger of
2.0 or one per cent of the MAG coverage for regular edges or 2.5 and two per cent of the
MAG coverage for short edges.
While simplifying a SCG subgraph, edges connecting it to the rest of the assembly

graph should be handled with care (in particular, they should be excluded from the set of
potential tips). This is because in the BayesPaths algorithm they form potential sources
and sinks of the possible haplotype paths. Moreover, during the simplification the graph
changes, and such edges might become part of longer edges. Since we are interested in
which dead-ends of the component do, and do not lead to the rest of the graph, the output
contains the up-to-date set of connections of the simplified component to the rest of the
graph.
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We now briefly describe additional, disabled by default procedures, based on ‘relative
coverage’ criteria. Amongst other procedures for erroneous edge removal SPAdes imple-
ments a procedure considering the ratio of the edge coverage to the coverage of edges
adjacent to it. We define an edge e as ‘predominated’ by vertex v incident to it if there is
edge e1 outgoing from v and edge e2 incoming to v whose coverages exceed the cover-
age of e at least by a factor of α. Short edges (shorter than k + ε) predominated by both
vertices incident to them are then removed from the graph. Erroneous graph elements in
high genomic coverage graph regions often form subgraphs of three or more erroneous
edges. SPAdes implements a procedure for search (and subsequent removal) of subgraphs
limited by a set of predominated edges. Starting from a particular edge (v,w) predomi-
nated by vertex v, the graph is traversed from vertex w breadth-first without taking into
account the edge directions. If the vertex considered at the moment predominates the
edge by which it was entered, the edges incident to it are not added to the traversal. The
standard limitation of erroneous edge lengths naturally transforms into a condition of
maximum length of the path between the vertices of the traversed subgraph. A limit on
the maximum total length of its edges is additionally introduced.

BayesPaths

Themodel

We define an assembly graph G = (V , E) as a collection of unitig sequence vertices V =
1, . . . ,V and directed edges E ⊆ V × V . Each edge defines an overlap and comprises a
pair of vertices and directions

(
ud → vd

) ∈ E where d ∈ {+,−} and indicates whether
the overlap occurs between the sequence (+) or its reverse complement (−). We define:

• Counts xv,s for each unitig v = 1, . . . ,V in sample s = 1, . . . , S
• Paths for strain g = 1, . . . ,G defined by η

g
u,v ∈ 0, 1 indicating whether strain g passes

through that edge in the graph
• Flow of strain g through unitig v, φg+

v = ∑
u∈A(v) η

g
u,v and φ

g−
v = ∑

u∈D(v) η
g
v,u where

A(v) is the set of ancestors of v and D(v) descendants in the assembly graph
• The following is true φ

g+
v = φ

g−
v = φ

g
v

• Strain intensities γg,s as the rate per position that a read is generated from g in
sample s

• Unitig lengths Lv
• Unitig bias θv is the fractional increase in reads generated from v given factors such

as GC content influencing coverage
• Source node s and sink node t such that φ

g+
s = φ

g−
s = φ

g+
t = φ

g−
t = 1

Then assume normally distributed counts for each node in each sample giving a joint
density for observations and latent variables:

P(X,�,H,�) =
V∏

v=1

S∏

s=1
N
(

xv,s

∣
∣
∣
∣
∣
Lvθv

G∑

h=1
φh
v γh,s, τ−1

) G∏

h=1

S∏

s=1
P(γh,s|λh)

.
G∏

h=1

V∏

v=1

[
φh+
v = φh−

v

] [
φh−
s = 1

] [
φh+
t = 1

]
P(τ )

.
G∏

h=1
P(λh|α0,β0)

V∏

v=1
P(θv|μ0, τ0) (4)
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where [] indicates the Iverson bracket evaluating to 1 if the condition is true and zero
otherwise. We assume an exponential prior for the γg,s with a rate parameter that is strain
dependent, such that:

P(γg,s|λg) = λg exp(−γg,sλg) (5)

We then place gamma hyper-priors on the λg :

P(λg |α0,β0) = β
α0
0

(α0)
λα0−1
g exp(−β0λg) (6)

This acts as a form of automatic relevance determination (ARD) forcing strains with low
intensity across all samples to zero in every sample [8].
We use a standard Gamma prior for the precision:

P(τ |ατ ,βτ ) = β
ατ
τ

(ατ )
τατ −1 exp(−βτ τ) (7)

For the biases θv we use a truncated normal prior:

P(θv|μ0, τ0) =
√

τ0
2π exp

(− τ0
2 (θv − μ0)2

)

1 − �
(−μ0

√
τ 0
) θv >= 0

= 0 θv < 0

where � is the standard normal cumulative distribution. The mean of this is set to one,
μ0 = 1, so that our prior is that the coverage on any given node is unbiased, with a fairly
high precision τ0 = 100, to reflect an assumption that the observed coverage should
reflect the summation of the strains. Finally, we assume a uniform prior over the possible
discrete values of the η

g
v,u. If the assembly graph is a directed acyclic graph (DAG) then

η
g
v,u ∈ 0, 1. We have found that for most genes and typical kmer lengths this is true, but

we do not need to assume it.

Variational Approximation

We use variational inference to obtain an approximate solution to the posterior dis-
tribution of this model [7]. Variational inference is an alternative strategy to Markov
chain Monte Carlo (MCMC) sampling. Rather than attempting to sample from the pos-
terior distribution, variational inference assumes a tractable approximating distribution
for the posterior, and then finds the parameters for that distribution that minimise the
Kullback-Leibler divergence between the approximation and the true posterior distri-
bution. Further, in mean-field variational inference the approximation can be factorised
into a product over a number of components that each approximate the posterior of a
parameter in the true distribution. In practice the Kullback-Leibler divergence is not com-
putable because it depends on the evidence, i.e. the joint distributionmarginalised over all
latent variables. Instead, inference is carried out by maximising the evidence lower bound
(ELBO), which is equal to the negative of the Kullback-Leibler divergence plus a constant,
that constant being the evidence. In our case, because all the distributions are conjugate
we can employ CAVI, coordinate ascent variational inference, to iteratively maximise the
ELBO.
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Our starting point is to assume the following factorisation for the variational approxi-
mation:

q(X,�,H) =
G∏

h=1
qh
({

ηhv,u

}

u,v∈A

) G∏

h=1

S∏

s=1
qh(γh,s)

G∏

h=1
qh(λh)

V∏

v=1
qv(θv)q(τ ) (8)

where A is the set of edges in the assembly graph and V = 1, . . . ,V the set of unitig
sequence vertices. Note that we have assumed a fully factorised approximation except
for the ηhv,u, the paths for each strain through the graph. There we assume that the path
for each strain forms a separate factor allowing strong correlations between the different
elements of the path. This is therefore a form of structured variational inference [22].
To obtain the CAVI updates we use the standard procedure of finding the log of the

optimal distributions q for each set of factorised variables as the expectation of the log
joint distribution Eq. 4 over all the other variables, except the one being optimised. Using
an informal notation we will denote these expectations as 〈lnP〉−qj where qj is the variable
being optimised.
Then the mean field update for each set of {ηgv,u}u,v∈A is derived as:

ln q∗
g

({
η
g
v,u
}
u,v∈A

)
= 〈lnP〉−η

g
v,uu,v∈A

= ln
( V∏

v=1
δ
φ
g+
v ,φg−

v
δ
φ
g−
s ,1δφ

g+
t ,1

)

−
〈 V∑

v=1

S∑

s=1

τ

2

(

xv,s − θvLv

[ G∑

h=1
φh
v γh,s

])2〉

−η
g
v,uu,v∈A

+ Terms independent ofηg

Consider the second term only:

−〈τ 〉
2

(

−
V∑

v=1

S∑

s=1
2xv,sLv〈θv〉〈γg,s〉φg

v + L2v
〈
θv

2〉
〈( G∑

h=1
φh
v γh,s

)( G∑

i=1
φi
vγi,s

)〉))

This becomes:

−〈τ 〉
2

( V∑

v=1

S∑

s=1

[
− 2xv,s〈θv〉Lv〈γg,s〉φg

v + 2L2v
〈
θv

2〉
G∑

h�=g

〈
φh
v

〉
〈γh,s〉〈γg,s〉φg

v

+L2v
〈
θv

2〉
〈
γ 2
g,s

〉 (
φ
g
v
)2 ]

)

Which can be reorganised to:

ln q∗
g

({
η
g
v,u
}
u,v∈A

)
= ln

( V∏

v=1
δ
φ
g+
v ,φg−

v
δ
φ
g−
s ,1δφ

g+
t ,1

)

+
V∑

v=1
c1,vφ

g
v +

V∑

v=1
c2,v

(
φ
g
v
)2 (9)

Where:

c1,v = −〈τ 〉
2

S∑

s=1

⎡

⎣−2xv,s〈θv〉Lv〈γg,s〉 + 2L2v
〈
θv

2〉
G∑

h�=g

〈
φh
v

〉
〈γh,s〉〈γg,s〉

⎤

⎦

c2,v = −〈τ 〉
2

L2v
〈
θv

2〉
〈
γ 2
g,s

〉

It is apparent from Eq. 9 that the q∗
g

({
η
g
v,u
}
u,v∈A

)
takes the form of a multivariate dis-

crete distribution with |u, v ∈ A| dimensions. The first term in Eq. 9 enforces the flow
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constraints, and does not separate across nodes, the next two terms are effectively coeffi-
cients on the total flow through a unitig and its square. The updates for the other variables
below, depend on the expected values of the total flow through each of the unitig nodes
for the strain g,

〈
φ
g
v
〉
, which themselves depend on the η

g
v,u. These expected values can be

efficiently obtained for all v by representing Eq. 9 as a factor graph comprising nodes con-
sisting of factors corresponding to both the constraints and the flow probabilities through
each node with variables η

g
v,u. We can then find the marginal probabilities for both the

η
g
v,u and the φ

g
v using the Junction Tree algorithm [48], from these we can calculate the

required expectations.
Next we consider the mean field update for the γg,s:

ln q∗(γg,s) = 〈lnP〉−γg,s

= −
〈 V∑

v=1

τ

2

(

xv,s − θvLv

[ G∑

h=1
φh
v γh,s

])2〉

−γg,s

− 〈λg〉γg,s

ln q∗(γg,s) =

− 〈τ 〉
2

( V∑

v=1
−2xv,s〈θv〉Lv

〈
φ
g
v
〉
γg,s + 2

〈
θ2v
〉
L2vγg,s

〈
φ
g
v
〉∑

h�=g
〈γh,s〉

〈
φh
v

〉

+ 〈
θ2v
〉
L2vγ

2
g,s

〈[
φ
g
v
]2〉
)

− 〈λg〉γg,s
with the restriction γg,s > 0 this gives a normal distribution but truncated to (0, inf) for
γg,s, with mean and precision:

μg,s =
∑

v xv,sθvLv
〈
φ
g
v
〉− 〈

φ
g
v
〉∑

h�=g〈γh,s〉
〈
φh
v
〉 〈

θ2v
〉
L2v

∑
v L2v

〈[
φ
g
v
]2〉 − 〈λg〉

τg,s
(10)

τg,s = 〈τ 〉
∑

v
L2v
〈[

φ
g
v
]2〉 (11)

(12)

Derivations for the other updates follow similarly giving a Gamma posterior for the τ with
parameter updates:

ατ = α0 + �/2 (13)

βτ = β0 +
∑

v,s

〈
(xv,s − λv,s)

2〉 (14)

where � = VS and we have used λv,s as a short hand for the predicted count number:

λv,s = θv
∑

g
γg,sφ

g
v .

Then the τ have the following expectations and log expectations:

〈τv,s〉 = ατ /βτ (15)

〈log τv,s〉 = ψ (ατ + 1/2) − log (βτ ) (16)

where ψ is the digamma function. The biases θv have a truncated normal distribution and
their updates can be derived similar to the above.
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Evidence lower bound (ELBO)

Iterating the CAVI updates defined above will generate a variational approximation that
is optimal in the sense of maximising the evidence lower bound (ELBO) so called because
it bounds the log evidence, log(p(x)) ≥ ELBO(q(z)). It is useful to calculate the ELBO
whist performing CAVI updates to verify convergence and the ELBO itself is sometimes
used as a Bayesian measure of model fit, although as a bound that may be controversial
[7]. The ELBO can be calculated from the relationship:

ELBO(q) = E
[
log p(x|z)]+ E

[
log p(z)

]− E
[
log q(z)

]
(17)

The first term is simply the expected log-likelihood of the data given the latent variables.
In our case it is:

E
[
log p(x|z)] = 1

2
�
(〈log τ 〉 − log(2π)

)− 1
2
〈τ 〉
〈(

xv,s − Lvθv
G∑

h=1
φh
v γh,s

)2〉

(18)

where � = VS and the expectations are over the optimised distributions q.
The second term is the expectation under q(z) of the log prior distributions. In our case

with standard distributions it is easy to calculate for instance for each of the γg,s:

E
[
log p(γg,s)

] = 1
2
log
(τg,s

2π

)
− τg,s

2

(〈
γ 2
g,s

〉
+ μ2

g,s − 2μg,s〈γg,s〉
)
−log

[
1
2
erf
(

μg,s

√
τg,s

2

)]

.

With the μg,s and τg,s given by their current values derived from Eq. 12 and the moments
of γg,s calculated from a truncated normal distribution with those current parameters.
The third terms are simply the negative entropy of the variational approximations and for
the standard distributions used here are easily calculated.

Implementation details

One update of the algorithm consists of updating each variable or sets of variables in turn
given the current optimal solutions of the other distributions. In practice we update:

• Compute the marginal flows
{
η
g
v,u
}
u,v∈A for each strain g = 1, . . . ,G in turn using

Eq. 9 and the Junction Tree algorithm. This can be performed for each single
copy-core gene independently

• Update the truncated normal strain abundances q(γg,s) for each strain in each
sample, s = 1, . . . , S using Eq. 12

• Update the q(τ )

• Update the ARD parameter distributions q(λg) if used
• Update the nodes biases q(θv)
• Check for redundant or low abundance strains and remove (see below)

After a maximum fixed number of iterations or if the ELBO converges we stop iterating.
Variational inference can be sensitive to initial conditions as it can only find local maxima
of the ELBO, we therefore use a previously published variational Bayesian version of non-
negative matrix factorisation [8], to find an initial approximate solution.

Empirical modelling of node variances

For low-coverage MAGs a precision that is identical for all nodes performs satisfactorily,
but since the true distribution of read counts is Poisson this overestimates the precision
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for nodes with high counts xv,s. To address we developed an empirical procedure where
we first calculate 〈log τv,s〉 for each node using Eq. 16 as:

〈log τv,s〉 = ψ (α0 + 1/2) − log
(

β0Xv,s + 1
2
〈
(xv,s − λv,s)

2〉
)

(19)

a quantity which exhibits high variability, so we then smooth this over log(xv,s) using
generalised additive models as implemented in pyGAM [43] to give 〈log τv,s〉∗. The term
β0Xv,s gives a prior which is effectively Poisson. We then obtain 〈τv,s〉 as exp(〈log τv,s〉∗).
This procedure has no theoretical justification but gives good results in practice. This
approach of modelling a non-Gaussian distribution as a Gaussian with empirical vari-
ances is similar to that used in voom for RNASeq [27].

Cross-validation to determine optimumnumber of strains

The ARD procedure usually converges on the correct number of strains except for high-
coverage MAGs where overfitting may occur and too many strains can be predicted. We
therefore additionally implemented a cross-validation procedure, splitting the entire data
matrix xv,s into test and train folds (default ten folds) and training the model on the train
fold and then testing on the held out data. The correct number of strains was then taken
to be the one that maximised the log predictive posterior with an empirical variance
reflecting the Poisson nature of the data. The exact test statistic being:

∑

v,s∈E

1
2
log
(
τ ′
v,s
)− 1

2
∑

v,s∈E
τ ′
v,s
〈
(xv,s − λv,s)

2〉 (20)

where τ ′
v,s = 1/(0.5+ xv,s) and E indicates data points in the test set to down-weight high

read count nodes reflecting approximately Poisson noise.

Nanopore sequence analysis

Sequence preprocessing

To enable a qualitative comparison between haplotypes obtained from the Nanopore
reads and the BayesPaths predictions we developed the following pipeline applied at the
level of individual single-copy core genes (SCGs) fromMAGs:

1. We mapped all reads using minimap2 [30] against the SCG contig consensus ORF
sequence and selected those reads with alignments that spanned at least one third
of the gene with a nucleotide identity >80%.

2. We then extracted the aligned portion of each read, reverse complementing if
necessary, so that all reads ran in the same direction as the SCG ORF.

3. We then obtained the variant positions on the consensus from the output of the
DESMAN pipeline [39]. These are variant positions prior to haplotype calling
representing the total unlinked variation observed in the short reads.

4. For each Nanopore fragment we aligned against the SCG ORF using a
Needleman-Wunsch global alignment and generated a condensed read comprising
bases only from the short read variant positions.

This provided us with a reduced representation of each Nanopore read effectively fil-
tering variation that was not observed in the short reads. These reduced representations
were then used to calculate distances, defined as Hamming distances on the variant posi-
tions normalised by number of positions observed, both between the reads and between
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the reads and the predicted COG sequences from BayesPaths. From these we gener-
ated NMDS plots indicating sequence diversity, and they provided an input to the hybrid
Nanopore strain resolution algorithm below.

EM algorithm for hybrid Nanopore strain resolution

We also developed a simple EM algorithm for direct prediction of paths and their abun-
dances on the short read assembly graph that are consistent with a set of observed long
reads. We began by mapping the set of n = 1, . . . ,N Nanopore sequences denoted {Sn}
onto the corresponding simplified SCG graph generated by STRONGusing GraphAligner
[40]. This provided us with N optimal alignment paths as walks in our SCG graph. We
denote this graph G comprising unitig vertices v and edges e ∈ {u, v} defining overlaps.
We assume, as is almost always the case that the graphs contain no unitigs in both

forward and reverse configurations, and that there are no cycles, so that each SCG is a
directed acyclic graph (DAG) with one copy of each unitig, and we only need to track
the direction that each overlap enters and leaves each unitig. Then best alignment walks
comprise a sequence of edges, en1, . . . , e

n
Wn

where Wn is the number of edges in the walk
of read n, that traverse the graph.
Given these observed Nanopore reads we aim to reconstruct G haplotypes comprising

paths from a dummy source node s, which has outgoing edges to all the true source nodes
in the graph, through the graph to a dummy sink t, which connects all the true sinks. We
further assume that each haplotype has relative frequency πg . Each such haplotype path
Pg =

{
s, eg1, . . . , e

g
Wg

, t
}
will translate into a nucleotide sequence Tg . We assume that these

haplotypes generate Nanopore reads with a fixed error rate ε which gives a likelihood:

P({S1, . . . ,SN }|π , {T1, . . . , TG}) =
N∏

n=1

⎛

⎝
G∑

g=1
πgε

mn,g (1 − ε)Mn,g

⎞

⎠ . (21)

wheremn,g is the number of basepair mismatches between Sn and Tg counting insertions,
deletions and substitutions equally andMn,g the number of matches.
To maximise this likelihood we used an Expectation-Maximisation algorithm. Iterating

the following steps until convergence:

1. E-step: Calculate the responsibility of each haplotype for each sequence as:

zn,g = πgε
mn,g (1 − ε)Mn,g

∑
h πhεmn,h(1 − ε)Mn,h

(22)

Alignments of reads against haplotypes were performed using vsearch [41].
2. M-step: We update each haplotype by finding the most likely path on the short

read graph given the current expectations. These are calculated by assigning a
weight wg

e to each edge e in the graph as:

wg
e =

∑

n∈e
zn,gLe (23)

where n ∈ e are the set of reads whose optimal alignment contains that edge and Le
is the unique length of the unitig the edge connects to, i.e. ignoring the overlap
length. We then find for haplotype g the maximal weight path through this DAG
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using a topological sort. The error rates are updated as:

ε =
∑

n
∑

g zn,gmn,g
∑

n
∑

g zn,gLn,g
(24)

where Ln,g are the alignment lengths.

As is often the case with EM algorithms convergence depends strongly on initial con-
ditions. Therefore we initialise using a partitioning around medoids clustering using the
distances calculated in “Methods - Nanopore sequence analysis” section.We can estimate
the number of haplotypes from the negative log-likelihood as a function of haplotype
number.
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