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Strainberry: automated strain separation in
low-complexity metagenomes using long reads
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High-throughput short-read metagenomics has enabled large-scale species-level analysis and

functional characterization of microbial communities. Microbiomes often contain multiple

strains of the same species, and different strains have been shown to have important

differences in their functional roles. Recent advances on long-read based methods enabled

accurate assembly of bacterial genomes from complex microbiomes and an as-yet-unrealized

opportunity to resolve strains. Here we present Strainberry, a metagenome assembly pipeline

that performs strain separation in single-sample low-complexity metagenomes and that relies

uniquely on long-read data. We benchmarked Strainberry on mock communities for which it

produces strain-resolved assemblies with near-complete reference coverage and 99.9%

base accuracy. We also applied Strainberry on real datasets for which it improved assemblies

generating 20-118% additional genomic material than conventional metagenome assemblies

on individual strain genomes. We show that Strainberry is also able to refine microbial

diversity in a complex microbiome, with complete separation of strain genomes.

We anticipate this work to be a starting point for further methodological improvements on

strain-resolved metagenome assembly in environments of higher complexities.
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The analysis of bacterial communities through metagenome
sequencing is a computationally challenging step which is
further hampered by strain variation among species. Cur-

rent techniques for de novo metagenome assembly are able to
reconstruct the chromosomal sequences of sufficiently abundant
species within a microbial sample, but ideally should also aim at
reconstructing each strain present. A critical application of
metagenome assembly is the identification of fine differences in
the genetic makeup of organisms that end up playing major
functional roles in an environment. Sequencing studies of
pathogens provide evidence that microbial phenotypes could be
strain-specific1,2. For example, unusual Escherichia coli strains
could be highly pathogenic3 or carcinogenic4, different Helico-
bacter pylori strains have been associated with different risks for
gastric cancer5, some variants of Staphylococcus epidermidis seem
to be associated with psoriatic skin6.

While recognizing the challenges for the precise characteriza-
tion of what constitutes a “strain”, here we will associate the
concept of “strain” to a bacterial haplotype, i.e., a contiguous
sequence of nucleotides observed jointly and in sufficient abun-
dance by sequencing reads. We therefore define the “strain
separation problem” as the reconstruction of partial or complete
DNA sequences corresponding to strains, at the base level.

The strain separation problem has been extensively studied in
the case of short-read sequencing7, either without any prior
knowledge (de novo) or reference-based. Previous works
attempted to tackle the de novo problem using short reads, with
various levels of success. DESMAN8 managed to reconstruct
haplotypes of core genes but not entire genomes. STRONG9

addressed some of DESMAN limitations and is able to determine
the number and sequence of strains in a metagenome-assembled
genome by exploiting the co-assembly graph over the predicted
single-copy-gene sequences and using a variational Bayesian
algorithm. ConStrains10 quantifies and reconstructs conspecific
(relative to the same species) strain variations by mapping reads
on a species-based marker gene set and providing an SNP-based
model for each of the identified strains. LSA11 is a short-read de
novo pre-assembly method that aims at separating reads from
multiple samples into biologically informed partitions which
enable closely-related-strain separation and assembly of indivi-
dual genomes. OPERA-MS12 is a hybrid (short and long reads)
metagenome de novo assembler, whose ability to assemble gen-
omes at the strain level is dependent on its upstream short-read
assembly phase (unassembled sequences and collapsed variants
will remain so throughout the pipeline). SAVAGE13 is a method
that performs the assembly of viral quasispecies from deep-
coverage short-read sequencing data and is able to reconstruct
individual haplotypes of intra-host virus strains. SAVAGE is also
employed in VG-flow14, a de novo approach which enables full-
length haplotype reconstruction from pre-assembled contigs of
complex mixed samples. All the above methods are not applicable
when the input consists of long reads only, and the last two are
limited to small genomes (approximately up to 200 Kbp).

Related works have analyzed strains without performing
separation, but rather by mapping to existing databases of gen-
omes. StrainPhlAn15 performs phylogenetic analysis of a popu-
lation and strain-level variation profiling, through read mapping
on reference species-specific markers. StrainEst16 is a reference-
based method exploiting the single-nucleotide variant profiles of
available genomes of selected species to determine the number
and identity of coexisting strains and their relative abundances in
mixed metagenomic samples.

All previous works on strain-level assembly/characterization
are based on short-read sequencing data. With the advent of
long-read metagenomics sequencing, they cannot be re-used due
to fundamental differences in the nature of the data. Many of

them (e.g., LSA11 and references therein) rely on the reliable
detection of error-free k-mers with high k values (>20), which
cannot be performed on long reads due to the high error rate.
Some methods8,10,15 have been specifically designed to work with
multiple related samples (e.g., time series), to reconstruct core
genes, or to simply provide a strain-level profile of a metagenomic
dataset (with no actual assembly). It would be desirable to have a
method that, using long reads, produces a strain-separated de
novo assembly from only a single sample.

Existing long-read de novo assembly methods can partially, but
not completely, separate strains. We will focus on three state-of-
the-art assembly methods (metaFlye, Canu, and Lathe), which
were either designed for metagenome assembly or have been
previously shown to be suitable. metaFlye17 is, to the best of our
knowledge, the only long-read assembler explicitly supporting
metagenomic data. metaFlye initially generates a set of error-
prone sequences called disjointigs representing concatenations of
multiple disjoint genomic segments. They are then represented as
a repeat graph in which reads are used to untangle repeats and
provide an accurate set of contigs. As metaFlye is an option
within the Flye assembler, in the following we will refer to
metaFlye simply as Flye. Canu18 is the successor of the Celera
Assembler and it was designed for error-prone long reads. It is
based on the overlap-layout-consensus paradigm and during its
development it introduced new overlapping and assembly algo-
rithms in order to better handle the advances and challenges offered
by long-read sequencing technologies. As opposed to Flye, Canu
was not specifically designed for metagenomic data although it is
often considered an alternative to Flye in this context19–21. Lathe22

is a recently developed workflow for Nanopore reads which
attempts to provide complete closed bacterial genomes from
microbiomes. It combines existing methods for basecalling, long-
read assembly (either Flye or Canu), extensive polishing steps
to detect and correct misassemblies, and performs genome
circularization.

Throughout the manuscript, we will use the term strain-
oblivious assembly to refer to a metagenome assembly generated
by an assembler which did not attempt any strain separation.
Conversely, the term strain-aware assembly will be employed to
refer to a metagenome assembly where genomic sequences are
expected to be reconstructed at the strain level. Moreover, as the
assembly of strain sequences from strain-oblivious sequences is a
very similar problem to the reconstruction of haplotypes in a
polyploid genome, we will interchangeably use the terms strain
and haplotype in the methodological context.

In this work, we present a method that performs strain
separation in low-complexity metagenomes using error-prone
long-read technologies. Exploiting state-of-the-art tools for var-
iant calling, haplotype phasing, and genome assembly, we present
an automated pipeline called Strainberry. It achieves single-
sample assembly of strains with higher quality than other state-
of-the-art long-read assemblers. Strainberry combines a strain-
oblivious assembler with the careful use of a long-read variant
calling and haplotyping tool, followed by a component that
performs long-read metagenome scaffolding. We extensively
tested Strainberry on mock communities as well as unchar-
acterized real samples and showed that reanalysis of existing
long-read metagenomic samples unravels uncharacterized strains.

Results
A software pipeline for automated strain separation using
long-read sequencing data from low-complexity metagenomes.
The Strainberry pipeline is depicted in Fig. 1 and consists of three
main steps: (i) haplotype phasing and read separation, (ii) hap-
lotype assembly, and (iii) strain-aware scaffolding. It requires two
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inputs: a strain-oblivious metagenome assembly, and a set of long
reads aligned to the assembly. The input assembly is either one
generated from the input reads, or one made from a combination
of sequencing technologies. In our evaluation of Strainberry, we
often used a single long-read dataset assembled using the (meta)
Flye assembler which is, to the best of our knowledge, the only
long-read assembler explicitly supporting metagenomic data. We
additionally tested the performance of the Canu assembler.
Aligned reads are used to identify single-nucleotide variants
(SNVs) on assembled contigs. Sequences containing a large per-
centage of such SNVs likely correspond to multiple collapsed
haplotypes/strains. We use those SNVs to perform haplotype
phasing and therefore separate reads originating from different
haplotypes. Each separated set of reads can therefore be assem-
bled independently using a standard de novo assembly tool (e.g.,
Flye). We obtain a strain-aware set of contigs by putting together
the non-separated regions of the input assembly, which are either
shared between multiple strains or specific to a single strain, and
the haplotype-separated assemblies. The last step involves an
alignment of input reads on the strain-separated contigs which is
exploited to join contigs into longer scaffolds. The three main
steps of the pipeline are iterated n� 1 times, where n is the
maximal number of conspecific strains detected by Strainberry.
The output of Strainberry is a multi-FASTA file containing
contigs shared between multiple strains, and strain-specific con-
tigs. Components of the pipeline are presented in more details in
the Methods section.

Overview of evaluation data. Datasets of increasing complexity
were considered in order to assess to which extent our method is
able to reconstruct complete strain genomes. Two low-complexity
mock communities (Mock3 and Mock9) containing respectively
three and nine precisely-known bacterial strains (Supplementary
Table 1) enable an accurate assessment of the quality of results
returned by our pipeline. 24 simulated communities were addi-
tionally created (or downsampled from Mock3) in order to
evaluate Strainberry’s ability to assemble conspecific strains
characterized by different levels of coverage, divergence, number
of strains, and recombination rate. Two metagenomic samples of
real sequencing data, one with four dominant bacterial strains
and another one with a higher number of species, enabled us to
reconstruct novel sequences of strains. They were selected from
two different studies. The first one is a low-complexity micro-
biome from natural whey starter cultures for which two strains of
Lactobacillus helveticus were identified and assembled23. Reads
were sequenced with both PacBio and Nanopore technologies
which allowed us to assess the performance of our approach with
different technologies and validate it with available reference
genomes. The second study contains a more complex dataset that
is based on Nanopore sequencing data from a human stool

microbiome22. Previous analyses hinted at the presence of mul-
tiple uncharacterized strains: species-level binning yielded near-
complete genome reconstructions characterized by a significant
percentage of SNVs with respect to the assembled reads.

Evaluation metrics for strain-oblivious and strain-separated
assemblies. Prior to separating strains, our method hinges on
having an initial high-quality strain-oblivious assembly. We
consider three criteria to be important for such an assembly,
namely, 1) comprehensive species-level representation, 2) low
amount of incorrectly duplicated sequences, and 3) high con-
tiguity. Criterion 1) is a necessary (but insufficient) condition for
the complete reconstruction of individual strains. Criterion 2) is
not an absolute requirement for any strain separation assembler,
but ours relies on similar haplotypes being conservatively col-
lapsed rather than erroneously split. In general, duplicated
sequences that are highly similar within an assembly either
indicate that some strain-specific regions have been correctly
assembled or can be produced by incorrect strain separation.
Criterion 3) enables to output more contiguous strain-aware
assemblies, due to the fact that strain separation is likely to
introduce additional fragmentation over the input assembly.

The evaluation of metagenome assemblies is a complex topic
due to the lack of an exhaustive knowledge of the species in a
sample, let alone closely related strains. Many standard assembly
evaluation metrics need in fact to be interpreted differently in the
strain-aware context. We detail them in the “Strain-aware
assembly evaluation” section in the Methods. Nevertheless, we
will report standard evaluation metrics such as number of contigs,
size of the assembly and N50 (i.e., the length for which all contigs
of that length or longer cover at least half of the total assembly
length) on all the evaluated assemblies.

Specific to synthetic data, the NG50 variant (i.e., the length for
which all contigs of that length or longer cover at least half of the
total genome length) is reported instead of the N50 value. We will
also report the percentage of unaligned bases in both references
and assemblies, which is a key metric for evaluating whether
complete strain-level genomes were reconstructed. In addition,
the average sequence identity, the duplication ratio (i.e., the total
number of aligned bases in the assembly divided by the total
number of aligned bases in the reference), and the number of
misassemblies, are also reported with respect to known reference
genomes.

Specific to real datasets, for which a comprehensive set of
reference genomes was not available, we used CheckM24 to
quality-control assemblies. CheckM is a reference-free tool that
identifies and counts single-copy genes (SCGs) in order to
estimate completeness, contamination, and strain heterogeneity
of binned contigs. Completeness approximately refers to the
percentage of unique SCGs found within a bin, while

Fig. 1 Strainberry pipeline. The pipeline starts from a strain-oblivious assembly and the corresponding set of reads. It then performs haplotype phasing on
the strain-oblivious assembly to separate reads into groups that likely correspond to strains. Each group is assembled separately. A final scaffolding step is
used to connect sequences likely corresponding to the same strain. The pipeline performs n� 1 iterations, where n is the maximal number of detected
conspecific strains.
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contamination reflects the multiplicity of the identified SCGs (as
only one copy is expected in each assembled/binned species).
Strain heterogeneity is a measure related to the contamination
and expresses the proportion (as an index from 0 to 100) of
multi-copy marker genes that likely come from closely related
species. An important aspect to keep in mind regarding CheckM
is that it only works well when genomes/bins are relatively
complete. A wrong estimate of completeness and contamination
is in fact possible for incomplete bins. We tried to avoid this
problem by restricting the analysis of our results on highly
contiguous contigs that likely represent complete genomes.

Separation of two E. coli strains in a three-strain mock com-
munity. Mock3 consists of reads sequenced from Bacillus cereus,
and Escherichia coli strains K12 and W. The Flye and Canu
assemblers were run on Mock3 and reads were mapped back to
each assembly, and we ran Strainberry on both assemblies in
order to separate the two E. coli strains. Figure 2 shows reference
coverage, average nucleotide identity and the duplication ratio of
strain-oblivious and the resulting strain-aware assemblies. Strains
K12 and W align to each other with an average identity of 98.65%
and, for this reason, their entire genomes are collapsed by Flye
into two consensus sequences (2Mbp and 2.8 Mbp long, assem-
bly graph shown in Supplementary Fig. 1). Canu has performed
partial strain separation, however it missed the 46% and 11% of E.
coli strains K-12 and W references respectively, and yielded an
unsatisfactory identity percentage (99.64% and 99.74% for strains
K-12 and W respectively). The high duplication ratio of the Canu
assembly (1.23 and 1.39 for the two E. coli strains) excludes it
from being characterized as strain-oblivious. Strainberry is able to
accurately separate both the Canu and Flye assemblies into two
sets of contigs (total length 9.8 Mbp with Flye) with an almost
complete coverage of both reference genomes and a nearly perfect
average nucleotide identity (with Flye, 99.97% for both E. coli

strains). The high duplication ratio inherited from the upstream
Canu assembly was slightly reduced.

Overall, the strain-aware assemblies are of high quality, as
evidenced by NG50, sequence identity, duplication analysis, and
misassembly analysis (Supplementary Note 1 and Supplementary
Data 1). As an example, the strain-separated Flye assembly
yielded very high NG50 values, duplication ratios close to 1, and a
reasonable amount of misassemblies with respect to all references.
The Flye assembly had 2 detected inversions and 3 detected
relocations, while Strainberry produced 2 detected inversions and
6 detected relocations. We checked that the locations of these
putative misassemblies are at the same chromosomal locations in
both strains, except in E. coli W where Flye generated two short
insertions and Strainberry failed to reconstruct two short
repetitive sequences (Supplementary Note 1). Nevertheless, all
identified misassemblies do not correspond to major rearrange-
ments and, even though the amount of detected misassemblies is
numerically higher, this is a natural consequence of having
assembled both E. coli strains and a significantly larger number
of bases.

Separation of five close strains in a nine-strain mock com-
munity. The more challenging Mock9 dataset is composed of 9
genomes (Supplementary Table 1) with two strains of E. coli and
two strains of S. aureus; the other genomes are of different spe-
cies. As done in Mock3, a Flye assembly, a Canu assembly, and
their respective read alignments were generated and provided as
input to Strainberry. In this case, we aim at achieving a two-strain
separation of S. aureus genomes, and a three-strain separation of
S. sonnei and the two E. coli strains, which are three similar
genomes despite S. sonnei being a different species. In fact, the
two E. coli strains, S. sonnei but also K. pneumoniae all share high
sequence identity. Flye was able to separate the K. pneumoniae
genome, while it collapsed the other genomes into consensus
contigs (Fig. 3), as expected from a good strain-oblivious

Fig. 2 Mock3 dataset assembly statistics. a Circos58 graph displaying the coverage and SNV-rich regions (single-nucleotide errors) of the strain-oblivious
assemblies (Flye and Canu) and their strain-separated counterparts obtained with Strainberry (ssFlye and ssCanu, respectively) compared to the reference
sequences of the two E. coli strains present. The external graduated scales reflect the genomic positions of the corresponding reference genomes.
b Average nucleotide identity (ANI) and c duplication ratio of assemblies.
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assembler. Canu, on the other hand, completely reconstructed the
K. pneumoniae genome but also attempted to separate individual
S. aureus, E. coli, and S. sonnei strains. Nevertheless, while pro-
viding a significant coverage of the reference sequences, the Canu
assembly is characterized by an imperfect sequence identity and a
high duplication ratio (Fig. 3).

We first look at the two S. aureus strains. They have a lower
sequence identity (97.61%) compared to the two E. coli strains
(98.65%), Flye is still unable to resolve them (Supplementary
Fig. 2). Instead, Strainberry correctly separated the Flye consensus
sequences into an almost complete coverage of the reference
genomes (Fig. 3a), an average nucleotide identity of 99.97% for

Fig. 3 Mock9 dataset assembly statistics. a Circos58 graph depicting reference coverage and SNV-rich regions of the strain-oblivious assemblies (Flye and
Canu) and their strain-separated counterparts obtained with Strainberry (ssFlye and ssCanu, respectively) compared to the reference sequences of K.
pneumoniae and the two S. aureus strains. The external graduated scales represent the genomic positions of the corresponding reference genomes. On the
right-hand side, b the average nucleotide identity and c the duplication ratio of each assembly are reported. The ssFlye and ssCanu assemblies were
obtained as a result of a Strainberry separation of the Flye and Canu assemblies, respectively. d Circos graph depicting reference coverage and SNV-rich
regions of the strain-oblivious assemblies (Flye and Canu) and the strain-separated ones (ssFlye and ssCanu) with respect to the reference sequences of S.
sonnei and the two E. coli strains. On the right-hand side, e the average nucleotide identity and f the duplication ratio of each assembly are reported.
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both S. aureus strains ATCC and FDAA scaffolds (Fig. 3b), and a
duplication ratio close to 1.0 (Fig. 3c). Moreover, the final
scaffolding step significantly improved contiguity achieving NG50
values of ~2.2 Mbp and ~2.7 Mbp for the two separated strains
(Supplementary Data 1). The K. pneumoniae genome assembly is
also slightly improved by Strainberry which yielded an average
nucleotide identity of 99.99% compared to the 99.95% of Flye
assembly. The duplication ratio close to 1.0 additionally high-
lights the good quality of the strain-separated assembly. Canu
attempted to separate closely related strains, however with
unsatisfactory results. Even though at least 70% of each reference
genome was represented in the output assembly, the average
nucleotide identity is 99.86% and 99.74% for S. aureus strains
ATCC and FDAA, respectively. The Strainberry separation of
Canu assembly greatly improves these metrics, yielding near-
complete assemblies of S. aureus strains (Fig. 3a) and 99.9%
sequence identity (Fig. 3b). Unfortunately, the high Canu
duplication ratio propagates through the Strainberry assembly,
even though duplication ratio is slightly reduced after separation
and scaffolding (Fig. 3c).

We now turn to the two E. coli strains and S. sonnei. In this
case, Flye is only able to partially separate some strain-specific
regions of the three genomes, however with much lower sequence
identity compared to the other near-complete assemblies (B.
cereus, K. pneumoniae, L. monocytogenes, and N. meningitidis).
Strainberry significantly improved the reference coverage and the
average nucleotide identity with respect to the reference
sequences, with duplication ratios of 1.08, 1.18, and 1.25 for E.
coli strain K-12, strain W, and S. sonnei respectively (Fig. 3d–f).
Canu was unable to assemble the three reference sequences
completely and, at the same time, yielded a very high duplication
ratio (as previously observed in S. aureus assemblies and in the
Mock3 dataset). The Strainberry separation of the Canu assembly
overall improved all metrics or yielded comparable results
(Supplementary Data 1).

Overall, Flye yielded a better strain-oblivious assembly compared
to Canu on Mock9. Strainberry was hence able to benefit from this
and provided higher quality assemblies compared to the separation
of the Canu assembly, as evidenced by NG50, sequence identity,
duplication ratio, and misassembly analysis (Supplementary Note 2
and Supplementary Data 1).

Influence of strain coverage, divergence, number of strains,
and recombination rate on strain separation. In order to better
evaluate Strainberry’s ability to assemble strains, we addition-
ally generated 24 mock communities consisting of conspecific
strains with different levels of strain coverage, divergence,
number of strains, and recombination rates. These commu-
nities were assembled with Flye and separated with Strainberry.
A comprehensive table of all the assembly evaluation
metrics employed in this study is available in Supplementary
Data 1.

The influence of strain coverage was tested on mock
communities generated by downsampling the Mock3 dataset
at 5×, 10×, 20×, 30×, 40×, and 50×. Two downsampling
approaches were considered: a uniform depth of coverage of the
three strains, and an uneven depth of coverage. The latter
consists in applying the downsampling levels to E. coli strain W,
while keeping the other two strains at 50×. Figure 4 shows, for
both the uniformly and unevenly downsampled datasets, that
the quality of Strainberry separation reaches a plateau after 30×
coverage and is mediocre at 10× coverage. A near-complete
reference representation (>95%) and a high sequence identity
(>99.8%) thus requires at least 20× coverage. Also, uneven
coverage of conspecific strains does not seem to have an impact

on Strainberry’s ability to assemble their genomes which is only
affected by absolute depth of coverage.

Strainberry’s separation of low-divergence strains was eval-
uated on seven two-strain communities consisting of the E. coli
strain K-12 and a second E. coli strain characterized by an
increasing divergence. Datasets were generated with PacBio-like
reads that were simulated from known reference genomes (see
Supplementary Table 2). In this case, Strainberry fails to separate
strains with low strain divergence (likely due to its default
behavior of not separating regions with a low percentage of
SNVs). A significant improvement of the reference coverage is
observed at 0.39% of strain divergence, while a near-complete
assembly is reached at 0.50% of divergence. In all these datasets,
the average nucleotide identity of separated sequences is always
greater than 99.8% and a significant improvement compared to
the strain-oblivious Flye assembly (Fig. 4).

In order to evaluate Strainberry with respect to the number of
conspecific strains, we created four simulated mock communities
consisting of 2, 3, 4, and 5 E. coli strains characterized by pairwise
divergences ranging from 0.7% to 1.4%. Each simulated dataset
was assembled with Flye and separated with Strainberry. Figure 4
indicates that Strainberry is able to handle the separation of up to
5 strains albeit with some noticeable loss of quality when
separating 5 strains compared to the separation of 3 strains: the
average reference coverage drops from 95% (3 strains) to 75%
(5 strains), while the average nucleotide identity of sequences
with respect to their closest reference drops from 99.9% (3 strains)
to 99.6% (5 strains). Nevertheless, in all these scenarios
Strainberry improved upon the Flye assembly (Supplementary
Data 1).

We also performed an experiment to estimate the influence of
historical recombination on strain separation, not including
recent recombination events among strains in the same commu-
nity as they fall outside of our focus on low-complexity
communities. Strainberry’s ability to discriminate strains depends
on the average frequency of SNVs. With higher recombination
rates the SNV distribution becomes overdispersed. Nevertheless,
recombination tracts tend to be small (a few Kbp, often less) and
are expected to be mostly spanned by long reads. In order to
evaluate the performance of Strainberry on strains characterized
by different historical recombination rates25, we simulated a
mock community based on the complete reference genomes of
two Buchnera aphidicola strains (low recombination rate), two
Escherichia coli strains (average recombination rate), two
Helicobacter pylori strains, and two Neisseria meningitidis strains
(high recombination rate). As opposed to Flye, which provided
strain-oblivious assemblies for the species characterized by
average and high recombination rates, Strainberry was always
able to separate strain genomes. Nevertheless, the average
nucleotide identity of separated assemblies slightly decreases
with higher recombination rates (Supplementary Data 1).

Automated strain separation on a single sample validated by
manually processed and heavily curated multi-technology data.
We applied Strainberry to the low-complexity microbiome
NWC2 from a natural whey starter culture23. NWC2 contains
four dominant bacterial species and, among them, two strains of
the same species (L. helveticus strains NWC_2_3 and NWC_2_4).
Therefore, it provides a good test case for our approach. More-
over, four high-quality reference sequences have been produced
using a combination of Illumina, Nanopore and PacBio long-read
sequencing data, and the following manual curation: Nanopore-
based assembly followed by an extensive number of steps invol-
ving three PacBio-based, three Illumina-based, and two
Nanopore-based runs of polishing. We independently separated
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strains using Strainberry applied to either the Nanopore or the
PacBio dataset, without ever using short reads, in order to show
that we are able to separate strains without the need of multi-
technology data nor polishing, and also to assess potential dif-
ferences between the two long-read technologies. A comprehen-
sive overview of all assembly evaluation metrics computed with
respect to the manually curated references are shown in Sup-
plementary Data 2. Significant differences between strain-
oblivious and strain-aware assemblies mainly concern L. helveti-
cus strain NWC_2_3 and L. delbrueckii (Fig. 5), which are dis-
cussed next.

Strain separation using the PacBio technology. A strain-oblivious
assembly of the NWC2 PacBio data was generated with Flye
and separated with Strainberry. We also considered an assem-
bly produced with Canu for comparison purposes, even though
Canu produced more duplications in the Mock3 and Mock9
experiments.

Figure 5a shows that the original Flye assembly, without any
additional polishing, is mostly a strain-oblivious assembly. It is
missing 23.03% of the reference of L. helveticus strain NWC_2_3
(Fig. 5a) and 19.99% of L. helveticus strain NWC_2_4
(Supplementary Data 2). Instead, the scaffolds produced by
Strainberry cover almost fully the reference strains (only 9.87%
and 0.64% of the strains missing, respectively). Conversely, the
original Canu assembly was able to cover almost completely

both L. helveticus strains but Strainberry was still able to slightly
improve the percentage of unaligned bases of L. helveticus strain
NWC_2_3 from 7.65% to 5.26%. A significant number of
regions of L. delbrueckii were also covered twice in all assemblies
(Fig. 5b), suggesting the presence of another conspecific strain in
the dataset. Overall, Strainberry significantly improved Flye
reconstruction of the four dominant strains with 20% additional
genomic material for L. delbrueckii and L. helveticus strains,
comparable (or improved) sequence identity, and a reduced
number of major misassembly events compared to the Flye/
Canu assemblies (see Supplementary Note 3 and Supplementary
Data 2).

Additional quality assessment of the assembled strains was
carried out using CheckM (Supplementary Data 2). The
Strainberry+Flye assembly displays higher completeness values
compared to the strain-oblivious Flye assembly for the two
conspecific strains (L. helveticus strains) while yielding compar-
able values for other single species (S. thermophilus and L.
delbrueckii). The higher reported contamination in L. delbrueckii
and L. helveticus NWC_2_4 is likely due to the number of
duplicated sequences in the upstream Flye assembly, or to the
presence of other closely related strains in the metagenomic
sample (only the reference sequences of the four dominant strains
were available and used for the evaluation). With Canu, no major
differences between the strain-oblivious and the strain-separated
assemblies were observed.

Fig. 4 Evaluation of strain-separated assemblies with respect to strain coverage, divergence, and number of strains. Average reference coverages and
nucleotide identities of the strain-oblivious Flye assemblies and the Strainberry separated assemblies (ssFlye) on simple mock communities characterized
by variable strain coverage (first two columns), divergence (third column), and number of strains (fourth column). The variable coverage communities are
downsampled versions of the Mock3 dataset (B. cereus, E. coli strain K-12, and E. coli strain W). We kept the same depth of coverage among the strains
(uniform downsampling) or a constant 50× coverage for B. cereus and E. coli strain K-12 while downsampling exclusively E. coli strain W (uneven
downsampling). The variable divergence datasets consist of simulated reads from two strains where one is E. coli strain K-12 and the other one is listed on
the x-axis (with the divergence percentage shown in parenthesis). The datasets with variable number of strains contain 2, 3, 4, and 5 conspecific strains of
E. coli with pairwise divergences ranging from 0.7% to 1.4%.
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Strain separation using the Oxford Nanopore technology. Similar
to the previous section, a strain-oblivious assembly of the NWC2
Nanopore dataset was generated with Flye using a similar
protocol23. Also in this case a Canu assembly was produced and
provided to Strainberry for comparison purposes.

Results follow the same trend as with the PacBio data (see
Supplementary Note 4 and Supplementary Data 2). Strain-
separated assemblies are able to represent reference sequences
almost completely and yield just a slight improvement
compared to the PacBio data for L. helveticus strain
NWC_2_3 (Fig. 5c). There are however some key differences
for the assemblies generated with Nanopore data: lower
sequence identity to reference strains (98.78–99.76%) than
with PacBio data (99.69–99.97%) and a significant increase of
strain-separated bases aligning against L. delbrueckii reference
(Fig. 5d). Polishing of strain-separated contigs using Nanopore-
specific tools such as Medaka26 or MarginPolish27 would
further improve the identity of the Lactobacillus strains
assemblies (Supplementary Table 3). Overall, thanks to the
longer Nanopore reads, Strainberry provided 25–43% addi-
tional genomic material on L. delbrueckii and L. helveticus
strains compared to the Flye/Canu assemblies (see Supplemen-
tary Note 4 and Supplementary Data 2).

As expected, the CheckM analysis also follows the same trend
as with PacBio data. The main difference in the Nanopore dataset
is that the putative separation of a conspecific strain of L.
delbrueckii is even more pronounced, possibly thanks to the
longer reads. Moreover, a completeness greater than 90% could
be achieved only for some of the strains, regardless of the
assembly method. The reason for this behavior is likely due to
limitations of Nanopore chemistries so far, yielding more
contiguous assemblies at the expense of higher error rates which
affect sequence identity and thus completeness (erroneous indels
introduced during the assembly of separated reads likely affect
marker gene annotation).

Separation of strains in a human stool microbiome dataset
reveals hidden microbial diversity in a curated metagenome
assembly. We applied our pipeline to a realistic strain separation
instance, with no prior knowledge about strain variability.
A healthy human stool microbiome (patient P1 analyzed
in the work of Moss et al.22) was sequenced with Nanopore
technology. A strain-oblivious reference metagenome assembly
was previously generated using the Lathe workflow22, which
included extensive polishing, on which we performed a strain
separation using Strainberry. We also created a Flye assembly
for comparison purposes. In the following, we will refer to the
Nanopore raw data as HSM and to the strain-oblivious reference
assembly as Lathe. Compared to NWC2 and the mock datasets,
HSM is characterized by a higher species diversity22. A
MetaBAT228 binning of the Lathe reference yields 30 bins of size
greater than 2Mbp, providing a rough estimate of the number of
assembled species.

Strainberry displays an increased total length (+19%) and
duplication ratio (+0.365) with respect to the Lathe reference
assembly (Supplementary Data 3), indicating that additional
sequences (strains, as we will see next) were separated. The strain-
oblivious Flye assembly also shows a slight increase in duplication
ratio (+0.094) showing that it either separated some conspecific
strains and/or assembled additional low-abundance material. The
latter hypothesis is supported by the presence of unaligned
sequences (of total size 34.6 Mbp). Compared to the Flye
assembly, the Strainberry assembly also has unaligned sequences,
albeit an order of magnitude less than the Flye assembly (total
size 2.4 Mbp). While nearly all strain-separated scaffolds align (at
least partially) to the reference metagenome, a reduced genome
fraction (~90% for Flye vs. ~86% for Strainberry, see Supple-
mentary Data 3) is likely caused by the lower coverage of
separated read sets, or, for the Flye assembly, by its different
assembly strategy. The number of misassemblies, mismatches and
indels shown in Supplementary Data 3 do not accurately reflect

Fig. 5 Assembly-level coverage of L. helveticus NWC_2_3 and L. delbrueckii NWC_2_2. Comparison between the reference coverage of the Flye and Canu
assemblies and their strain-separated counterparts generated by Strainberry (ssFlye and ssCanu, respectively) for the following references and datasets: a
L. helveticus NWC_2_3 reference and PacBio dataset; b L. delbrueckii NWC_2_2 reference and PacBio dataset; c L. helveticus NWC_2_3 reference and ONT
dataset; d L. helveticus NWC_2_3 reference and ONT dataset. Orange regions highlight a higher coverage of the strain-separated assembly (ssFlye or
ssCanu), blue regions highlight a higher coverage of the strain-oblivious assembly (Flye or Canu), and gray regions represent the common coverage level
shared by both assemblies.
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the quality of the assembly as they are obtained by mapping an
assembly to the possibly imperfect and strain-oblivious Lathe
reference assembly. Precisely evaluating misassemblies would
require a perfect metagenome reference which is not available
here (see “Evaluation metrics for strain-oblivious and strain-
separated assemblies”).

Due to the lack of an accurate strain-level characterization of
HSM, to assess the ability of our pipeline to identify and separate
strains we considered contiguous and complete bins that were
likely to represent a consensus of conspecific strains or closely
related species. We focused on two nearly complete bins with low
contamination (as reported by CheckM), which were likely to
contain multiple strains (Supplementary Data 3). They were
classified as Veillonella atypica and Eubacterium eligens at the
species level. Note that, as of July 2020, Eubacterium is a
provisional genus name in the NCBI taxonomy. Bin sizes (2.4 and
3.2 Mbp) were also compatible with the median genome length of
the assigned species (2.1 and 3.0 Mbp). In addition, Strainberry
produced separations for the V. atypica and E. eligens contigs as
they had a high enough percentage of SNVs (see Supplementary
Fig. 3 and Methods).

Depth of coverage and sequence length for V. atypica and E.
eligens scaffolds were evaluated before and after our pipeline as a
first evidence of a plausible strain separation. The separated
sequences of V. atypica are characterized by a halved depth of
coverage compared to the Lathe contigs, suggesting two
equally abundant strains (Supplementary Data 3). The E. eligens
contigs also exhibit a similar behavior after the separation
(Supplementary Data 3). In both cases, strain separation introduced
additional assembly fragmentation (Supplementary Fig. 4).

V. atypica and E. eligens sequences were further evaluated with
CheckM in order to estimate the completeness and the
contamination levels of the assemblies (Supplementary Table 4).
As opposed to the Lathe reference, both the strain-separated and
Flye assemblies yielded a lower completeness. As expected, strain-
separated scaffolds also displayed higher contamination and
strain heterogeneity. Sequences have indeed been “duplicated”
through strain separation and, for this reason, marker genes are
found in multiple copies. The lower completeness of strain-aware
contigs is likely due to the lower depth of coverage of the
assembly (e.g., from 40× to 20× for V. atypica) and lack of
polishing. Indels appear to be one of the primary causes of
frameshifts in open reading frames and hence missing marker
genes. A similar behavior was previously observed in the
Nanopore-based NWC2 dataset. In order to provide a fair
comparison with the Lathe assembly, we polished the Strainberry
and the Flye assemblies as carried out in the Lathe workflow (i.e.,
4 rounds of Racon29 followed by one round of Medaka26). With
additional polishing Strainberry yielded comparable completeness
and much higher contamination and strain heterogeneity
compared to the Lathe assembly. This is indeed an additional
evidence that conspecific strains might have been separated. The
polished Flye assembly, on the other hand, was only characterized
by a limited improvement in V. atypica completeness (Supple-
mentary Table 4). It is worth noticing that the Strainberry
separation of the V. atypica bin yielded 86% additional genomic
material, allowing to characterize separated contigs by two
distinct strain-level classifications (~2Mbp each). Specifically,
Strainberry contigs have a best match and moderately cover the
V. atypica strain ACS-134-V-Col7a and the V. atypica strain
ACS-049-V-Sch6 available references (Supplementary Fig. 5).
Therefore, it appears that HSM contains two conspecific strains of
V. atypica, one closer to strain ACS-134-V-Col7a, the other one
to strain ACS-049-V-Sch6. This result is also observed in the raw
reads: 6222 are classified as V. atypica at the species level, 2833
(~22.4 Mbp) as strain ACS-134-V-Col7a, and 2504 (~19.4 Mbp)

as strain ACS-049-V-Sch6. Strainberry also produced 118%
additional genomic material on the E. eligens bin, yet it was not
possible to classify separated contigs with at a finer level as for V.
atypica.

We further performed a comprehensive comparison of
good-quality Lathe bins (i.e., high completeness and low
contamination) with the corresponding strain-separated scaffolds
(Supplementary Data 3). More precisely, we defined the bin
quality as completeness� 5´ contamination (as in ref. 30) and
focused on those bins having a value greater than 70. Strainberry
assembly was considered in its polished form. The Kraken2
classification of bin sequences highlighted a finer strain variability
after the strain-separation performed by Strainberry (Fig. 6).
Several bins also doubled (or increased significantly) in size after
the Strainberry separation. Moreover, CheckM reported a
completeness greater than 70 and an increase in contamination
proportional to the increase in size for seven of the strain-
separated bins (Supplementary Data 3).

Runtimes and memory usage. All reported analyses have been
run on a four-socket computing node with 14-core Intel Xeon
Gold 6132 CPUs and 3 TB of memory. For all datasets we
reported the time and memory usage of Flye, Minimap231, and
Strainberry which were run using 12 threads. The first two tools
are shown as they were used to generate the input data for
Strainberry, except for the HSM dataset in which Strainberry’s
input consisted in the reference metagenome already available. In
all cases, Strainberry required less than 10 GB of memory and less
time than Flye according to the dataset complexity and the input
coverage (Supplementary Table 5). For instance, in the most
complex dataset (the HSM dataset) Flye took 6.5 h and 132 GB of
RAM, while Strainberry took 4 h and 9.5 GB of RAM. On the
other hand, the Canu assembler always took from 2× to 30× more
time than Flye to finish (data not shown).

Discussion
In this work, we presented Strainberry, an automated pipeline for
performing strain-aware metagenome assembly of long reads.
Strainberry makes use of well-established tools for haplotype
phasing and genome assembly and introduces a strain-aware scaf-
folding component. Unlike other metagenome assembly methods, it
does not rely on either short-read sequencing data or extensive
polishing of the assembled sequences. Strainberry is able to accu-
rately separate strains using long reads sequenced from a single
metagenomic sample. An average depth of coverage of 60–80×
suffices to assemble individual strains of low-complexity metagen-
omes with almost complete coverage and sequence identity
exceeding 99.9%. Strainberry was also able to highlight finer strain
variation in a human stool microbial sample which was previously
characterized only to the species level. Although Strainberry showed
its flexibility by generating strain-aware assemblies regardless of the
employed long-read technology, we argue that the use of PacBio
sequencing data yields better strain-aware assemblies in terms of
sequence identity, while Nanopore sequencing data would favor
assembly contiguity. In general, Strainberry can be applied to any
long-read dataset of sufficient quality, i.e., for which an initial
strain-oblivious assembly can be obtained. In our tests, any strain
present at coverage above 10× ends up being correctly separated.
The quality of the resulting Strainberry strain separation will also
depend on the quality of the initial strain-oblivious assembly.

A key aspect that would merit further study is the relationship
between depth of coverage of the sample, read length, and ability
to resolve haplotypes. Strains need to be sufficiently covered, and
with long enough reads, in order to be fully and precisely
resolved. The lack of easy-to-use DNA extraction methods
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producing high molecular weight DNA for all bacteria in a
microbial community limits read length (to around a N50 of 5
Kbp). As we showed on the human stool microbial sample, low-
coverage strains are likely separated into shorter contigs/scaffolds
compared to the input sequences due to poorly covered regions.
This limitation also affects strain-oblivious assemblies, to a lesser
extent given that species-level assembly is achieved by pooling the
depth of coverage of all strains present.

Strainberry finds strain variations and separates reads by
exploiting state-of-the-art haplotype phasing techniques that were
designed for genomes. Notably, two recent pipelines that also rely
on those techniques produced chromosome-scale haplotype-
resolved single human assemblies32,33 using additional sequen-
cing data (Hi-C or Strand-seq). Haplotype phasing in single
genomes benefits from read coverage being evenly split among
the different haplotypes. This assumption no longer holds in a

metagenomic setting where haplotypes/strains typically exhibit
different abundance/coverage levels. While we showed this is not
a limitation for the actual separation of a limited number of well-
represented strains, we believe it is an important development
worth pursuing. Moreover, in the presence of high strain varia-
bility, strain-oblivious sequences might need to be separated into
a variable number of strains within the same contig. Finally, we
did not evaluate Strainberry’s ability to resolve plasmid genomes,
which we leave for future work.

Methods
Datasets and preparation. Mock communities were constructed from a 10-plex
PacBio Sequel dataset (see “Data availability”). Sequenced reads were demulti-
plexed with PacBio’s tool lima34 v1.11.0 and assigned to two mock communities:
Mock3 and Mock9. The former contains a ~400X coverage of Bacillus cereus,
Escherichia coli strains K12 and W. The latter instead contains a ~430× coverage of
the same genomes in Mock3, with the addition of Klebsiella pneumoniae, Listeria

Fig. 6 Assembly size and sequence classification before and after strain separation. Bins (x-axis) are named at the species level according to the most
dominant Kraken2 classification. The value between parentheses represents the average depth of coverage of the bin before the strain separation. Bins
highlighted with a bold font have a moderate post-separation completeness (>70%), while those highlighted in red have either poor completeness (<50%) or
low read coverage (<30×). Colored bars represent the number of bases classified as a specific species/strain in a bin before and after the strain separation (left
and right-hand bars, respectively). Classified sequences whose size accounts for less than 10% of the bin size have been grouped as “others”.
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monocytogenes, Neisseria meningitidis, Staphylococcus aureus strains ATCC 25923
and FDAARGOS 766, and Shigella sonnei. The precise depth of coverage of each
single genome is available in Supplementary Table 1. Assemblies of Mock3 and
Mock9 datasets were generated with Flye v2.7 with parameters --meta (corre-
sponding to metaFlye) and --pacbio-raw. The estimated genome size (--genome-
size option) was set to 15 Mbp and 42 Mbp for Mock3 and Mock9, respectively.
Reads were aligned to the assemblies using minimap31 v2.17 with parameter
-axmap-pb, sorted with the sort command of samtools35 v1.10. Due to the very
high depth of coverage, the Mock3 and Mock9 alignments were downsampled to
obtain approximately 75× and 86× coverage respectively (command samtools view
-s 0.15) in order to run our pipeline in reasonable time. For evaluation, the
reference sequences of the genomes in the mock datasets were downloaded from
NCBI (Supplementary Table 1). Assembly graphs for the Flye assemblies (Sup-
plementary Figs. 1 and 2) were generated using Bandage36 v0.8.1.

The mock communities considered to evaluate Strainberry with respect to strain
coverage, divergence, number of strains, and recombination rate were generated as
follows. To analyze the impact of strain coverage we downsampled the Mock3
dataset uniformly (all the strains) or unevenly (exclusively E. coli strain W),
considering the following depths of coverage: 5×, 10×, 20×, 30×, 40×, and 50×.
When the only E. coli strain W was downsampled, the other two strains were kept
at a constant 50× depth of coverage. Strainberry performance analysis with respect
to strain divergence was carried out generating 7 two-strain mock communities
consisting of simulated reads from the complete genomes of E. coli strain K-12 and
one of the following E. coli strains: ME8067, LD27-1, Y5, EC590, RM14721,
AMSCJX03, and H5. The four simulated datasets based on the increasing number
of conspecific strains consisted of reads simulated from the first n complete
genomes (for n= 2, 3, 4, 5) of the following E. coli strains: K-12, W, H5, LD39-1,
and AMSCJX03. Finally, the mock community considered to evaluate Strainberry
with strains characterized by different historical recombination rates was simulated
from the complete genomes of the following strains: Buchnera aphidicola strains Bp
and W106, Escherichia coli strains K-12 and W, Helicobacter pylori strains ASHA-
004 and ASHA-005, and Neisseria meningitidis strains 09-292 and 11-7. Accession
codes of the reference genomes considered for the simulated mock communities
are listed in Supplementary Table 2. Reads were generated with Badread37 v0.2.0
and parameters --quantity 50x --error_model pacbio2016 --qscore_model
pacbio2016 --identity 90,97,3 --length 6100,3700 in order to mimic the sequence
length and identity of the reads considered in Mock3. Assemblies were generated
with Flye v2.7 with parameters --meta and --pacbio-raw. The estimated genome
size (--genome-size option) was set to the total length of the known reference
sequences of the downsampled/simulated mock community.

The PacBio and Nanopore reads of the NWC2 sample and the reference
sequences were retrieved from NCBI (see “Data availability”). The PacBio dataset
contains a total of 763,335 reads sequenced using PacBio’s Sequel platform,
however only the 385,106 reads longer than 5 Kbp were retained for generating an
assembly. The Nanopore dataset contains a total of 407,027 reads sequenced with
the MinION platform. In this case only the 33,364 reads longer than 10 Kbp were
retained for generating an assembly. Both assemblies were constructed with Flye
v2.7 using a minimum read overlap of 3 Kbp, an estimated metagenome size of 8
Mbp, and four polishing iterations (options --meta --min-overlap 3000 --genome-
size 8 m --iterations 4). Flye was run with parameters --pacbio-raw and --nano-raw
for PacBio and Nanopore data, respectively. Reads were aligned to the assemblies
using minimap v2.17 with parameters -axmap-pb and -axmap-ont for the PacBio
and Nanopore datasets respectively, and position-sorted with the sort command of
samtools v1.10. The alignment of PacBio reads was further downsampled to obtain
approximately a 66× coverage (command samtools view -s 0.1743). The alignment
of Nanopore reads already yielded a 63× coverage of the assembly and therefore no
downsampling was applied.

Finally, the HSM dataset was also retrieved from the NCBI database (see “Data
availability” for accession numbers). More precisely, 4,003,772 Nanopore reads and
the 163-Mbp metagenome assembly generated with the Lathe workflow were
downloaded and used as input for Strainberry. Reads were aligned to the Lathe
assembly using minimap v2.17 with parameter -axmap-ont and sorted with the
sort command of samtools v1.10. Since the alignment yielded a 61× coverage of the
assembly, no downsampling was applied. The Flye assembly for this dataset was
generated with parameters --meta, --nano-raw, and an estimated metagenome size
(--genome-size option) set to 160Mbp.

All sequencing data available from the NCBI Sequence Record Archive (SRA)
was retrieved using the SRA Toolkit38 v2.10.8. Reference sequences were retrieved
using the NCBI’s tool Entrez Direct39 v13.9. All main results (assemblies,
evaluation metrics, and plots) presented throughout the manuscript were generated
using a custom analysis workflow which is open source and publicly available at the
following repository: https://github.com/rvicedomini/strainberry-analyses. The
following Python packages were used either in Strainberry or in the analysis
workflow: pysam40, biopython41, numpy42, scipy43, pandas44, seaborn45,
matplotlib46, networkx47, pygraphviz48, and pyvcf49.

Components of the strain separation pipeline
Haplotype phasing and read separation. The input of the first step of the strain
separation pipeline consists in a strain-oblivious assembly and an alignment of the
long reads against it. The rationale is to identify single-nucleotide variants (SNVs)

on assembled contigs and use them to separate reads into different haplotypes
(each haplotype will then correspond to a strain). Unfortunately, there is a scarcity
of variant callers designed to handle efficiently long, error-prone reads, and at the
same time supporting ploidy above 2. For this reason, we devised an approach that
iteratively performs a diploid separation using the Longshot50 diploid long-read
SNV caller, that is also able to tag (separate) reads according to their most likely
haplotype. Read separation is automatically performed by its companion phasing
tool HapCUT251. The output of the first step of each strain separation iteration is
therefore a set of phased haplotypes (or phasesets) that partition the input assembly
and a set of reads for each haplotype.

All variant calling and read separation tools were run with their default
parameters. We also considered the use of a combination of freebayes52 and
WhatsHap Polyphase53 for a non-iterative polyploid separation of the strains. This
alternative strategy did not provide major improvements on the mock datasets
(Supplementary Data 4) and were not further evaluated. Computational time was
also considered to select an appropriate combination of tools (Supplementary
Table 6).

Assembly of strain-aware contigs from separated reads. A phaseset is usually defined
as a list of phased SNVs along a sequence (e.g., a contig), that is SNVs assigned to a
specific haplotype. In this work, we slightly redefine a phaseset to be the interval
which includes the phased SNVs (and not the SNVs themselves). More formally,
given a strain-oblivious contig Ci , we define a phaseset over Ci as a tuple
PS ¼ ði; s; eÞ, where i is the contig identifier, and s and e are the first and last
positions, respectively, of the SNVs belonging to PS. Moreover, we define dens(PS)
as the percentage of SNVs that have been detected in the interval ½s; e� of Ci .

Assembly of haplotype-separated reads. The separated reads can be independently
assembled by a standard (genome) assembly tool. We expect this task to be much
simpler compared to the assembly of the whole metagenome, as the read separation
step should in principle yield reads that correspond to a single strain. For this
reason, and to handle a potentially large number of separated regions, we opted for
the fast long-read assembler wtdbg254. Moreover, as phasesets could be identified
in quite short regions (couple of thousands bases) and the depth of coverage is
reduced by the read separation, we decided to run wtdbg2 with fine-tuned para-
meters. We slightly increased the minimum read depth of a valid edge to 5 (option
-e 5), we decreased the minimum length of alignment to 1000 bp (option -l 1000),
we decreased to 3000 bp the threshold to drop short reads (option -L 3000), we
disabled k-mer subsampling (option -S 1), and enabled the realignment mode
(option -R). Note that these parameters were not tuned according to a particular
dataset but were set rationally and identically for all evaluated datasets. Finally,
phasesets PS where dens(PS) <0.1% were discarded. This allows, first, to avoid the
separation of strains having high sequence identity (greater than 99.9%) and,
second, to evade splitting contigs due to phasesets identified due to a small number
of false-positive SNVs.

Assembly post-processing. The assembly of separated reads posed some additional
difficulties that needed to be handled in order to provide an accurate strain-aware
assembly. More precisely, let PS ¼ ði; s; eÞ be a phaseset over the contig Ci defined
on the interval ½s; e�. The depth of coverage of a separated set of reads with respect
to PS is expected to progressively decrease at positions j<s and j>e, resulting in a
low-quality assembly at the extremities of phasesets. Therefore, to reduce this
effect, each haplotype-separated assembled contig is mapped to its corresponding
strain-oblivious contig Ci and its extremities are trimmed in order to keep
exclusively the aligned sequence corresponding to the interval ½s; e� of Ci. More-
over, the strain-oblivious unphased (non-separated) subsequences longer than 500
bp are retained. The set of the haplotype-assembled and unphased sequences
constitutes the Strainberry strain-aware set of contigs.

Strain-aware scaffolding. We explored the possibility of implementing a simple
scaffolding algorithm to produce a more contiguous assembly. Ideally, strain-aware
contigs belong to three types: strain-resolved (contigs that align to multiple strains
but map better to one than the other(s)), strain-specific (contigs belonging to one
strain only), core (contigs that correspond to regions that are near-exactly shared
by both strains). Therefore, aligning the original set of reads against the strain-
aware assembly might allow for properly joining strain-resolved contigs, possibly
including strain-specific and core contigs in between. Strain-aware scaffolding is
implemented as follows. First, the input reads are aligned against the strain-aware
contigs. Second, a scaffolding graph is built according to those reads whose
alignments bridge different contigs. Third, the graph is simplified, and unambig-
uous paths are processed to generate a set of strain-aware scaffolds.

Definitions. A dovetail alignment between a contig C and a read r is an alignment
between either the suffix of C and the prefix of r or vice versa, the prefix of C and
the suffix of r. We define a (strain-aware) scaffolding graph based on the string
graph formalism55. A vertex is associated to each contig (henceforth the two terms
will be used interchangeably), while edges are the dovetail alignments, indicating
adjacency between contigs. More formally, a scaffolding graph is a bi-directed
weighted graph G ¼ ðV; E;wÞ. V is the set of all strain-aware contigs Si . A bi-
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directed edge eij 2 E is put between two vertices Si and Sj if and only if there exists
at least one read r having two dovetail alignments, one with Si and the other with
Sj , and those dovetails alignments are such that one must involve the prefix the
read, and the other the suffix of the read. Moreover, eij is modeled as a bi-directed
edge by adding oriented arrows at both its endpoints. The direction of the arrow on
Si ’s side of eij is defined as follows: if the dovetail alignment involves the suffix of Si ,
it points away from Si; otherwise, if the dovetail alignment involves the prefix of Si ,
it points towards Si . The number of reads connecting Si and Sj defines the weight
wðeijÞ of the edge eij .

During a graph traversal, entering a vertex corresponding to Si with an arrow
pointing towards it, tells us to consider the contig Si as it is. Otherwise, the reverse
complement of Si must be considered (arrow pointing away from Si). The same
reasoning applies to Sj. Moreover, when entering a vertex from an arrow pointing
towards it, an edge with the arrow pointing away from it must be used to exit, and
vice versa.

Read alignment and filtering. Reads are mapped against the strain-aware contigs
using minimap231 with option -cxmap-pb (-cxmap-ont) in order to perform a
base-level alignment of PacBio (Nanopore) reads. Unique alignments (i.e., primary
minimap2 alignments with mapping quality greater than 40) which are also
dovetail alignments are retained in order to build the scaffolding graph. An
overhang (i.e., the unaligned extremity) that is the minimum between 50 bp and
the 10% of the match length is however allowed for identifying prefix and suffix
matches.

Graph construction and simplification. The identified dovetail alignments are used
to build the scaffolding graph according to the previous definition. In this
process, we consider the input strain-oblivious assembly as a “backbone” and we
allow only certain links according to the position of contigs on the input
assembly. We say that two contigs are consecutive if they map to the same
backbone contig and no other contig maps in between them. Two haplotype-
assembled contigs are adjacent if they map to the same backbone contig and no
other phaseset exists in between them (i.e., two adjacent contigs are not
necessarily consecutive). Two contigs are read-linked if there exists at least one
read showing evidence of these two contigs being close in a strain. An edge is
then allowed only between contigs of the following types: (i) two consecutive
contigs; (ii) two adjacent haplotype-assembled contigs; (iii) a non-separated
backbone contig and a haplotype-assembled contig which are read-linked; (iv)
two contigs both mapping on the extremity of a backbone contig.

Once the scaffolding graph has been constructed it is trimmed to remove simple
transitive edges and weak edges. The former is an edge eij between two vertices
Si and Sj (where i≠j) for which there exists a path Si ! Sz ! Sj from Si to Sj
traversing a distinct node Sz (z≠i and z≠j) and whose arrows at the sides of Si and
Sj are of the same type as eij. A weak edge is an edge exiting a vertex Si either being
supported by less than 10 reads or such that its supporting reads are less than the
90% of the reads supporting all edges exiting Si . The simplified graph is traversed,
and a scaffold is produced for each maximal unambiguous path (i.e., a path without
bifurcations that cannot be extended) introducing gaps when needed. More
precisely, gap lengths are computed as the median distance between two contigs
according to the reads supporting the corresponding edge, when such a distance is
positive. Conversely, contigs are simply joined one after the other if the median
distance has a negative value.

Iterative separation. The main pipeline (haplotype phasing, read separation,
haplotype assembly, and scaffolding) is performed in an iterative fashion, as long as
the output assembly is likely to be improved by an additional separation. This
section describes the process in more detail. Input reads are mapped against
Strainberry scaffolds and a tentative haplotype phasing is carried out and “com-
pared” with respect to the previous haplotype phasing. The comparison uses the
concept of Hamming rate, defined between a read and a phased haplotype as the
ratio between the number of different nucleotides among the shared SNV positions
and the total number of shared SNV positions (it is hence a value between 0 and 1).
An additional iteration is performed only if the average Hamming rate between
reads and their closest haplotype improves.

More in detail, the Hamming rate is computed only for reads that overlap a
phased region by at least 3 Kbp and only the smallest value among the phased
haplotypes is taken into account (i.e., the ratio corresponding to the closest
haplotype). If the average Hamming rate of these reads improves (i.e., is smaller) by
at least 1% of the value computed during the previous iteration, the haplotype
assembly and the scaffolding steps are subsequently performed. Otherwise, the last
strain-separated assembly is returned and Strainberry execution is terminated. In
order to prevent unnecessary separations that could worsen the quality and the
contiguity of the output assembly, each additional iteration is performed sequence-
wise. A new iteration is therefore performed only if the average Hamming rate
improves globally (i.e., taking into account all phased regions), while the actual
haplotype assembly and scaffolding steps are performed exclusively on sequences
for which the average Hamming rate improves locally (i.e., taking into account only
the phased regions of a sequence).

Strain-aware assembly evaluation. When only a single reference genome is
available for a given species and used to evaluate the assembly of multiple
strains, metrics such as sequence identity, duplication rate, and number of
misassemblies need to be evaluated with caution. As an example, in an isolate-
genome assembly, a duplication ratio much greater than 1 would typically
indicate a problem in the assembly. On the contrary, in a strain-aware meta-
genome context with limited knowledge of the organisms, a higher duplication
ratio might be simply an indication that multiple strains have been resolved. A
similar observation could be made when observing a lower sequence identity
and/or the presence of misassemblies. The former is expected when only a
single reference is compared against strain-resolved sequences as the
consensus sequence will diverge from individual strains. On the other hand,
misassemblies such as SNVs and indels could be due to strain differences.
For these reasons, metrics need to be evaluated differently with respect to the
datasets considered in this study. Mock datasets are precisely evaluated as all
the genomes are known and accurate references are available. Evaluation
metrics computed on the real datasets, on the other hand, need to be analyzed
with care.

All generated strain-oblivious and strain-aware assemblies were compared to a
set of reference sequences corresponding to genomes and strains known to be
present in the sample, when available. Each contig/scaffold was assigned to the
best-identity reference sequence using the MUMmer456 package. More precisely, a
custom script was used to assign each contig/scaffold to its closest reference
sequence for which the contig/scaffold aligns for at least 50% of its length. The
closest reference sequence is defined as the one for which the score
alignedBases ´ averageIdentity is the highest, where alignedBases is the number of
aligned nucleotides of an assembled sequence against a reference and
averageIdentity is the average nucleotide identity of the aligned sequence. Each set
of sequences assigned to a reference was then compared using the MUMmer4
command dnadiff and the output files were processed to obtain the GAGE57

assembly evaluation metrics. Circular and bar graphs in Figs. 2 and 3 were
generated from the MUMmer output with Circos58 and custom Python scripts (see
“Code availability”).

The following metrics were computed: number of contigs, assembly size, N50/
NG50, reference and assembly aligned percentages, average sequence identity,
number of duplicated/compressed bases, and number of misassemblies.
Misassemblies can be divided into four major categories, following the terminology
and criteria of QUAST59: SNPs, relocations, translocations, and inversions. SNPs
are simply single-base mismatches with respect to the reference sequence.
Relocations arise instead when the consistent ordering of aligned blocks is
disrupted. Translocations are relocations involving two adjacent blocks in the
assembly that align to different sequences/chromosomes in the reference genome.
Inversions are characterized by subsequences that align on opposite strands.

Assembly-level coverage plots of NWC2 available references (Fig. 5) were
produced by aligning the contigs assigned to a reference with minimap2
(parameters -ax asm20 --cs) and computing the assembly-level coverage in 20-Kbp
windows with mosdepth60 (parameters --by 20000 -m -x). CheckM v1.1.2 was run
with the Bacteria marker-gene set in order to evaluate completeness and
contamination percentages of the assembled sequences.

Some specific and more appropriate evaluation procedures were considered for
the HSM real dataset due to the lack of an accurate strain-level characterization and
its higher complexity compared to the Mock3, Mock9, and NWC2 datasets. They
are precisely detailed in the Supplementary Note 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All described datasets are publicly available. Links and accession codes are provided in
this section. PacBio sequencing data used to create the Mock3 and Mock9 datasets is
available at https://github.com/PacificBiosciences/DevNet/wiki/Microbial-Multiplexing:-
PacBio-Sequel-System,-Chemistry---v3.0,-Analysis---SMRT-Link-v6.0.0. NCBI RefSeq
accession codes of the reference genomes used for the assembly evaluation and the
generation of the simulated mock communities are listed in the Supplementary
Information (Supplementary Tables 1 and 2). NWC2 reads are available at the NCBI
BioSample SAMN09580370 under the SRA accession codes SRX4451758 (Nanopore)
and SRX4451757 (PacBio). Reference sequences used for the assembly evaluation of
NWC2 are accessible under the NCBI BioSample accession codes SAMN09476686
(S. thermophilus), SAMN09476687 (L. delbrueckii), SAMN09476688 (L. helveticus strain
NWC_2_3), and SAMN09476689 (L. helveticus strain NWC_2_4). HSM reads and the
corresponding metagenome assembly reference are available at the NCBI BioProject
PRJNA508395 under the SRA accession code SRX5235113 and the GenBank accession
code GCA_011075405.1, respectively. All assemblies generated with metaFlye, Canu, and
Strainberry are available at https://doi.org/10.5281/zenodo.4721347.

Code availability
Strainberry has been developed with the Python programming language and it has been
tested on a Linux platform. Strainberry is open source and available at https://github.
com/rvicedomini/strainberry under the MIT License. Scripts necessary to reproduce the
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main results are available at https://github.com/rvicedomini/strainberry-analyses. Results
were generated using the version 1.1 of the analysis workflow and the version 1.1 of
Strainberry61.
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