
© <2021>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/         
The definitive publisher version is available online at https://doi.org/  
10.1016/j.rser.2021.111354 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.watres.2019.03.069


Identification and characterization of decision-making factors over industrial 

energy efficiency measures in electric motor systems 

Accordini, D. 1, *, Cagno, E. 1, Trianni, A. 2 

1 Department of Management, Economics and Industrial Engineering, Politecnico di Milano, P.za Leonardo da 

Vinci, Milan 20133, Italy; enrico.cagno@polimi.it 

2 School of Information, Systems and Modelling, Faculty of Engineering and IT, University of Technology 

Sydney, 81 Broadway, Ultimo 2007, Australia; andrea.trianni@uts.edu.au 

* = corresponding author details, davide.accordini@polimi.it; Tel.: +39-348-148-0926 

Abstract 

Energy efficiency measures in electric motor systems are scarcely implemented, and previous literature has 

largely overlooked the characterizing factors responsible for their adoption in industrial operations. The present 

study, after a comprehensive literature review, aims at supporting research by offering a framework for the 

identification of the factors that should be assessed when considering the adoption of electric motor systems’ 

energy efficiency measures. The proposed factors are clustered in ten categories, namely: contextual factors, 

compatibility, economy, energy savings, production-related factors, operations-related factors, synergies, 

complexity, personnel and additional technical factors. After a preliminary empirical validation, the proposed 

framework has been applied in a selected sample of manufacturing firms. Findings show that factors more 

closely related to the firm’s production and operations result most critical for the adoption of energy efficiency 

measures. However, the adoption process is also deeply influenced by their complexity or compatibility to the 

specific context application, therefore calling for an exhaustive assessment. The adoption of the framework 

would have reversed some firm’s decisions over the initial uptake of EEMs that proved to have critical issues for 

their implementation. Therefore, the proposed framework provides additional support and further value to 

decision-makers especially for non-energy intensive firms, where the impact on non-energy production resources 

becomes more important, and SME usually present greater difficulties for a holistic assessment of EEMs. The 

study concludes with main implications for research and policy-making from the present study as well as 

suggestions for future research. 
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1. Introduction  

With energy consumption projected to grow by about 50% between 2018 and 2050 [1], the commitment towards 

industrial energy efficiency plays a critical role [2,3]. A major share of electric energy consumption is 

attributable to electric motor systems (EMS) [4,5] thanks to their widespread diffusion in a number of industrial 

applications and purposes. Despite the existence of minimum efficiency mandatory standards in most of the 

Countries for new motors, about 70% of the total energy consumed by motors comes from unregulated (IE0) or 

low-efficiency devices (IE1) [2]. Moreover, reviews show that EMS are broader than the motor itself, with a 

variety of energy efficiency measures (EEMs) [6], still presenting a largely untapped energy efficiency potential 

[7]. Despite EEMs in EMS can be easily implemented and with high estimated investment returns [2,8], their 

implementation rate is still low [9]. Therefore, what could appear at first sight as a low hanging fruit may hide 

the understanding of a much more complex situation, where the lack of information and specific characteristics 

of EEMs – together with the potential disruption coming from their adoption – could represent higher barriers 

jeopardizing their implementation [10,11]. Hence, a mere techno-economic feasibility analysis is insufficient to 

capture the implications of effectively placing an EEM into the operations. Further, research has been so far 

limited to highlight some relevant characteristics of EEMs in general (e.g., the knowledge required for the 

planning and implementation of a general EEM or its diffusion progress and sectorial applicability [12,13]). 

However, considering EEMs within EMS, the necessary detail to effectively guide decision-makers in the 

understanding of the distinctive features driving the adoption [14,15] is still lacking. Unfortunately, literature has 

just preliminarily explored the impacts generated by the adoption of EEMs on a firm’s production resources and 

activities, such as the variations of productivity and production quality. Yet, research has not sufficiently 

disentangled the multiple impacts on the operations and the working environment.  

To contribute to the discussion by addressing the aforementioned research gaps, a novel framework has been 

specifically designed. The framework could also guide industrial decision-makers and policy-makers in selecting 

the most appropriate means to promote EEMs in EMS. The remainder of the paper is structured as follows: in 

Section 2, the extant literature on factors crucial for decision-making over EEMs in EMS is extensively 



reviewed, followed by the presentation of the new framework (Section 3). In Section 4, the research method used 

to empirically validate the framework is detailed and the results are explained in Section 5. After the discussion 

(Section 6), concluding remarks are provided in Section 7. 

2. Literature background 

Previous research has investigated the characteristics of EEMs in general terms. Fleiter et al. [12] designed a 

framework of factors characterising EEMs organized according to the categories of relative advantage, technical 

context and information context. By considering aspects such as the relative advantage or the complexity of an 

EEM [16], the study represents one of the first attempts to encompass into the analysis of EEMs some elements 

referring to the diffusion of innovation [17]. Complexity has been acknowledged as an important element that is 

an essential characteristic linked to the type of investment [18]; similarly, Sandberg and Söderstrom [19] have 

distinguished between replacements and development investments, the latter being characterized by a good level 

of profitability but also with a higher risk of greater losses. Fleiter et al. [12] have addressed complexity through 

the factor type of modification and scope of impact, also taking inspiration from earlier literature [20]. Mills et 

al. [21] have pointed out the inverse relationship between technical complexity of EEMs, thus uncertainty on the 

results and their adoption rate, confirming earlier findings by Tornatzky and Klein [17]. The complexity of an 

EEM is also related to the expertise required during the various stages of the adoption [12], thus on training 

activities, considered critical also for improving the awareness towards energy efficiency [22,23]. Nonetheless, 

given the wide skill range required, firms often lack adequate personnel [24,25]. 

Several studies elaborated on Fleiter et al. [12], reviewing their framework and proposing novel sets of factors. 

Trianni et al. [13] have kept information regarding the complexity of an EEM including e.g., the ease of 

implementation, the likelihood of success/acceptance and the corporate involvement required for the adoption. 

Regarding the economic dimension, implementation costs are deemed as crucial especially in the case of small 

and medium-sized enterprises (SMEs) [26,27] and potentially more critical than the payback period for EEMs 

adoption rate [28]. The payback period has been acknowledged as a common indicator to assess investments 

profitability [29,30]. Cooremans [31] has highlighted the importance of analysing EEMs not only at the 

operations level but from a strategic perspective. On the other hand, Roberts and Ball [32] have focused on time-

related technical characteristics, i.e., implementation time and implementation pace, as well as considering some 

basic contextual information, such as the physical location where the sustainable manufacturing practices is 

placed. 

Other scholars have enriched the analysis by offering additional information related to consequences on the 

production and the firms’ operations stemming from the adoption of EEMs. In some cases, energy savings are 

not the most valuable result according to the final users (e.g., [33,34]) and therefore should just be part of the 

equation rather than the ultimate objective [35]. In literature, such advantages (e.g., lower maintenance 

requirements, increased productivity, reduced waste and emissions) are generally known as non-energy benefits 



(NEBs) [13]. Likewise, EEMs may also have negative impacts on the system, i.e., non-energy disbenefits or 

losses [36] (e.g., production disruption [37]). Hence, both benefits and losses should be equally acknowledged 

for wise decision-making [38]. 

Among NEBs, production and productivity improvements are generally a strong driver for the adoption of EEMs 

[35]. Despite being usually perceived as a direct benefit of EEMs [39,40] productivity may also be enhanced 

indirectly, e.g., through improved working conditions positively stimulating operators [39]. On the other hand, 

unnecessary downtimes should be avoided [19] as potentially leading to disruptions in production [37], 

particularly critical for heavy capital-intensive sectors and energy-intensive sectors based on continuing 

production [10,41]. The adoption of an EEM may also bring improved product quality [42,43], measurable by 

the scraps and reworks reduction [33,44], leading in turn to improved customer satisfaction [35] which may be 

even more important than a reduction in production costs for decision-makers [23].  

Moreover, productivity could be affected by variations in process control [45,46] and equipment conditions and 

reliability [39,42]. The latter, in turn, may be strongly affected by the adoption of EEMs, together with the 

lifetime of the devices [47,48]. Referring to the operation and maintenance dimension, many authors pointed out 

a reduction in motor size [38] or the number of needed devices [49], with a consequent cut in labour 

requirements and engineering controls [39], but an increase in capacity may occur as well [50,51]. However, 

authors note the importance of thoroughly assessing the amount of additional indirect costs such as production 

losses arisen due to production shutdowns [52,53] 

The benefits of adopting EEMs can extend to the entire working environment, e.g., by improving the internal 

temperature [52,54], air quality [45,55] or lighting [56,57], or even by reducing the noise level [58,59], with 

increased workers’ productivity [39], comfort [38], health and safety [60,61]. The impact on the external 

environment may be important as well, in terms of emissions and waste [13,20] with a potential improvement of 

firm’s image [62] and its public relations [35, also in light of current or future compliance with regulations and 

environmental targets [13,63]. 

Among a variety of technologies, EMS are extensively adopted in industrial firms in a countless range of both 

core production and ancillary processes and have been widely investigated by research (e.g., [13,64,65]). Despite 

a wealth of industrial literature, previous contributions are mostly limited to an analysis of their technical 

features (e.g., [66,67]), with just little research exploring a limited number of NEBs stemming from the adoption 

of EEMs in EMS, by addressing motor units and control systems [35].  

As summarised in Table 1, earlier research describing EEMs’ features [13,68] has not accounted for the entirety 

of factors potentially relevant for decision-making purposes. Furthermore, the focus on specific technologies and 

EEMs is crucial since it allows relevant factors to emerge, as shown by previous research on EEMs in 

compressed air systems [69]. It is therefore clear that a study encompassing the complete set of factors that 

might influence the adoption of EMS EEMs is lacking. In fact, the contextual dimensions in which EMS are 



called to operate remain still unexplored, both in terms of business-related factors (such as firm size and sector 

[41,70]), operating context, as well as its interactions with the surrounding environment.  

The framework is intended to facilitate the complex process of industrial decision-making over EEMs in EMS. 

The need for such a tool comes from the complexity of the task to be performed, influenced by both the 

surrounding working environment, with its multiple and varying dynamics and constraints, and the subjectivity 

and capabilities of the single decision-maker [71,72], whose perspective filter the entire study. 

Table 1  

Synthesis of factors used in literary studies to describe EEMs. 

Factors  References Factors  References 

Corporate involvement [13,43,73,74] 
Perception, collaboration with 
clients, suppliers, competitors 

[36,43] 

Nature [36] 

Increased communication between 

department and levels within the 
firm 

[74] 

Activity type [12,13,32,75] Workers’ productivity [53,76–80] 

Scope of impact [12] Labour savings (or labour cost) 
[33–
35,37,42,47,49,51,53,55,57,61,64,77,

81–84]  

Targeted area [36] Reduction in labour requirement 
[31,34,38,39,45–47,49,50,69,77,83–

88]  

Extension of impact [36] Indirect effects [13] 

Independency from other 

components or EEMs 
[75] Larger product range [53] 

EEM location [32] Flexibility in production [50,53,80,87] 

Accessibility [75] Material handling and movement [61,85]  

Diffusion progress [12,32,43,73] Raw material and fuel 
[13,31,33–35,42,46,47,50–
53,55,59,61,65,69,73,80–83,85–93] 

Check-up frequency [13] Reduced water consumption 
[37,38,42,47,48,53,55,57,58,61,77,78,
83–85,89,94,95] 

Complexity [16,17,75] Reliability in production 
[31,33–35,39,42,45–49,51–
53,55,64,69,81,83,84,86,96–99] 

Trialability [16,17] Availability [98] 

Duration of the impacts [32,36] Unscheduled downtime [50,53,59,80,87,98] 

Resilience [36] 
Reduced cost of production 

disruption 
[82] 

Maintainability of the impacts [36] Length of implementation [32] 

Stability of the impacts [36] Sourcing strategy [32] 

Timescale (peak and frequency of 
exploitation of the impacts) 

[36] 
Lower or different maintenance (or 
maintenance cost) 

[13,34,35,37,42,46–53,55,57–
61,64,65,69,74–87,89,91,94–96,100–

103]  

Knowledge for planning, 
implementation and use 

[12,13,32,43,75,77,85,104] Wear and tear on equipment 
[31,39,45,47,51–53,65,74–
76,81,83,84,89] 

Increased knowledge of the 
process or operation 

[74] Extended lifetime of the equipment 
[12,34,37,46–
48,51,53,57,60,61,64,69,76,79,81–

84,86,89,94,98,102,103] 

Additional space 
[31,39,45,47,49–
51,53,79,81,83,84,87,101] 

Improved process control [31,38,39,45–47,51,53,81,83,96] 

Likelihood of success [13,105] Reduced operational cost 
[13,34,35,47,51,52,60,61,64,65,73,74,
76,78,79,81,83,85,89,91,94–96] 

Compatibility [16,17,75,98] Logistic benefits [47,82] 

Adaptability to different 
conditions 

[75] Real time data [59] 

Synergies [36,75] 
Generation of KPI for comparison 
within the firm 

[74] 

Distance to the core process [12,13,31,80,91,98] 
Simplification or automation of 
customs procedures 

[53] 

Sectoral applicability (process-

related, cross-cutting) 
[12] New contracts and design processes [79] 

Firm size [49,53,60,73,99] New service provider [79] 



Factors  References Factors  References 

Energy intensity [81,99] 
Obtain sustainability or energy 
certification 

[43,79] 

Sector [53,61,73,95] Increased sales levels [34,43,46,53,61,64,74,85,91,103] 

Motor numerosity [89] 
Improved public image, brand 

reputation 

[39,43,45–

47,50,51,53,61,64,69,73,77,81–
84,86–88,90,98,99,104] 

Motor size [49,98] Improved competitiveness 
[43,47,50,51,73,74,81,83,84,87,91–

93,96,99] 

Motor type [98] Increased market share [61,64,91,104] 

Working hours [98] New markets [43,104] 

Torque and speed requirements [98] 
Contribution to the firm's vision or 
strategy 

[53] 

Saving strategy [13] Reduced currency risk [47,82] 

Amount of saved energy [13,33,51,53,57,65,75,81,83,89,98,105] 

Reduced risk (legal, energy, CO2, 

water price, energy supply, 
commercial) 

[31,44,53,77,78,80,81,83,98,99,104] 

Improve energy management [74,103] 
Future change of energy price 

(volatility) 
[61,79,88,92,93,104] 

Improved lighting 
[34,37,39,45–48,50–53,56,57,60,81–

84,87,102] 

Reduced volatility of business 

results 
[61] 

Improved air quality 
[31,34,37,39,42,45–48,50–53,55–
57,60,64,69,74–76,78,79,81–84,86–

89,92,93,96,106] 

Decreased liability [31,39,45,47,51,53,81,83,90,106] 

Better air flow (production, 

ancillary) 
[37,47,53,57,59] Implementation cost [12,13,17,32,43,60,75,94,98] 

Vibration (and cavitation) [59,76,89] Premium price [61] 

Reduced noise level 

[31,34,37–39,42,45–48,50–

53,55,56,58,59,69,74–76,81–
84,87,95,101,102,107] 

Transaction cost [12,32] 

Improved temperature control (of 
working environment) 

[31,39,45–47,50,52–54,65,74,76,79,82–
84,87,106] 

Acquisition of complementary 
technology 

[43] 

Reduced need for cooling 

[31,37,39,42,45–

47,51,53,55,57,65,69,81–
84,86,89,96,99] 

Reduced interest cost on capital 
investment 

[31,34,39,42,45,47,49,51,53,55,61,69,
77,81,83,84,86,88,105] 

Better aesthetics [34,37,47,48,57,60,83,101,102,107] 
Reduced or eliminated rental 
equipment cost (or increased renting 
revenue) 

[33,42,48,49,53,55,61,79,80,85,106,1
08] 

Reduced ancillary operations [77,83] 
Reduced or eliminated demand 
charges 

[34,42,48,55,61,77] 

Reduced operating units [54] Increased facility or asset value 
[44,47,48,50,51,53,61,64,77,79,81,83,
87,88,92,93,103,108] 

Reduced backup units [49] Pay-back [12,13,17,32,43,53,61,65,75,91,94,97] 

Improved ease of system operation [49] IRR [32] 

Improved worker morale 

[31,39,45–

47,50,51,53,57,61,64,69,79,81–
84,86,87,104]  

Cash-flow [36] 

Increased workers safety (reduced 
incidents) 

[31,33–35,37,38,42,44,46–53,55–

58,60,61,64,69,75,76,79–
84,87,94,95,104,106,108,109]  

Shareholder return [61] 

Greater comfort 
[13,31,34,37,38,42,44,46–48,50–53,55–
58,60,61,64,74,76–79,81–84,87,88,92–
96,99,101,103,104,106–110]  

Taxes [33,43,48,56,77,79,99,100,107] 

Vapor, moisture, mould (working 
environment) 

[50,87] 
Reduced fines related to emission 
exceedances 

[33,35,43,47,51–
53,61,65,77,79,81,83–85,88,94]  

Reduced smell (from leaking oil) [50,64,87] 
Achieved rebate, incentives, 
subsidies 

[31,42,55,77,79,90,99] 

Reduced CO, CO2, NOX, SOX 
emissions 

[31,34,39,42,45–

48,50,52,53,55,60,64,65,69,73,79–
82,84,86–93,95,100,105,108–111] 

Lower cost of treatment chemicals [42,47,55,61,89] 

Reduced dust emissions (and 
ashes) 

[31,39,42,45–48,50–
53,55,69,83,84,87,100,110] 

Reduced planning, legal, 
administrative, procurement cost 

[77,85] 

Reduced waste 
[31,34,35,37–39,42,45–48,50–

53,55,58,64,69,74,77,78,80–84,86,87] 
Stimulate economic development 

[48,60,61,78,88,91–

93,95,100,107,109] 

Use of waste heat, fuel, gas [31,39,45,47,52,53,82,83] Turnover of energy efficiency goods [92,93] 

Environmental 
[13,38,42,48,50,55,57,58,61,74,78,87,9
0,92–94,102,103] 

Renewable energy sources target [92,93] 

Production, productivity 

[13,16,17,31,33–35,37,39,42,44–

49,51,53,55–57,59–61,64,65,69,73,79–
84,86,88–96,99,101–104,112]  

Rebound effect [88] 



Factors  References Factors  References 

Increased capacity [33,35,47,50,51,53,81,83,87,91] Infrastructure [48,100] 

Shorter process cycle time 
[31,39,42,45–47,51–

53,55,57,61,69,74,80,81,83,86,105] 
Create jobs, employment 

[37,44,48,60,61,74,77,88,91–

93,95,100,107–109] 

Stock and lead time [98] Poverty alleviation [44,61,88,92–94,100,106–109] 

Changes in the organization of 
production 

[43] Innovation [92,93,104] 

Product quality 

[31,33–35,37,39,42,45–47,50–

53,55,57,59,61,64,65,69,73,74,76,80–
87,89,96,98,99,105] 

Consumer surplus [44] 

Service quality [98] Climate change [44,90,91] 

Improved customer satisfaction, 

change orders, warranty claim 

[33–
35,37,47,48,51,53,57,58,60,64,76,80,81

,83,90,108] 

Energy security 
[31,44,48,50,61,73,78,83,87,88,90,92,

93,99] 

Reduced customer service cost (for 

better quality) 
[53] Public budgets [88,91–93] 

3. A novel framework for decision-making factors on EEMs in EMS 

To design a complete framework targeting EEMs in EMS, common features have been identified through the 

technical description of EEMs in EMS, as recent research suggests [113]. By taking inspiration from the extant 

literature, features have been clustered to define a novel set of factors through a synthesis process. The approach 

aims at offering a holistic perspective over the analysis, by encompassing the broad set of impacts on the 

operations and the other production resources of a firm as well as the contextual dimension in which EEMs are 

embedded. The definition of the factors is followed by a process of clustering into categories and sub-categories, 

strongly enhancing the applicability of the framework, also for a potential deployment as an assessment tool 

(Cagno et al. [114]). A total of 57 factors have been defined and organized in 10 categories, namely: (i) 

contextual factors, (ii) compatibility, (iii) economy, (iv) energy savings, (v) production-related factors, (vi) 

operations-related factors, (vii) synergies, (viii) complexity, (ix) personnel and (x) additional technical factors. 

Since the framework is designed to support industrial decision-makers, an additional advantage is provided by 

the indication of the adoption phase addressed by each factor. The distinction between implementation (I) and 

service (S) phase [36] can give more accurate insights, enabling the optimization of the resources available for 

the firms. Details over the categories, the sub-categories and factors are reported in Table 2. 

3.1 Contextual factors 

Contextual factors provide a broader picture of the applications in which the EEMs may operate. Indeed, the 

built-in motors’ characteristics and the operating context influence the possible impacts of EEMs on the system 

and may direct the choice on the most appropriate EEMs, by limiting the number of opportunities. This category 

includes 6 factors, namely: (i) motor model, (ii) motor size, (iii) motors number, (iv) working hours, (v) process 

focus and (vi) application load. 

3.2 Compatibility 

Taking inspiration from Rogers [16], compatibility defines the capability for EEMs to adapt in an already 

organized system and to establish a positive engagement with existing operating conditions and devices. This 

category is structured with two sub-categories, namely: (i) load and (ii) system. The load sub-category refers to 



the compatibility of EEMs to the specific application requirements, by including load compatibility and 

adaptability to different conditions. The system sub-category refers to (i) the compatibility of an EEM to the 

physical environment in which it operates; and (ii) the possible reduction in layout flexibility.  

3.3 Economy 

The economy category encompasses several common factors for the assessment of EEMs’ economic figures, by 

including: (i) initial implementation costs; (ii) total adoption costs; (iii) adoption costs of mandatory secondary 

devices; (iv) adoption cost of additional optimisation devices; (v) financial exposure; (vi) monetary savings and 

(vii) pay-back time.  

3.4 Energy savings 

Reduced energy consumption is the first perceivable impact coming from the adoption of an EEM [18,35].  

3.5 Production-related factors 

This category describes the production-related impacts on a firm stemming from the EEMs adoption, including 

variations in ancillary processes with indirect impact on productivity (e.g., operators productivity improved 

thanks to improved working conditions [39] obtained through the optimization of an ancillary system such as air 

conditioning). The same holds also for production processes, whose variations may have a dual impact on the 

production area, both direct and indirect. This category is organized into global and local sub-categories. The 

global sub-category analyses through six factors how the total of EMS installed in a plant affects its production-

related activities, directly and indirectly, in terms of: (i) productivity; (ii) production quality and (iii) production 

costs. The local sub-category rather focuses on single EMS, describing its performance variation and condition 

with potential impact on production-related factors, by including: (i) setup time; (ii) reliability of the equipment; 

(iii) downtime for maintenance and repairs; (iv) downtime for implementation; (v) equipment lifetime and (vi) 

process control. 

3.6 Operations-related factors 

The category describes the impact EEMs may have on factors related to operations. Different perspectives are 

introduced, shifting the focus from the conditions of the single EMS to a holistic analysis of the working and the 

broader external environment. This includes three sub-categories: (i) motor conditions, (ii) working environment 

and (iii) external environment. Concerning motor conditions, the impacts coming from the adoption of EEMs are 

perceived by analysing the operating parameters of the equipment, including: (i) temperature; (ii) vibrations; (iii) 

power quality; and (iv) air quality. Further, the impacts coming from the adoption of EEMs on the working 

environment are assessed in terms of: (i) noise; (ii) environmental temperature; (iii) environmental vibrations; 

(iv) health and safety; and (v) air quality. Impacts on the external environment are assessed through changes in 

(i) waste; and (ii) emissions. 



3.7 Synergies 

During the adoption, industrial decision-makers may identify synergies between different EEMs and coordinate 

their action to gain advantages [36] (e.g., avoiding multiple shutdowns of the plant by scheduling the 

implementation of several EEMs during maintenance activities). 

3.8 Complexity 

By adapting the definition of complexity as “the degree to which an innovation is perceived as difficult to 

understand and use” [16] to EEMs, this category includes a number of factors as follows: (i) training; (ii) 

dependency from other components/EEMs; (iii) physical placement inside motor system; (iv) activity type; (v) 

technical maturity and technology market diffusion and (vi) accessibility. 

3.9 Personnel  

This category refers to the roles impacted by the EEMs adoption and the magnitude in terms of employees 

involved. The analysis on the roles may provide knowledge regarding the authority and the skills required to 

successfully adopt an EEM, supporting firms in designing a better strategy [19]. Also, this category may 

indirectly refer to the ease of implementation, given that the involvement of multiple departments within a firm 

and personnel with different roles usually implies greater difficulties for the implementation [17]. The factors 

grouped in the role sub-category differentiate between actively engaged (or required) personnel in the adoption 

of EEMs from personnel passively undergoing the change (passive). Additionally, despite top management 

exercise a considerable degree of control, this may be insufficient to transform the firm into a conscious entity 

with a unitary will [115]. Therefore, the corporate involvement sub-category addresses the extension of the 

involvement required for any role, i.e., the number of impacted employees, either actively or passively. 

3.10 Additional technical factors 

The category provides further insights into the technical description of EEMs applied to EMS. It includes: (i) 

implementation type; (ii) check-up frequency; (iii) secondary devices necessary; (iv) additional optimisation 

devices; and (v) automation. 

Table 2  

Novel framework composed of categories, sub-categories and factors to support industrial decision-makers in the 

assessment of industrial EEMs. 

Category Sub-category Factors  Description Phase References 

Contextual factors 

Motor model 

Model of the motors where EEMs will be applied in terms 

of efficiency (thus indirectly of age). Among others, it may 
provide information regarding compliance with local rules. 

I +S 
[113,116–

120] 

Motor size Motor size (power) for EEMs considerations. I+S 
[49,113,116,1

20,121] 

Motors number Number of motors affected by the EEM. I+S [89,116] 

Working hours 
Working hours of the motors where the EEMs will be 
applied. It is strongly related to the activity performed by 

I+S 
[15,116,120,1

22] 



Category Sub-category Factors  Description Phase References 

the firms and to the role of the motors. 

Process focus 

Distinction between process-core and non-process core 

activities. Excluding some rare exceptions (see e.g. [88]), it 
coincides with the division between production and 
ancillary activities. 

I+S 
[12,13,31,80,

91,116] 

Application load 
Load applied: constant torque load, variable torque load and 

constant power load applications.  
I+S [113,120] 

Compatibility 

Load 

Load compatibility 

EEM suitability and compatibility with technologies 
embedded in the EEM or existing system. Particularly 

important for EMS working in critical conditions (e.g., very 
high or low-speed applications, high torque or shock load 
applications). 

S [98,113] 

Adaptability to different 

conditions 
EEM flexibility in case of changes to the system. S / 

System 

Adaptability in every 
environment 

Adequacy of use in the chosen location. S [113,123] 

Reduced layout flexibility 

The implementation of EEMs could lead to a reduction in 

the degree of freedom in designing the configuration of the 
plant, because of built- in technological constraints, 
especially when layout modifications are not allowed. 

I [113] 

Economy 

Initial implementation cost 

Implementation costs at “time 0” (e.g., equipment 

purchases, engineering/contractor fees and adaptation costs). 
In the case of technology upgrade, only the marginal costs 

should be considered. 

I 
[12,13,23,26–

28,98,116] 

Total adoption cost 
Total investment expenditure throughout the project life  
(particularly important in case of repeated implementation). 

I / 

Adoption cost of mandatory 
secondary devices 

Costs of other secondary devices necessary/mandatory to 
fully benefit from the adoption of the EEM. 

I+S [113] 

Adoption cost of additional 
optimization devices   

Costs for additional devices (not mandatory), that could 

optimize the benefits of the interventions (e.g., control 
devices). 

I+S [113] 

Financial exposure 
The factor describes whether an EEM could grant a firm 

more freedom in managing its finance. 
I+S / 

Monetary savings Monetised energy savings. S 
[13,98,120,12

4] 

Pay-back time 
Pay-back time of the investment, defined as the ratio 
between implementation costs and monetised energy 

savings. 

S 
[12,13,26,29,
30,120,125,1

26] 

Energy savings Energy savings in energy units (MJ or kWh). S [13,18,35] 

Production-related 
factors 

Global 

Productivity - direct Direct impacts on the productivity of a firm. S 
[13,19,34,35,
39,40,42,44] 

Productivity - indirect 

Indirect impacts on the productivity of a firm (e.g., due to 

improved working conditions which positively affect the 
personnel). 

S [39] 

Production Quality - direct 
Direct variations in production quality (e.g., reductions in 
scraps and reworks).  

S 
[23,35,39,42–

44,98] 

Production Quality - 

indirect 
Indirect variations in production quality. S / 

Production costs – direct 
Direct variations in production cost (e.g., labour, operations 
and maintenance, raw materials, waste or production 

disruptions).  

S [35,37,39,44] 

Production costs - indirect Indirect variations in production cost. S / 

Local 

Set-up time 
Variations in the time needed to change configuration when 
different operating conditions are required.  

S [113] 

Reliability of the 

equipment  

Changes in the reliability of the equipment through the 

mean time to failure (MTTF). 
S [35,39,42,98] 

Downtime for maintenance 
and repairs 

Changes in the downtime for maintenance and repair 
through the mean time to repair (MTTR). Comprehensive of 

both the planned and unplanned downtimes. 

S [34,35,98] 



Category Sub-category Factors  Description Phase References 

Downtime for 

implementation 

Time interval including the installation, testing and the start-
up of the new equipment as well as the decommissioning of 
the existing equipment (in case of substitution). When 

dealing with a practice, it can be considered as the time to 
effectively implement it. 

I [34,36] 

Equipment lifetime 

Variations in the equipment lifetime as a consequence of 

EEMs adoption. It may be affected by the different 
conditions of wear and tear to which the equipment is 
subjected. 

S 
[12,34,35,39,

98] 

Process control  Variations in the level of process control.  S [38] 

Operations-related 
factors 

Motor 

conditions 

Equipment temperature  
Variations in the equipment temperature (cooling 

requirements).  
S [8,39,98] 

Equipment vibrations 
Variations in the vibrations to which the equipment is 
subjected.  

S [59,76,89,98] 

Equipment power quality  
Variations in power quality (e.g., power factor, voltage 

unbalance, off-design voltages and harmonic distortion).  
S [98,113] 

Equipment air quality   
Variations in the air quality that reaches the physical 
devices.  

S [113] 

Working 
environment 

Noise Variations in the noise within the working environment.  S 
[34,35,38,39,

42,58] 

Environmental temperature Variations in the temperature of the working environment.  S [39] 

Environmental vibrations 
Variations in the vibrations perceived by operators within 
the working environment.  

S / 

Health and Safety 
Variations in the health and safety conditions for the 
operators within the working environment, including the 

avoided need for personal protective equipment.  

S 
[34,35,38,42,

58] 

Air quality 
Variations in the air quality of the working environment 
after the adoption of EEMs.  

S [34,38,39,42] 

External 

environment 

Waste Variations in the amount of waste generated. S 
[13,20,34,35,

38–40,42,62] 

Emissions 
Variations in the amount of GHG and dust emissions. It may 
affect firm compliance with local regulations. 

S 
[13,34,35,39,
42,44,63,127,

128] 

Synergies 
Synergies between different EEMs which could be exploited 

to gain advantages. 
I+S [36] 

Complexity 

Training Level of training required to adopt an EEM. I+S 
[22–

24,72,125,12

9] 

Dependency from other 
components/EEMs 

Magnitude of influence of an EEM, distinguishing between 
interventions impacting the specific devices, sub-systems or 
the wider surrounding system. 

S [12,17] 

Physical placement inside 

motor system 

EMS area addressed by the EEM (location of installation for 

physical devices or targeted area for procedures). The 
intervention may be related to a single component of the 

motor system or the connection between systems 
(component wide variation) or the entire motor system 
(architectural innovation). The installation of a new 

component could also lead to an architectural innovation by 
shifting the importance of other components in the system. 

I [20,32] 

Activity type 

Nature of an EEM, distinguishing between a procedure, a 

new equipment installation, an optimization in the use of 
existing technology or an equipment retrofitting.  

I 
[12,13,19,68,

130] 

Technical maturity and 
diffusion of the technology 

in the market 

Technical maturity of an EEM and its level of diffusion in 

the market. 
/ 

[12,72,131–

133] 

Accessibility Difficulty to access the location where the EMS is installed. I+S [75] 

Personnel 

Role 
Active personnel  Personnel actively engaged during the adoption. I+S [8,12,19] 

Passive personnel  Personnel who passively undergoes the adoption. I+S / 

Corporate 

involvement 

Active corporate 

involvement  
Extent of involvement by personnel actively engaged. I [13] 



Category Sub-category Factors  Description Phase References 

Passive corporate 
involvement  

Extent of involvement by personnel who passively 
undergoes the adoption. 

I [13] 

Additional technical factors 

Implementation type 
Single-step or multiple times installation, thus providing 
information about how the effort is distributed along the 

lifetime of the measure.  

I / 

Check-up frequency One-time effort or periodic check.  S [13,134] 

Secondary devices 
necessary  

Technical needs of mandatory secondary devices to benefits 
from EEMs adoption. 

I+S / 

Additional optimization 
devices   

Technical needs of suggested secondary devices to benefits 
from EEMs adoption. 

I+S / 

Automation  Eligibility of EEM for automation.  S / 

4. Research methods 

The theoretical framework has been tested in the field with industrial decision-makers to verify its completeness 

and its applicability as an assessment tool, capable of pointing out the major factors driving the adoption of 

EEMs in EMS. The multiple case study methodology has been adopted following a replication logic, choosing 

independent cases to obtain similar results, in line with Yin [135] and Voss et al. [136]. Indeed, the differences 

in the businesses and the environment could deeply influence the perception of factors and categories and, in 

turn, the approach toward the adoption of EEMs. The selected sample encompasses Italian firms within different 

sectors, firm size and energy use, thus potentially characterized by different behaviours toward the adoption of 

EEMs. Indeed, larger firms are usually more structured compared to smaller ones, with a more structured 

decision-making chain [137]. Moreover, the choice of the sector could lead to different applications of EMS, 

thus also influencing the adoption rate of EEMs, beyond a different relevance of energy costs and savings. 

Finally, the six sampled firms (details in Table 3) are located in two large manufacturing regions contributing to 

about 30% of the Italian GDP [138].  

Table 3  

Sample of companies and EEMs selected for the validation of the framework. 

Firm Sector 
Size 

[employees] 

Turnover 

[M€] 

Energy 

intensity 

[EI/NEI]1 

Role of the 

Interviewee 
EEMs EMS targeted EEM type 

EEM 

code 

1 

Boiler 

construction 

and  

carpentry 

101 ÷ 150 27 NEI 
Plant  

manager 

Use adjustable frequency 

drive to replace throttling 

system (ARC 2,4143) 

3 KW motor used 

for equipment 

testing 

Implemented 
EEM 

1-1 

Use most efficient types 

of electric motors (ARC 

2,4133) 

3x1,5 KW motors 

used for 

ventilation fans 

Implemented 
EEM 

1-2 

2 
Food & 

beverage 
10 ÷ 50 19 NEI 

Maintenance  

responsible 

Use VSDs  

1,5 KW motor 

used for wine 

racking 

Not 

implemented 

EEM 

2-1 

Utilize energy-efficient 

belts and other improved 

mechanisms (ARC 

2,4111) 

7 motors with a 

power up to 8 

KW used for  

material handling 

Implemented 
EEM 

2-2 



Firm Sector 
Size 

[employees] 

Turnover 

[M€] 

Energy 

intensity 

[EI/NEI]1 

Role of the 

Interviewee 
EEMs EMS targeted EEM type 

EEM 

code 

3 
Plastic & 

packaging 
151 ÷ 249 90 EI 

Deputy 

Maintenance  

responsible 

Utilize energy-efficient 

belts and other improved 

mechanisms (ARC 

2,4111) 

7x50 KW motors 

used for a cutting 

press 

Not 

implemented 

EEM 

3-1 

Replace DC equipment 

with AC equipment (ARC 

2,3311) 

30x3 KW motors 

used for material 

handling 

Implemented 
EEM 

3-2 

Use VSDs  

140 KW motor 

used in a screw 

extruder 

Implemented 
EEM 

3-3 

4 
Steel  

rolling 
51÷ 1002 90 EI 

Maintenance  

responsible 

Establish a preventive 

maintenance program 

(ARC 2,4156) 

900 KW motor 

used for material 

handling 

Implemented 
EEM 

4-1 

Replace DC equipment 

with AC equipment (ARC 

2,3311) 

6x150 KW 

motors used for 

steel lamination 

Not 

implemented 

EEM 

4-2 

5 
Machine  

assembly 
51÷ 100 12 NEI 

CEO and 

owner 

Use most efficient types 

of electric motors (ARC 

2,4133) 

3,5 KW motor 

used for material 

handling 

Not 

implemented 

EEM 

5-1 

Upgrade control on 

compressors (ARC 

2,4224) 

17 KW motor 

used for HVAC  
Implemented 

EEM 

5-2 

6 Iron & steel ≥ 2503 / EI 

Electrical 

maintenance 

responsible 

Install isolation 

transformers 

3 motors with a 

power up to 3,5 

MW used for 

steel lamination 

Implemented 
EEM 

6-1 

1 Firms are labelled as energy- intensive when their energy costs exceed 2% of the total annual turnover [11]. 

2 The plant interviewed belongs to a larger corporate employing about 1100 people. 

3 The plant belongs to a larger corporate employing about 6500 people with total revenue of €5 billion. 

In-field interviews are carried out following the semi-structured approach [139], to allow the partial 

customization required by the heterogeneity of situations under analysis.  

Each interview has started with a brief description of the firm and its main production processes. The discussion 

has also explored the relevance and the characteristics of EMS and the required applications. The decision-

making process is then investigated, together with the role of the respondents for the adoption of EEMs in EMS, 

followed by a brief overview of the EEMs implemented in the past. 

The second part of the interview has dealt with the preliminary validation of the framework according to a 

predetermined set of indicators. A Likert scale from one (poor) to four (excellent) is used, similarly to [75]. The 

features interested by the analysis firstly has encompassed the structure, scope and perspective of the framework, 

followed by the categories, sub-categories and factors, considered in this step as clusters. After the understanding 

by the responding of the overarching framework structure, the analysis has moved into the details of the single 

categories, sub-categories and factors. Table 4 shows the indicators used and their specific role in the validation 

of each element of the framework. 

Table 4  

Indicators for the validation of the framework completeness, classification, usefulness and clearness. 



Framework  Completeness Classification Usefulness Clearness 

 Structure    X 

 Scope   X X 

 Perspective    X 

Categories  X (cluster)  X X 

Sub-categories  X (cluster)  X X 

Factors  X (cluster) X (cluster) X X 

Upon completion of the preliminary validation, the framework has been further validated in terms of 

completeness and usefulness through the investigation of twelve heterogeneous EEMs selected from [113] 

among the most implemented in industry [9] (Table 3). The sample includes both EEMs which were successfully 

adopted by the firms and still in place (implemented EEMs), those considered for adoption but not implemented 

or adopted but then removed (not implemented EEMs). Respondents are required to point out which factors were 

considered and deemed important in order to adopt EMS EEMs. Moreover, in the final phase of the empirical 

validation, they are asked whether a different decision would have been taken if the framework had been 

available to support them. The flow chart of the methodology process is described in Fig. 1.  

 

Fig. 1. Flow chart of the methodology process. 

5. Results  

The preliminary validation has allowed gathering some valuable insights for the framework, with interviewees 

positively judging all indicators (details reported in Table A1 in the Appendix). In particular, interviewees noted 

that all the factors potentially affecting the adoption of EEMs in EMS have been included. Further, there were no 

major concerns regarding the classification into categories and sub-categories. In this regard, the structure has 

been acknowledged and deemed appropriate, and factors well understood by decision-makers. Finally, the 

overall evaluation of the usefulness resulted extremely positive. 



Regarding the second phase of the validation, Table 5 and Table 6 present the empirical results based on two 

specific EEMs, EEM 2-1 and EEM 3.2 respectively, followed by more general comments over the general 

validation. 

Table 5  

Validation of the framework through EEM 2-1, pointing out: factors considered useful () in the EEMs 

assessment; factors assessed and eventually driving the adoption decision, both positive (EEM implemented, 

) and negative (EEM not implemented, *); factors neglected from the EEMs assessment, both negligible 

(O), important (X) and potentially reversing the decision (X X) with respect to the outcome. 

Validation of the framework: EEM 2-1 

Firm profile • Small non-energy intensive firm belonging to the food&beverage sector. 

Production 
• The firm produces wine and the process includes all the phases from the 
pressing of harvested grapes to the bottling of the final products. 

EMS  
 • More than 200 motors, some of them running continuously 24 hours per 

day. The maximum power is 10 KW. 

Decision-making  

 • Given the low share of energy cost, about 0,8% of the total turnover, an 

energy manager is missing.  The EEMs are carried out by the respondent 
(maintenance responsible), supported by external service providers for the 
most expertise requiring EEMs.  

EEM 
 • Installation of a VSD coupled with a pump actioned by a 1.5 KW motor 
and used for wine racking from one pool to another (EEM 2-1). 

EEM type  • Not implemented (implemented but soon removed). 

Framework Factors consideration and notes for firm 2 

Descriptive  
factors 

Motor model  

• Considered in the analysis as the basis of the assessment 

Motor size  
Motors numerosity  

Working hours  
Process focus  
Application load  

Compatibility 

Load 

Load compatibility X X 

• The analysis of the load compatibility was limited to the initial 
configuration, which unfortunately represented the best scenario with respect 

to all the different phases of the racking process. To perform a complete 
racking of wine, the process is stopped multiple time according to the level 
reached by the wine in the pool. However, with the progressive movement of 

wine from one pool to another, the static head acting on the pump increased 
to unbearable levels for the VSD, which was soon removed from the process.  

Adaptability to different conditions  

System 
Adaptability in every environment  • The compatibility of the EEM with the system was considered and no 

issues were detected. Reduced layout flexibility   

Economy 

Initial implementation cost  

• Cost represented a major barrier to the adoption, but the analysis of the 
benefits led to an acceptable pay-back time. 

• They were not aware of the potential need to invest in additional devices to 
improve the power quality against the harmonic distortion introduced by the 

VSD. 

Total adoption cost  
Adoption cost of secondary devices X 

Adoption cost of additional 
optimization devices 

O 

Financial exposure O 

Monetary savings  
Pay-back time  

Energy benefits  • Low energy savings due to the reduced consumption of the motor. 

Production 
related factors 

Global  

Productivity - direct  
• Productivity improvement is one of the main reasons driving the adoption 

of the EEM. 
• The indirect impacts on productivity were not considered, but their impact 
would have been negligible since just one small motor was affected by the 

EEM. 

Productivity - indirect O 

Production quality - direct  

Production quality - indirect O 

Production cost - direct  
Production cost - indirect O 

Local 

Set-up time  

• The improvement in process control was the main reasons driving the 

adoption of the EEM. 

Reliability  

Downtime for maintenance and repair  
Downtime for implementation  
Equipment lifetime  

Improved process control  

Operations 

related factors 

Motor 

conditions 

Equipment temperature  
• Motor conditions were considered but reported only slight variations due to 

the reduction of speed during the great majority of the operating time. 
Equipment vibrations  
Equipment power quality  



Validation of the framework: EEM 2-1 

Equipment air quality   

Working  

environment 

Air quality  

• The conditions of the working environment were considered but did not 
change due to the single small motor impacted by the EEM, which was 

moreover placed away from the working area. 

Noise  
Environmental temperature  

Environmental vibrations  
Health and safety  

External  
environment 

Waste O • Variations in the external environment were not considered. They would 
have not impacted the adoption. Emission O 

Synergies O 
• Synergies were not known by the decision-maker, but even if considered 

they would have not impacted the adoption. 

Complexity 

Training  

• Complexity factors were considered, especially regarding the required 
training to maintain the VSD and the reduced level of risk introduced by the 

activity type. 

Dependency from other components/ 
EEMs 

 

Physical placement inside motor 

system 
 

Activity type  

Technical maturity and diffusion of 
the technology in the market 

 

Accessibility  

Personnel  

Role  
Active personnel  • No great variations impacted the personnel beside the additional training, 

however limited to the maintenance personnel. Passive personnel  

Corporate  
involvement 

Active corporate involvement  • Only the involvement of the respondent was required to carry out the 
adoption. Passive corporate involvement  

Additional technical factors 

Implementation type  

• They were not aware of the potential need to install additional devices to 
cope with the power quality issues generated by the VSD. 

Check-up frequency  
Secondary devices necessary X 

Additional optimization devices  X 

Automation   
 

Table 6 

Validation of the framework through EEM 3-2, pointing out: factors considered useful () in the EEMs 

assessment; factors assessed and eventually driving the adoption decision, both positive (EEM implemented, 

) and negative (EEM not implemented, *); factors neglected from the EEMs assessment, both negligible 

(O), important (X) and potentially reversing the decision (X X) with respect to the outcome. 

 Validation of the framework: EEM 3-2 

Firm profile • Medium energy- intensive firm belonging to the plastic&packaging sector. 

Production 

• The firm realizes plastic products such as containers or disposable 
tableware used in the food sector. 
• 20 lines are installed to carry out the production, each of them divided into 

two sections: the first is responsible for the creation of plastic sheets from 
raw powder, while in the second the sheets are heated up, vacuum-formed in 

a mould and eventually cut through a press. 

EMS  
 • The total power installed is about 5 MW, with motors ranging in size up to 
140 KW. 

Decision-making  
 • Despite the high share of energy costs, about 4% of the total turnover, an 
energy manager is missing, hence EEMs are implemented by the respondent 

(deputy maintenance responsible) together with the maintenance responsible.  

EEM 
 • Replacement of 30 old 3 KW DC motors powering the material handling 
system of two production lines with the corresponding AC devices (EEM 3-
2). 

EEM type  • Implemented. 

Framework Factors consideration and notes for firm 3 

Descriptive  
factors 

Motor model  

• Considered in the analysis as the basis of the assessment 

Motor size  
Motors numerosity  

Working hours  
Process focus  
Application load  

Compatibility Load 
Load compatibility  

• Despite AC devices are usually characterized by a lower torque with 
respect to their DC counterparts, the analysis of the load compatibility did 

not highlight problems due to the limited requirements from the load. 
• To be compatible with the speed modularity required by the material 
handling system (i.e., compatibility to different conditions), the firm was 

forced to couple the new devices with VSDs. Adaptability to different conditions  



 Validation of the framework: EEM 3-2 

• With this EEM the firm moved toward the standardization of the 
equipment, with the aim of increasing the compatibility of the devices in 

terms of adaptability to different conditions.  

System 

Adaptability in every environment O 

• The adaptability of the devices in the environment was not considered, but 

no problems would arise because of the strict environmental standards the 
firm is subjected to due to the collaboration with the food sector. 
• The limited layout flexibility of a rigid system such as a production line 

could have been a problem with the installation of VSD, which must be 
placed not too far from the control centre. However, no problems arose. 

Reduced layout flexibility   

Economy 

Initial implementation cost  • The adoption of new AC devices consistently reduced the high costs in 
which the firm was incurring to find spare parts for the old DC devices, no 
longer widely diffused in the market. 

• Further additional devices, i.e., passive filters, were required to deal with 
the power quality issues, mainly harmonics, generated by the extensive 

adoption of VSDs in the plant. The cost of these additional devices is added 
to the non-negligible cost of the EEM. 
• Despite a rather long pay-back time according to the firm evaluation, the 

economic assessment was positive. 

Total adoption cost  
Adoption cost of secondary devices  

Adoption cost of additional 
optimization devices 

 

Financial exposure O 

Monetary savings  

Pay-back time  

Energy benefits  • High energy consumption reduction. 

Production 
related factors 

Global  

Productivity - direct  

• Productivity improvement is one of the main reasons driving the adoption 

of the EEM. 
• The indirect impacts on productivity were not considered by the decision-

maker. 

Productivity - indirect X 

Production quality - direct O 

Production quality - indirect X 

Production cost - direct  

Production cost - indirect X 

Local 

Set-up time  • The improvement in productivity derived from the increased reliability and 

equipment lifetime, mainly due to the absence of brushes in the new devices, 
was considered very important. 

• The downtimes of the production for maintenance and repairs are reduced 
thanks to the creation of an internal standard spare parts warehouse with 
standard spare motors immediately available for use. 

Reliability  

Downtime for maintenance and repair  
Downtime for implementation  

Equipment lifetime  
Improved process control  

Operations 
related factors 

Motor 

conditions 

Equipment temperature  • The operations factors were considered, given their proximity to the 
reliability of the equipment. In particular, the decision-maker noticed an 

improvement in the air quality due to the absence of dust created by the DC 
motors brushes degradation. 

Equipment vibrations  
Equipment power quality  

Equipment air quality   

Working  
environment 

Air quality  
• Except for the aforementioned air quality, the decision-maker did not take 

into account variations in the working environment, nor the positive impact 
this could have on the workers and on the conditions in which they are called 
to operate, potentially indirectly fostering their productivity.  

Noise X 

Environmental temperature X 

Environmental vibrations X 

Health and safety X 

External  

environment 

Waste O • Variations in the external environment were not considered, despite the 
willingness of the firm to be perceived as sustainable and efficient, as 

testified by the certificates they own and the events they organize. Emission O 

Synergies  • Synergies were considered 

Complexity 

Training  

• Complexity was mainly taken into account considering the dependency of 
the EEM from other components, carefully analysed because of the 
potentially disruptive effect it could have on a rigid system based on 

production lines configuration. 
• The complexity of the EEM required add itional training for the operators.  

• No accessibility issues were detected, despite AC motors are generally 
larger with respect to DC ones and additional VSD had to be installed. 

Dependency from other components/ 

EEMs 
 

Physical placement inside motor 
system 

 

Activity type  
Technical maturity and diffusion of 

the technology in the market 
 

Accessibility  

Personnel  

Role  

Active personnel  • Personnel was considered when dealing with the reduction in maintenance 

and referring to the additional training activities required by the EEM. 
• The impacts on personnel who passively underwent changes in the 

conditions of the working environment after the adoption of the EEM were 
not considered. 

Passive personnel X 

Corporate  
involvement 

Active corporate involvement  • Considering the investment and the extension of the EEM on 30 motors, 
the adoption needed to be supported by higher management levels. 
• A large number of employees was involved in the adoption of the EEM. Passive corporate involvement  

Additional technical factors 

Implementation type  

• The additional technical factors were considered by the decision-maker. 

Check-up frequency  

Secondary devices necessary  
Additional optimization devices   

Automation   



In both the cases discussed in Table 5 and Table 6, the framework proved to be complete, being able to highlight 

all the important factors to be considered for the adoption of the EEMs. Interestingly, some of them were not 

always considered by the decision-makers of the two firms. Concerning EEM 2-1, many important factors that 

would support its adoption were assessed, however missing the most critical one highlighted in the present 

framework, i.e., lack of load compatibility, that effectively led to the EEM removal after its adoption. On the 

other hand, firm 3 was more aware of the adoption and, as the use of the framework showed, the large majority 

of factors that should have been considered were already assessed by their decision-maker. Nonetheless, the 

framework proved to shed light on some additional benefits which were overlooked by the firm (e.g., positive 

impacts on the working environment, thus on the personnel). While this addition would not change the outcome 

of the adoption, it could give a decision-maker a more realistic picture of the EEM adoption and its 

consequences. Therefore, the validation of the framework was successful in both cases. 

Considering the whole sample of twelve EEMs, useful insights came from the validation process (Table 7). 

Firstly, the importance of all the categories and factors for in-depth decision-making about EEMs in EMS is 

confirmed. Regardless of the outcome of the adoption, by using the framework decision-makers confirmed they 

could undertake the assessment with additional valuable information on all the major factors. In particular, 

interviewees have appreciated the level of detail achieved by the framework that allowed for thorough decision-

making over the specific EEMs. The efficacy of the approach has been shown multiple times during the 

interviews, e.g., in the case of firm 2 (EEM 2-1), where EEMs were not adopted because of the lack of 

compatibility with the existing system (see Table 5 for more details). However, the relevance of EEMs 

compatibility with the system in which they are adopted varies according to the specific technology; for instance, 

the compatibility with the applied load should be assessed for EMS but it might be less interesting for other 

technologies, e.g., lighting. As confirmed by respondents, with just a general framework to support decision-

makers, such specific implications could not be grasped. Moreover, the user-friendliness and ease of use of the 

framework, thanks to a perspective focused on the decision-maker, were particularly appreciated.  

Secondly, the preliminary investigation revealed that the application of the framework would not have changed 

the decision of adopting the implemented EEMs: all the factors potentially driving the adoption were recognised 

by companies or, when not considered, they were mainly related to additional benefits (thus further 

corroborating the decision).  

Thirdly, interviewees offered interesting insights and comments regarding not-implemented EEMs. As observed 

in many companies (e.g., Firm 5), firms could have implemented more valuable EEMs by using the framework, 

thus further improving their sustainability.  

Table 7  

Validation of the framework, pointing out: factors considered useful () in the EEMs assessment; factors 

assessed and eventually driving the adoption decision, both positive (EEM implemented, ) and negative 



(EEM not implemented, *); factors neglected from the EEMs assessment, both negligible (O), important (X) 

and potentially reversing the decision (X X) with respect to the outcome. 

Framework  Firms and EEMs 

Categories Sub-categories Factors  
EEM 
1-1 

EEM 
1-2 

EEM 
2-1 

EEM 
2-2 

EEM 
3-1 

EEM 
3-2 

EEM 
3-3 

EEM 
4-1 

EEM 
4-2 

EEM 
5-1 

EEM 
5-2 

EEM 
6-1 

Descriptive factors 

Motor model             
Motor size             
Motors numerosity             

Working hours             
Process focus             
Application load             

Compatibility 

Load 
Load compatibility   X X  *        
Adaptability to different conditions             

System 

Adaptability in every environment      O O O  X    
Reduced layout flexibility  
 

O           O 

Economy 

Initial implementation cost         *    
Total adoption cost         *    

Adoption cost of secondary devices  X O X       X O  
Adoption cost of additional 
optimization devices 

X O O       X O  

Financial exposure X O O O O O O   O O O 

Monetary savings          *   

Pay-back time             
Energy savings             

Production 
related 

factors 

Global  

Productivity - direct             
Productivity - indirect O O O X O X X  X O O  
Production quality - direct      O O O O    

Production quality - indirect O O O X O X X  X O O  
Production cost - direct             
Production cost - indirect O O O X O X X  X O O  

Local 

Set-up time     O        
Reliability of the equipment             

Downtime for maintenance and repair O O           
Downtime for implementation     O        
Equipment lifetime     O        
Process control    O O   O O    

Operations 
related 

factors 

Motor conditions 

Equipment temperature     O    X    

Equipment vibrations     O    X    
Equipment power quality X O   O    X    
Equipment air quality  O    O   O X    

Working environment 

Air quality  O    O   O X O   
Noise O    O X X  X O   

Environmental temperature O    O X X  X O   
Environmental vibrations O    O X X  X O   
Health and safety O O   O X X  X O   

External environment 
Waste O O O O O O O  O    
Emission O O O O O O O  O    

Synergies X  O O O   O O   O 

Complexity 

Training      O    *    
Dependency from other components/ 

EEMs 
    O        

Physical placement inside motor system     O        

Activity type     O        
Technical maturity and diffusion of the 
technology in the market 

    O       O 

Accessibility O O   O        

Personnel  

Role  
Active personnel     O        

Passive personnel    X O X X  X O   

Corporate involvement 
Active corporate involvement     O X X      
Passive corporate involvement    X O X X  X O   

Additional technical factors 

Implementation type     O        
Check-up frequency     O        

Secondary devices necessary  X O X  O     X O  
Additional optimization devices X O X  O     X O  
Automation      O   O  O O O 



6. Discussion  

The empirical analysis performed in the present study confirmed the criticality played by some of the factors 

previously identified by literature and summarised in Table 1. Productivity improvements, achieved through the 

higher reliability of the new equipment, drove the adoption of EEM 1-2 and EEM 2-2, confirming findings from 

previous works that linked the adoption of EEMs to increased productivity [39,112]. Productivity and process 

control improvements also led firm 2 to the consideration of a VSD (EEM 2-1), confirming the finding of Saidur 

et al. [141]. In Firm 4, reliability represented the main driver for the EEMs considered by firm 4, confirming the 

importance attributed to the factor by previous research (e.g., Gordon et al. [49]). In accordance, the literature 

demonstrated how reliability is important for both increasing the value offered by a firm and decreasing its 

operational risk [31,53]. Furthermore, operations related factors were assessed by all decision-makers 

interviewed, especially in the case of EEM 6-1, where the equipment temperature was a factor of primary 

importance. Indeed, impacts on factors such as air quality, vibrations and temperature show a strict connection 

with the equipment performance. Such finding looks aligned with those of Piette and Nordman [76], who 

highlighted a degradation in both the production quality and the reliability of the equipment as a consequence of 

the variation of those factors. Furthermore, earlier literature greatly supported the role of EEMs as a means to 

affect the working environment, with a consequent impact on workers comfort, health and safety, and indirectly 

on their productivity [39]. From the interviews performed in the present study, these factors were not always 

assessed by decision-makers, which however acknowledged their relevance by using the framework. Also, our 

preliminary investigation showed that the external environment, encompassing emissions and waste factors, was 

either largely neglected or barely relevant for the adoption. However, when dealing with environmental topics, 

respondents clearly pointed out their firms were fully compliant with local regulations, and this could explain the 

relatively lower importance attributed to these factors. Our findings differ from other research where the impact 

on the external environment was crucial for the decision [64,82], in particular when dealing with industrial firms 

subjected to environmental regulations. Lilly and Pearson [65] showed how the evaluation of emissions is 

different depending on whether firms may incur fines, whilst Elliott et al. [33] pointed out that emissions could 

be even more important than any enhancement in reliability or production since unfulfilled regulations could 

lead to a complete shutdown of the firms’ operations.  

Nevertheless, despite the great importance attributed to the aforementioned categories of factors, the present 

research shows additional categories and factors playing a key role in the adoption of EEMs in EMS. The 

present investigation revealed how some additional factors, specific for EMS, should be pinpointed for more 

effective decision-making, critical since often neglected by literature and sometimes even by decision-makers. 

This the case of e.g., the factors related to the compatibility or the complexity dimensions of an EEM, especially 

when EEMs in EMS may affect the core production processes. According to our results (e.g., EEM 2.1 and EEM 

3.1), compatibility issues might prevent decision-makers from implementing those EEMs, regardless of any 

further consideration or achievable benefits. Our empirical findings corroborate previous works linking 



complexity and compatibility of innovation and the respective level of adoption [16,17]. However, referring to 

the broad concept of innovation, previous analyses lack the level of detail necessary for an empirical assessment 

of EMS EEMs, being rather focused on compressed air systems [75]. Nevertheless, being the compressed air 

systems an ancillary service, important considerations that might play a critical role for EMS were not captured 

(e.g., the need to adapt to the variation of production conditions, as shown by EEM 1-1 or EEM 3-2). Likewise, 

our investigation broad new knowledge about other important factors (e.g., synergies, the impacts on personnel 

or the additional technical factors) previously mostly overlooked by research [36].  

Earlier literature gave limited importance to the specific context of application of the EEMs (e.g., the location 

[32] or the distance to the core process [12,13,31]). Rather, the investigated case studies revealed that the EMS 

EEMs should be analysed within their specific context of application. As noted in firm 2, the lack of 

compatibility identified was due to both the technical characteristics of the EEM [113] and the context in which 

the EEM was meant to operate. 

Moreover, the case studies made it possible to observe the impact of contextual factors. For instance, motors’ 

size and numerosity seem to have a moderating function (similarly to what observed by Aguinis et al. [142]) on 

other factors, e.g., the investment cost. For firm 4, e.g., the higher cost due to large motor size and high number 

represented one of the main issues hindering the replacement of the old DC motors. Furthermore, the same 

contextual factors might affect the importance attributed to the external and working environment, since these 

may not be significantly affected in the case of just a few small motors installed. As observed in firm 5 (EEM 5-

1), despite the great importance of the working environment conditions, this feature was overlooked because of 

the limited size of the motor proposed for the intervention (3.5 KW) and its limited number of working hours. 

Furthermore, the preliminary investigation seems to point out that the type of load may also have a moderating 

function on monetary energy savings – when the EEM refers to a controller [143,144] –, and decision-makers 

seemed particularly sensitive to this effect every time a VSD was considered for application. Differently, the 

process centrality seems to be characterized by a mediating nature [142], particularly evident when looking at 

the different critical elements by analysing core versus ancillary processes. Core processes represent the main 

activity of the plant, therefore extremely connected to revenues and market competitiveness: hence, it is 

reasonable to expect the adoption of EMS EEMs to be primarily led by productivity enhancement and the related 

factors, e.g., reliability [31,61]. Rather, similar patterns cannot be clearly identified for ancillary processes. 

Likewise, energy intensity plays an important role in affecting firms’ behaviour [53]. According to the literature, 

given the high share of energy costs, energy-intensive firms are usually more concerned about energy savings 

[96,99]. The findings of the present study show that earlier approaches limited on technical and cost-

effectiveness analyses of EEMs (e.g., [145,146]) are not sufficient to justify the adoption in, e.g., non-energy 

intensive firms [53], where the influence on the production and the operations shall be carefully analysed. Our 

study also confirms earlier findings referring to the impact of the firm size on the adoption process due to the 

lack of procedures and internal competencies [147,148]. Indeed, in the greatest majority of case studies 



regarding SMEs, the analysis performed by the interviewees did not include all the factors that should be taken 

into account for thorough decision-making (see Table 6). On the other hand, in larger sampled firms a higher 

degree of awareness was observed, possibly related to the lower level of energy management and interest in 

energy issues that generally characterize smaller firms [99], which in turn is reflected in lower expertise when it 

comes to adopting EEMs. Consequently, the proposed framework appears particularly suitable for SMEs to 

support them in identifying the major factors when adopting EEMs in EMS. 

7. Conclusions 

The present study aims at offering a contribution to the discussion over industrial energy efficiency by offering 

an innovative framework for the identification and assessment of the major factors driving the adoption of EEMs 

in EMS. Besides assessing the technical, economic and energy-related characteristics of EEMs [113], the 

framework has been designed to encompass their specific context of application and their impacts on the 

production resources and the firm’s operations. The framework thus obtained is inclusive of fifty-four factors, 

organized into ten categories, representing the minimum information to take sound decisions regarding the 

adoption of EEMs in EMS. The preliminary investigation in a set of manufacturing enterprises operating in 

various contexts demonstrated the capability to provide increased knowledge to industrial decision-makers. In 

particular, decision-makers belonging to non-energy intensive firms could make valuable use of the framework, 

given its capability to pinpoint interesting impacts across the energy dimension to provide a more comprehensive 

view of the adoption. Similarly, the framework emerged particularly suitable for SMEs, which may experience 

greater difficulties in gathering information about EEMs. In addition, the proposed framework could support 

policy-makers in identifying the major barriers preventing the adoption of EEMs in EMS. In fact, by 

highlighting the major factors, more specific and tailored policies could address the specific issues at the 

backbone of the decision-making process of adopting an EEM. Nevertheless, more research is needed in this 

direction. 

In conclusion, a limitation of the study should be acknowledged referring to the size of the validation sample, 

which prevents a statistical generalization of findings. Future research should test the framework on a wider set 

of firms and their respective sectors, to allow for the statistical significance of the findings. Similarly, the 

number of tested EEMs should be increased to better understand how they impact different areas of an industrial 

firm. Furthermore, the moderating and mediating role [142] of some factors was just preliminarily observed 

(e.g., firm size or energy intensity), but future research should more thoroughly and more extensively shed light 

on these relationships. Also, another interesting yet challenging research avenue stemming from the study is 

represented by the quantification of the impacts deriving from the adoption of EEMs in EMS. 

Appendix 

Table A.1 



Preliminary validation of the framework in terms of usefulness, completeness, clearness and classification, 

evaluated through a Likert scale from one(poor) to four (excellent). 

        Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 Firm 6 
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Framework 

Structure 4   4   4   4   4   4   4   4   4   4   4   4   

Scope 4   4   4   4   4   4   4   4   4   4   4   4   

Perspective     4       4       4       4       4       4   

Categories   4       4       4       4       4       4     

Sub-categories   4       4       4       4       4       4     

Factors   4   4   4   4   4   4   4   4   4   4   4   4 

Contextual factors 4   4   4   4   4   4   4   4   4   4   4   4   

Compatibility 4   4   4   4   4   4   4   4   4   4   4   4   

  Load 4   4   4   4   4   4   4   4   4   4   4   4   

  System 4   4   4   4   4   4   4   4   4   4   4   4   

Economy 4   4   4   4   4   4   4   4   4   4   4   4   

Energy savings 4   4   4   4   4   4   4   4   4   4   4   4   

Production-related factors 4   4   4   4   4   4   4   4   4   4   4   4   

  Global 4   4   4   4   4   4   4   4   4   4   4   4   

 Local 4   4   4   4   4   4   4   4   4   4   4   4   

Operations-related factors 4   4   4   4   4   4   4   4   4   4   4   4   

 Motor conditions 4   4   4   4   4   4   4   4   4   4   4   4   

  Working environment 4   4   4   4   3   4   4   4   4   4   4   4   

 External environment 3   4   3   4   4   4   4   4   4   4   4   4   

Synergies 4   4   4   4   4   4   3   4   4   4   4   4   

Complexity 4   4   4   4   4   4   4   4   4   4   4   4   

Personnel 4   4   4   4   4   4   4   4   4   4   4   4   

 Role involved 4   4   4   4   4   4   4   4   4   4   4   4   

  Corporate involvement 4   4   4   4   4   4   4   4   4   4   4   4   

Additional technical factors 4   4   4   4   4   4   4   4   4   4   4   4   

Contextual  

factors 

Motor model 4   4   4   4   4   4   4   4   4   4   4   4   

Motor size 4   4   4   4   4   4   4   4   4   4   4   4   

Motors numerosity 4   4   4   4   4   4   4   4   4   4   4   4   

Working hours 4   4   4   4   4   4   4   4   4   4   4   4   

Process centrality 4   4   4   4   4   4   4   4   4   4   4   4   

Application load 4   4   4   4   4   4   4   4   4   4   4   4   

Compatibility 

Load 

Load compatibility 4   4   4   4   4   4   4   4   4   4   4   4   

Adaptability to different 
conditions 

4   4   4   4   4   4   4   4   4   4   4   4   

System 

Adaptability in every 

environment  
4   4   4   4   3   4   4   4   4   4   4   4   

Reduced layout flexibility  4   4   4   4   4   4   4   4   4   4   4   4   

Economy 

Initial implementation cost 4   4   4   4   4   4   4   4   4   4   4   4   

Total adoption cost 4   4   4   4   4   4   4   4   4   4   4   4   

Adoption cost of secondary 
devices 

4   4   4   4   4   4   4   4   4   4   4   4   

Adoption cost of additional 
optimization devices 

4   4   4   4   4   4   4   4   4   4   4   4   

Financial flexibility  4   4   4   4   3   4   4   4   4   4   4   4   

Savings 4   4   4   4   4   4   4   4   4   4   4   4   

Pay-back time 4   4   4   4   4   4   4   4   4   4   4   4   

Production-

related factors 
Global 

Productivity - direct  4   4   4   4   4   4   4   4   4   4   4   4   

Productivity - indirect 4   4   4   4   4   4   4   4   4   4   4   4   

Production quality - direct 4   4   4   4   4   4   4   4   4   4   4   4   

Production quality - indirect 4   4   4   4   4   4   4   4   4   4   4   4   

Production cost - direct 4   4   4   4   4   4   4   4   4   4   4   4   

Production cost - indirect 4   4   4   4   4   4   4   4   4   4   4   4   



        Firm 1 Firm 2 Firm 3 Firm 4 Firm 5 Firm 6 
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Local 

Set-up time 4   4   4   4   4   4   4   4   4   4   4   4   

Reliability of the equipment 4   4   4   4   4   4   4   4   4   4   4   4   

Downtime for maintenance and 
repair 

4   4   4   4   4   4   4   4   4   4   4   4   

Downtime for implementation 4   4   4   4   4   4   4   4   4   4   4   4   

Equipment lifetime 4   4   4   4   4   4   4   4   4   4   4   4   

Process control 4   4   4   4   4   4   4   4   4   4   4   4   

Operations-
related factors 

Motor 
conditions 

Equipment temperature 4   4   4   4   3   4   4   4   4   4   4   4   

Equipment vibrations 4   4   4   4   3   4   4   4   4   4   4   4   

Equipment power quality 4   4   4   4   3   4   4   4   4   4   4   4   

Equipment air quality 4   4   4   4   3   4   4   4   4   4   4   4   

Working 

environment 

Air quality - personnel health 4   4   4   4   4   4   4   4   4   4   4   4   

Noise 4   4   4   4   4   4   4   4   4   4   4   4   

Environmental temperature 4   4   4   4   4   4   4   4   4   4   4   4   

Environmental vibrations 4   4   4   4   4   4   4   4   4   4   4   4   

Health and safety 4   4   4   4   4   4   4   4   4   4   4   4   

External 

environment 

Waste 3   4   3   4   4   4   4   4   4   4   4   4   

Emission 3   4   3   4   4   4   4   4   4   4   4   4   

Complexity 

Training 4   4   4   4   4   4   4   4   4   4   4   4   

Dependency from other 

components/ EEMs 
4   4   4   4   4   4   4   4   4   4   4   4   

Physical placement inside 
motor system 

4   4   4   4   4   4   4   4   4   4   4   4   

Activity type 4   4   4   4   4   4   4   4   4   4   4   4   

Technical maturity and 
diffusion of the technology in 

the market 

4   4   4   4   4   4   4   4   4   4   3   4   

Accessibility 3   4   4   4   4   4   4   4   4   4   4   4   

Personnel 

Role  
Active personnel 4   4   4   4   4   4   4   4   4   4   4   4   

Passive personnel 4   4   4   4   4   4   4   4   4   4   4   4   

Corporate 
involvement 

Active corporate involvement 4   4   4   4   4   4   4   4   4   4   4   4   

Passive corporate involvement 4   4   4   4   4   4   4   4   4   4   4   4   

Additional technical factors 

Implementation type 4   4   4   4   4   4   4   4   4   4   4   4   

Check-up frequency 4   4   4   4   4   4   4   4   4   4   4   4   

Secondary devices necessary  4   4   3   4   4   4   4   4   4   4   4   4   

Additional optimization devices 4   4   3   4   4   4   4   4   4   4   4   4   

Automation  4   4   4   4   4   4   4   4   3   4   4   4   
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