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ScaleG: A Distributed Disk-based System for
Vertex-centric Graph Processing

Xubo Wang, Dong Wen, Lu Qin, Lijun Chang and Ying Zhang

Abstract—Designing distributed graph systems has drawn a lot of research interests due to the strong expressiveness of the graph
model and rapidly increasing graph volume. Most of them require the graph data and all intermediate messages to reside in main
memory, which may sacrifice the scalability. Even though several disk-based systems have been studied to remedy such issue, several
challenges still exist in achieving both high computational efficiency and low network communication under the limitation of memory
usage. In this paper, we design a novel disk-based distributed graph system, called SCALEG. The system provides a series of
user-friendly programming interfaces. Unlike previous systems, the programmer in SCALEG does not need to concern any logic
regarding the communication between vertices like sending messages and combining messages. In addition to a simple and clear
programming model, we propose several techniques to reduce both disk I/Os in each machine and message I/Os via the network. We
manage all messages in memory and bound all messages by the number of vertices. We also carefully design the data structure to
support partial computation and automatic vertex activation. We conduct extensive experiments on six big graphs to show the high
efficiency of our system.

Index Terms—Graph processing, distributed system, scalability, disk I/O

F

1 INTRODUCTION

G RAPH is a ubiquitous structure representing entities
and their relationships. It is applied in many areas such

as social network, web graph, road network, and biology.
Basic graph problems like pagerank, connected component
detection, graph coloring, etc., play fundamental roles in
many real-life applications. Efficiently processing graph
data is essential in both research and practice. Numerous
research interests have been shown on designing distributed
graph systems to process big graphs [1]–[9].

The vertex-centric programming model, initially pro-
posed by Pregel [6], requires programmers to provide the
behavior of each vertex in developing distributed graph
algorithms. Pregel adopts a Bulk Synchronous Parallel (BSP)
model, and the deployed algorithm runs in several it-
erations. Two key functions in Pregel are Compute and
SendMsg. Compute is implemented by the programmer for
the logic to manipulate each vertex. SendMsg is invoked by
the programmer to send customized messages to neighbors
of the vertex. The vertex-centric model is user-friendly and
naturally captures the characteristics of many fundamental
graph problems like pagerank and graph coloring. Given
the advent of Pregel [6], various following vertex-centric
systems have been proposed, such as PowerGraph [10],
Pregel+ [7], and Giraph [4]. Some of them adopt the similar
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push strategy, where each vertex takes control of sending
messages but passively receives messages. Others adopt a
pull logic, where each vertex actively requests information
from neighbors.

Most distributed vertex-centric graph systems store all
data in main memory of machines, which brings high
efficiency but sacrifices scalability given the dramatic in-
creasing data volume. Due to some intermediate results,
messages, replicated vertices and edges, the memory usage
can be much larger than the input graph size. To remedy
the scalability issue, we aim to design a new disk-based
distributed graph systems for implementing efficient and
scalable vertex-centric graph algorithms. Several disk-based
(or called out-of-core) distributed graph systems have been
studied in the literature, including Pregelix [11], Chaos [12]
and GraphD [13]. Among them, GraphD is the state-of-the-
art and follows the same programming model as Pregel [6].
GraphD adopts the semi-streaming model and only allows
the vertex states resided in main memory of each machine.
The adjacency lists and messages are managed as edge
streams and message streams on disks, respectively. Several
optimizations are proposed to achieve high I/O efficiency in
scanning vertex neighbors, sending and receiving messages.
Motivation. There are still several challenges in GraphD.
First, under the memory usage limitation, GraphD saves all
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sending messages and receiving messages on disks. Scan-
ning and managing the message streams on disks incurs a
great deal of disk I/Os. Second, several studies [7], [9], [14]
have shown that the volume of communication messages
can be very large given the power-law degree distributions
of real-world graphs [15]. To handle such issue, the pull-
based computing model is studied in the literature [9], [14].
However, disk I/O is not considered in these in-memory
systems. More importantly, the pull-based method requires
an extra pull request to notify the corresponding neighbor.
In addition, based on the push model of Pregel, GraphD
cannot efficiently handle the partial computation in many
fundamental algorithms. For example, in the algorithm of
distributed graph coloring, only a small number of vertices
are active and wait to be colored in many iterations. To
color a vertex u, we need colors of all neighbors of u. Since
each vertex can only passively receive messages in Pregel-
like systems, all vertices have to send messages to their
neighbors. Therefore, the main challenges in this paper are
how to effectively reduce the communication messages and
how to efficiently manage the messages under the limitation
of memory usage.
Our Approach. In response to the above challenges, we pro-
pose an efficient disk-based distributed graph system, called
SCALEG, with a series of simple and user-friendly program-
ming interfaces. We observe that vertices in many vertex-
centric algorithms only communicate with neighbors. We
enforce such property in the system and adopt a compute-
and-sync programming model. The compute phase per-
forms the logic provided by the user, while the sync phase
synchronizes the vertex states in different machines and is
hidden from users. Thanks to our computing model, all
neighbors’ states are locally provided in the compute phase.
The programmer only needs to care about how to update
the vertex based on neighbors’ states and does not need to
concern any logic regarding message sending, receiving or
combining. An illustration of our model is given in Fig. 1,
with Pregel and PowerGraph as comparisons.

To implement the computing model in SCALEG, we use
the same semi-streaming model as GraphD to store all edges
on disk. However, unlike GraphD, we maintain all messages
in the main memory. The rationale of in-memory message
management is supported by our computing model, which
bounds the number of messages by the number of ver-
tices in each machine. In addition, we propose detailed
external-memory data structures for vertex activation. Un-
like GraphD, the messages with the same value would never
be sent repeatedly in all studied algorithms in SCALEG.
For example, in the implementation of the graph coloring
algorithm in SCALEG, colors of all neighbors can be locally
accessed by each vertex, and in following iterations, only
the changed colors will lead to an update message.
Contribution. We summarize the main contributions in this
paper as follows.
• An elegant out-of-core distributed graph systems. We design

a new disk-based distributed graph system, called SCA-
LEG, where the programmer does not need to concern
any behavior regarding sending messages, receiving
messages, and combining messages.

• In-memory message management. With our computing
model, SCALEG manages all intermediate messages in

memory, which avoids numerous disk I/O cost. The to-
tal disk I/O of all machines in each iteration is bounded
by O(m/B) where m and B stand for the number of
edges and block size respectively.

• Efficient partial computation. Under the limitation of
memory usage, SCALEG efficiently activates a partial
set of vertices with high I/O efficiency and avoids any
unnecessary message transmission.

• Extensive performance studies. We implement nine funda-
mental and various distributed graph algorithms on six
large real-world graphs. We conduct extensive experi-
ments compared with several representative competi-
tors to show the outperformance of SCALEG.

Organization. The rest of this paper is organized as follows.
Section 2 introduces the related work. Section 3 presents
the computing model of our system. Section 4 gives the
implementation details and Section 5 lists a few algorithm
designs. Section 6 reports the performance studies, and
Section 7 concludes the paper.

2 PRELIMINARY AND RELATED WORK

Graph processing system has been studied intensively. We
mainly review representative systems that are related to our
work here.

2.1 Distributed Vertex-centric System

In-memory Pregel [6] is the first vertex-centric in-memory
graph processing system utilizing the iterative properties
of many graph algorithms. It adopts the bulk synchronous
parallel (BSP) model [16] which consists of iterations. In-
side each iteration, vertices conduct the user defined func-
tion which includes value computation as well as com-
munication with other vertices. Giraph [17] is an open-
source implementation of Pregel in Java. GPS [18] presents
an optimization technique, large adjacency list partition-
ing, for high-degree vertices. PowerGraph (GraphLab) [5],
[9] adopts the vertex-cut partition schema and supports
both synchronous and asynchronous computation modes.
It adopts a Gather, Apply, and Scatter (GAS) programming
model where users still think like a vertex. Yan et al. [7]
designed a system named Pregel+ implementing Pregel
with message reduction and load balancing techniques.
Chen et al. [14] adopt the GAS model from PowerGraph
and design a differentiated processing model based on
vertex degree. Zhu et al. [19] propose an adaptive switching
model depending on the density of active edges in different
applications. In this work, we focus on out-of-core systems
considering system scalability.
Out-of-core Because distributed in-memory systems pro-
vide high efficiency but are weak in scalability, some dis-
tributed external-memory systems are proposed to com-
pensate [11]–[13]. Pregelix [11] implements the Pregel pro-
gramming model with an iterative dataflow of relational
operators like join and group-by and supports both in-
memory and out-of-core workloads. Chaos [12] is a dis-
tributed version of a single-PC out-of-core system X-stream
which sequantially scans all edges. It is inefficient especially
for sparse computation where the number of active vertex
is small and inactive edges could be skipped [13]. Besides,
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Chaos is built for the assumption that a cluster is connected
by high-speed network and streaming data from a remote
device is acceptable. Its performance is undesirable for
Gigabit Ethernet [12], [13] which is used by many clusters.
Yan et al. propose a distributed out-of-core graph system
GraphD [13] based on a semi-streaming model where vertex
states are stored in memory, and edges and messages are
streamed from the disk. The adopted push-based model of
GraphD generates large volume of messages which leads to
intense communication cost and disk I/O.

2.2 Other Systems

Single-machine Single-machine graph processing systems
store and process a given graph in a single machine. Existing
systems include in-memory systems like Ligra [20] and
Galois [21], [22] and out-of-core systems like GraphChi [23],
TurboGraph [24], VENUS [25] and so on [26]–[29]. Single-
machine graph processing systems have high efficiency
because of communication cost saving and fast convergence.
However, the disadvantage is weak scalability due to lim-
ited hardware resources. Considering system scalability, in
this paper, we aim at a distributed graph processing system
which can utilize resources of all machines in a cluster.
Subgraph-centric There is another category of graph pro-
cessing systems that allows users to program with a sub-
graph [3], [30]–[35]. Yan et al. [35] designed Blogel where
each connected subgraph is a block and users program func-
tions for blocks. NScale [31] and Arabesque [32] adopt the
k-hop neighborhood-centric model based on MapReduce
framework. TurboGraph++ [34] supports k-hop neighbor-
hood centric analysis and extends a single out-of-core graph
processing system TurboGraph [24] to a distributed envi-
ronment. G-Miner [30] models subgraph mining problems
as independent tasks and provides a task-based pipeline
to asynchronously process CPU, Network, Disk I/O oper-
ations for efficiency.
General Optimization There are also some studies on gen-
eral graph processing system optimization techniques [1],
[4], [36]–[42]. Salihoglu et al. [38] propose some optimization
techniques to implement algorithms efficiently on Pregel-
like systems. Considering the traditional push and request-
respond pull mechanisms generate a large number of mes-
sages, Wang et al. [40] designed an automatic switching
mechanism between push and pull models to optimize
system performances. Song et al. [39] put forward a re-
dundancy reduction strategy to achieve high-performance
graph analytics by taking advantage of graph structure. The
other works focus on improving system efficiency through
new hardwares, like SSDs, GPUs [37], [41], [42]. We leave
these optimization works out of comparison in our study.

3 SCALEG ABSTRACTION

Given a graph G(V,E), where V is the set of vertices and
E is the set of edges, we use n and m to denote |V | and
|E|, respectively. In this paper, we assume that the graph
is undirected for ease of presentation. The proposed ideas
and techniques can be easily extended on directed graphs,
which is discussed in Section 5. For a vertex u ∈ V , N(u)
denotes neighbors of u in undirected graphs, and deg(u)

denotes |N(u)|. We use {W1,W2, ...,Wk} to denote a cluster
of working machines, where k is the number of machines.

3.1 Challenges in Existing Out-of-Core Systems
Most vertex-centric systems adopt either a push-based or
a pull-based method in message transmission between ver-
tices. A summary can be found in [40].

As a Pregel-like system, GraphD takes a push-based
logic in each iteration. Specifically, a vertex in Pregel-like
systems sends messages to other vertices voluntarily and
executes the computing function only based on the received
messages in the last iteration. The push-based method may
incur large communication cost and generate a large volume
of messages in the receiver machine since each active vertex
sends messages to all neighbors in each iteration. Due to
the limited memory resources, an external-memory buffer
(e.g., message streams in GraphD [13]) is required in each
machine to manage the messages, which brings extra disk
I/Os to operate the buffer. If the message values are associa-
tive and commutative, a combiner optimization can be used
to reduce messages according to their destination vertices
in sender machines [6]. However, the combiner only works
on specific algorithms such as PageRank and SSSP, but not
available in algorithms like core decomposition and graph
coloring. We will show the details in Section 5. Even though
the messages can be combined, the degree distribution is
skewed in real-world power-law graphs, and high-degree
vertices still generate many messages [9]. Some systems [4],
[18] even do not combine messages due to the poor locality
of destination vertices.

To overcome the drawbacks in push logic, several in-
memory systems adopt a pull-based method. We take Pow-
erGraph [9] as a representation. Each vertex requests all
necessary neighbor values in the computing function. Given
limited memory resource, the pull-based method outper-
forms the push-based method when the message volume
is large [40]. However, disk I/O is not studied in these in-
memory systems. More importantly, under pull logic, each
vertex requires an extra pull request to derive the neighbor
values, which brings considerable communication cost.

Simply caching all in-neighbor values for each vertex
takes considerable memory space and cannot reside in main
memory which incurs many disk I/Os.

3.2 Motivation of Our Approach
Given the challenges discussed in Section 3.1, we design a
new distributed graph processing system called SCALEG.
Following most of existing vertex-centric systems, we adopt
the Bulk Synchronous Parallel (BSP) model. Specifically,
each algorithm deployed on SCALEG runs in several itera-
tions (or called supersteps in some papers). In each iteration,
a set of active vertices perform their own computing func-
tion assigned by users. The algorithm terminates if there is
no active vertex.

SCALEG outperforms existing disk-based systems in the
following three aspects. First, regarding the communica-
tion cost, SCALEG not only alleviates the great amount of
sending messages incurred by high-degree vertices in push-
based methods but also avoids the extra pull requests in
pull-based methods. Second, unlike GraphD [13], SCALEG
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bounds the size of communication messages and always
maintains the sending and receiving messages in memory,
which significantly speed up the local computation in each
machine. Third, users in SCALEG only need to care the
computing logic for each vertex. All other tasks including
vertex interactions (e.g., SendMessage in Pregel [6], Gather
and Scatter in PowerGraph [9]) and message reductions
(e.g., Combiner in Pregel [6], Mirror in Pregel+ [7]) will be
handled by SCALEG automatically and invisibly.

To achieve these goals, we observe several common
characteristics of the algorithms studied in the papers of
existing vertex-centric systems. We make two assumptions
for the algorithms deployed on SCALEG as follows.

ASSUMPTION 1. The computation of each vertex only depends
on its neighbors.

In other words, Assumption 1 means that a vertex cannot
communicate with any non-neighbor vertex. Without loss
of generality, we treat all variables accessed in the deployed
algorithm as attributes of the vertex. The attributes include
basic vertex structural properties (e.g. ID and degree) and
algorithm-specific values (e.g. PageRank value in PageRank
and core number in core decomposition).

ASSUMPTION 2. There exists one or more attributes A =
{A1,A2, ...} for each vertex such that an arbitrary vertex u is
active in the i-th iteration iff ∃A ∈ A, v ∈ N(u), the attribute A
of v changed in the (i− 1)-th iteration.

1 void Compute(Vertex u, Message msgs):
2 int dist = IsSource(u)? 0 : INF;
3 for(msg in msgs):
4 dist = min(dist,msg.val);
5 if(dist < u.val){
6 u.val = dist;
7 for(v in u.nbrs){
8 SendMsg(v, dist+1);
9 }

10 }
11 voteToHalt();
12
13 Message combine(Message msgs):
14 int dist = INF;
15 for(msg in msgs):
16 dist = min(dist,msg.val);
17 return Message(dist);

Snippet 1. SSSP in GraphD and other Pregel-like Systems

EXAMPLE 1. We give an example to explain Assumption 1 and
Assumption 2. Snippet 1 gives an implementation of the single-
source shortest path (SSSP) algorithm in GraphD and other
Pregel-like systems. In the algorithm, each vertex updates the
shortest distance value only depending on its neighbors’ values.
We regard the distance value (dist in the snippet) as an attribute
of each vertex in this case. We can find that a vertex u is active if
the attribute value of any neighbor of u changed in last iteration.
Similarly, the attribute value of each vertex in PageRank, graph
coloring, and core decomposition are PageRank value, color ID,
and core number, respectively.

Our two assumptions regarding the deployed algorithm
do limit the system flexibility to some extent. However,
in addition to the SSSP algorithm in Example 1, almost
all other algorithms studied in existing vertex-centric sys-
tems naturally match the assumptions. The algorithms in-
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Fig. 2. A demo graph and the vertex partition

clude but are not limited to Pagerank, detecting connected
components, graph coloring, core decomposition, maximal
matching, maximal independent set and triangle counting.
We implement these algorithms on our system, and the
experimental details can be found in Section 6.

3.3 Execution Model and Programming API
SCALEG adopts a compute and sync vertex program in each
iteration. Fig. 1 shows the execution model of SCALEG, with
those of Pregel and PowerGraph as comparisons.

3.3.1 Computing via Neighborhood Expression
In the compute phase, based on Assumption 1, the SCALEG
abstraction gives users the permission to locally access all
neighbors for each vertex. As a result, from the user’s
perspective, only the logic to process a vertex with all
given neighbors is required when deploying algorithms in
SCALEG, and we call the logic Neighborhood Expression.

REMARK. We are not the first to provide all neighbors’ attributes
(values) for each vertex in the programming model. Distributed
GraphLab [5] also uses a similar programming abstraction and
hides all network communication from the user. However, unlike
our system, Distributed GraphLab adopts the asynchronous exe-
cution model in system design and maintains all data in memory
of each machine. While, in our paper, we propose a disk-based
system in BSP execution, which focuses on the efficiency and the
scalability of processing large graphs given the limited memory re-
source. Compared with Distributed GraphLab, our main technical
contributions center on designing the data structure for several
key components like message sending/receiving, and automatic
vertex activation, under the limitation of our programming model
and system setting.

3.3.2 Sync via Attributes
The sync phase synchronizes the vertex states in all working
machines and guarantees that the states of all neighbors
are up-to-date for each vertex in the next iteration. Unlike
previous vertex-centric BSP systems, the sync phase and all
other jobs, like message sending and vertex activation, are
hidden from users and managed automatically by SCALEG.
The viability of this idea is supported by Assumption 2.
Specifically, users are required to assign one or more at-
tributes for the vertex. The assigned attribute is monitored
by the system and plays an important role in two aspects.
First, the attributes of each vertex will be synchronized
among all machines if the vertex copies are stored in
multiple machines. The details regarding the distributed
graph organization will be given in Section 4.1. Only the
changed attributes are transferred between machines in each
iteration. Second, once any attribute of a vertex u changes,
all neighbors of u will be activated by the system in next
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iteration. The system will terminate the algorithm if there is
no active vertex.

void Attr(attributeName, attributeType[, value]);
/ * a s s i g n an a t t r i b u t e * /
void Exec(function(Vertex[, List<Vertex>]){
/ * e x e c u t e t h e n e i g h b o r h o o d e x p r e s s i o n * /
...
}[, iterNum]);

Snippet 2. SCALEG Programming Interface

3.3.3 System API
The main API offered by SCALEG is summarized in Snip-
pet 2. There are only two key functions. Attr() is used
to assign an attribute for the vertex. The third parameter
value is optional to assign a default value to the at-
tribute. Attr() can be invoked repeatedly to add multiple
attributes. Exec() is used to execute the neighborhood
expression given in the first parameter, which is an interface
implemented by users. As earlier discussed, the user can
locally access all neighbors for each vertex. Therefore, the
interface exposes two parameters to users — a vertex and
all its neighbors grouped in a list.

1 Attr(” d i s t ”, int, INF);
2 Exec(function(u,nbrs){
3 if(IsSource(u)) u.dist = 0;
4 for(v in nbrs){
5 u.dist = min(u.dist,v.dist+1);
6 }
7 });

Snippet 3. Single Source Shortest Path (BFS) in SCALEG

BFS in SCALEG. The implementation of BFS algorithm in
SCALEG is given in Snippet 3. The first line sets an attribute
called dist for the vertex and initializes dist of each vertex
as infinity. In line 2, u is the current processing vertex, and
nbrs is the neighbor list of u. Lines 4–6 update the attribute
dist of u based on the dist value of each neighbor. Note
that there is no code in Snippet 3 related to the logic of com-
munication such as sending messages, receiving messages
and activating vertices. Initially, all vertices are activated by
the system. Assume that the source vertex is u0. Only the
dist value of u0 changes from INF to 0 in the first iteration.
Given the attribute dist, the system first synchronizes the
dist value of u0 in all machines if necessary. Then in
the second iteration, the system automatically activates all
neighbors of u0 since the dist value of u0 changes. The
following iterations will perform the same strategy, and the
system terminates the procedure automatically if the dist
values of all vertices do not change.

4 IMPLEMENTATION

4.1 Distributed Graph Organization

We partition vertices in the graph to different working
machines in a hashing way, which is same as many systems
like GraphD and Pregel. We leave the integration of SCA-
LEG with other partition methods like Metis [43] and load
balancing techniques from Mizan [44] and GPS [18] out of
this work considering the effectiveness may be limited [45].
A demo graph and corresponding vertex partition are given
in Fig. 2.

v1

v2 v3

v5

v7v6 v8

v9 Host Vertices

Guest Vertices

Fig. 3. The graph structure in machine 1 based on the partition in Fig. 2
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Fig. 4. The data structure for the compute phase in machine 1

Given a working machineW , the vertices assigned toW
by the hash function are called host vertices for W , denoted
as V (W). The guest vertices for W , denoted by N(W), are
the neighbors of boundary vertices inW , i.e., N(W) = {u 6∈
V (W)|∃v ∈ V (W), u ∈ N(v)}. An example for host vertices
and guest vertices are given in Fig. 3.

Similar to GraphD, SCALEG adopts the semi-external
setting and a compressed sparse row (CSR) structure to
maintain the states of host vertices in memory and store
the neighbors of each vertex on the disk. Unlike GraphD,
SCALEG additionally maintains the guest vertices in the
memory of each machine to support the locally neighbor-
hood expression for the host vertices. Even considering both
host vertices and guest vertices, the size is acceptable and
still significantly smaller than that of all edges. The space
complexity of memory usage will be given in Theorem 3.

EXAMPLE 2. The data structure regarding the neighborhood ex-
pression in machine 1 of Fig. 2 is given in Fig. 4. The correspond-
ing subgraph visualization can be found in Fig. 3. In memory,
in addition to the vertices’ IDs, we have a bitmap to maintain
whether each vertex is active or not and a set of attribute arrays
assigned by the users. In the SSSP algorithm, an attribute array
maintains the shortest distance for each vertex to the source vertex.
The neighbors of each host vertices are shown on the right of
Fig. 4. The first array is an index file, and for each vertex, the
file stores the starting position for the vertex’s neighbors in the
neighbor list file. The neighbor list file stores neighbors of all
vertices sequentially. To derive all neighbors of a given vertex u,
we derive the start position of the neighbors of u in the index file,
and the end position is the next value of u in the index file. For
instance, given a vertex v5, the start position and the end position
are 4 and 10, respectively.

In the compute phase of each iteration, SCALEG first se-
quentially scans the activity bitmap. Once meeting an active
vertex u, we jump to the starting point of the neighbors
of u in the neighbor list and retrieve all neighbors of u
from the disk. Then, the system invokes the exec function
and updates the attributes of u based on the neighborhood
expression defined by the user. Note that the attributes of all
neighbors of u can be accessed in memory. In each iteration,
we only sequentially read or skip items in the neighbor list
file from disk. We have the following disk I/O complexity.

THEOREM 1. In each iteration of SCALEG, the total disk I/O of
all machines is bounded by O(m/B), where B is the block size
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Fig. 5. The data structure for the sync phase in machine 1

for a single disk read/write operation.

Note that GraphD performs an external sort to organize
the messages on the disks, which cannot bound the same
disk I/O as our result.

4.2 In-Memory Message Organization
This subsection introduces the details regarding sending
and receiving messages in the sync phase. Unlike GraphD,
messages in SCALEG are always organized in memory, since
we can bound the messages by the number of vertices in
each machine.
Sending Messages. In the main memory of each machine,
we have a sending buffer for every other machine. For each
vertex u, a bitmap structure records all machines in which
u is a guest vertex. During the computation, if any attribute
value of u changes, we add the new attribute value of u
to the sending buffers of all corresponding machines by
checking the bitmap. Note that the messages in the sending
buffer of each machine are naturally arranged in increasing
order of their IDs due to our scheme of sequential vertex
processing. The memory usage for sending buffers and
bitmaps in each machine are bounded by O(k · |V (W)|) and
O(|V (W)|), respectively. Vertex u will be marked back to
inactive for the next iteration after the sending information
is buffered. The system will clear the sending buffer after all
messages are sent for synchronization.
Receiving Messages. In each machine, instead of using one
buffer to receive and sort all messages, we have k − 1
receiving buffers corresponding to k − 1 other machines.
The rationale is that the received vertices in each buffer
are already in increasing order of their IDs. Based on this
property, we can efficiently update guest vertex attributes
and activate host vertices, which will be introduced in
Section 4.3 in detail. The memory bound of the receiving
buffer is O(N(W)).

Based on the above discussion, the communication cost
of SCALEG is analyzed as follows.

THEOREM 2. In each iteration of SCALEG, the communication
cost of all machines is bounded by O(min(n · k,m)).

Associated with the memory usage for the compute
phase in Section 4.1, we bound the overall memory usage
of each machine in SCALEG as follows.

THEOREM 3. In each iteration of SCALEG, the memory usage of
an arbitrary machineW is bounded by O(k · V (W) +N(W)).

4.3 Vertex Activation
This subsection introduces details of the vertex activation
process in each machine after messages are received.
Inverted Neighbor List. The system activates host vertices
based on a data structure called Inverted Neighbor List on the

disk. For each vertex u in a working machine W , the in-
verted neighbors of u, denoted by IW(u), are the neighbors
of u in the host vertices of W , i.e., IW(u) = N(u) ∩ V (W).
Note that the inverted neighbors of a vertex u are not the
neighbors in the induced subgraph of all vertices in the
machine, not even neighbors in the whole graph. Similar
to the structure of the neighbor list in Section 4.1, we use
a data file to store the inverted neighbors of all vertices in
a sequence and an index file to store the starting position
of the inverted neighbors of each vertex in the data file.
Following the example of Fig. 2, the inverted neighbor list
in machine 1 is presented on the right of Fig. 5. For example,
the inverted neighbors of v2 are located from the second
position in the inverted neighbor list which are v1 and v5.

Recall that we have receiving buffers containing updated
guest vertices from k − 1 other machines. In these buffers,
messages are in increasing order of vertex IDs. An extra list
is utilized to contain updated host vertices on this machine.
Then, we conduct a k-way-merge-like process on the receiv-
ing buffers and the list to sequentially update guest vertices
and activate host vertices. Specifically, we select the vertex u
with the least ID from the k buffers and list each time. Then,
we jump to the starting position of the inverted neighbors
of u. We load all inverted neighbors of u from the disk and
mark all of them as active. If u is a guest vertex (from the
receiving buffers), we update its local attributes accordingly.
Since we process the vertices in increasing order of their IDs,
the activation process only sequentially scans the inverted
neighbor list once in each iteration. Therefore, the disk I/O
cost in the activation process is loosely bounded by O(m),
and Theorem 1 still holds.

EXAMPLE 3. We give an example to illustrate the process of
synchronizing attributes and activating vertices on the left of
Fig. 5. Assume that a vertex v3 updates an attribute value in
machine 3. By checking the neighbors of v3 in machine 3, we know
that v3 is a guest vertex in machine 1. Then machine 3 sends a
message to machine 1 with the updated attribute of the vertex v3.
After receiving the message, machine 1 first updates the attribute
value of the guest vertex v3 and then load the inverted neighbors
of v3. The items related to the vertex v3 in the list are marked by
gray on the right. We derive the inverted neighbors v5 and v9.
Finally, the system marks v5 and v9 as active.

Adaptive Activation. We also design an adaptive activation
mechanism to boost the activation efficiency. We consider
the cases where most vertices change their values like
the earlier iterations of detecting connected components
and graph coloring. In these cases, the inverted neighbors
of updated vertices are likely to cover all vertices in the
graph. Thus, instead of scanning inverted neighbor lists, we
directly activate all vertices when the number of updated
vertices exceeds a threshold. When less vertices update their
values, the activation mechanism is automatically switched
to the normal activation process based on the inverted
neighbor list. The number of updated vertices is recorded
to implement our idea. We set the threshold as n/50 which
empirically shows a good performance in our tests.
Handling Directed Graphs. For directed graphs, we main-
tain both in-neighbors and out-neighbors of each host vertex
(Section 4.1). When a vertex reads in-neighbors to com-
pute the attribute, the in-neighbors of each host vertex are

Page 6 of 12Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

provided for the neighborhood expression, and the out-
neighbors are used for sending message to corresponding
machines. In this case, the inverted neighbors list (Sec-
tion 4.3) maintains the inverted host out-neighbors, which
is used to activate host vertices. We also have a separate file
maintaining the inverted host in-neighbors of each vertex
to support some vertex-centric algorithms which compute
vertex attributes based on the out-neighbors, even though
such algorithms are few.

5 ALGORITHM CASE STUDIES

Due to the space limit, we only give the examples of PageR-
ank, graph coloring, and maximal matching implemented
by SCALEG in this section.

1 Attr(”pr”, double, 1/n);
2 Attr(”deg”, int, GetDegree());
3 Exec(function(u,nbrs){
4 u.pr = 0.15/n;
5 for(v in nbrs){
6 u.pr += 0.85*v.pr/v.deg;
7 }
8 }, TargetNum);

Snippet 4. PageRank in SCALEG

PageRank. The implementation of distributed PageRank
algorithm is presented in Snippet 4. Two attributes are
assigned to each vertex. pr represents the PageRank value
and is updated in each iteration. deg is just used for the
PageRank computation. The function GetDegree() scans
the disk file and derives the degree of each vertex. The
algorithm will run TargetNum iterations. Note that SCA-
LEG also supports terminating the algorithms when the
PageRank value is less than a given threshold by overriding
the equality function of the ”pr” attribute.

1 Attr(” c o l o r ”, int);
2 Attr(”deg”, int, GetDegree());
3 Exec(function(u,nbrs){
4 for(v in nbrs: v.deg > u.deg || {v.deg == u.deg

&& v.id>u.id}){
5 if(v.color is undefined) return;
6 mark v.color as used;
7 }
8 u.color = 0;
9 while(u.color is used){

10 u.color = u.color+1;
11 }
12 });

Snippet 5. Greedy Graph Coloring in SCALEG

Graph Coloring. The implementation of distributed graph
coloring algorithm is presented in Snippet 5. The algorithm
colors vertices in non-increasing order of vertex degrees and
breaks the tie by the vertex ID. In the initial iteration, all
vertices are active, and the vertex u with the largest degree
is assigned by 0. Then, in the second iteration, the color of
u is synchronized among all machines, and the neighbors
of u are activated. We can see that for each vertex u, the
message with a color number is sent only once from u to
other machines with u as a guest during the algorithm.
Maximal Matching. The implementation of distributed
maximal matching algorithm [46] is presented in Snippet 6.
In the algorithm, a vertex has more than one attributes to
sync which are ”pick” and ”match” here. In SCALEG, no
attribute transmission will occur when the picked vertex

TABLE 1
Characteristics of datasets

Dataset |V | |E| degmax degavg
DB 986,207 13,414,472 979 13.60
OR 2,997,167 212,698,418 27,466 70.97
UK 18,520,343 523,574,516 194,955 28.27
TW 41,652,230 2,936,729,768 2,997,487 70.51
FR 65,608,366 3,612,134,270 5,214 28.93
CW 978,409,098 42,574,107,469 75,611,696 43.51

remains the same as in the previous round. By contrast, all
attributes need to be sent in GraphD in this case.

1 Attr(” pick ”, int, -1);
2 Attr(”match”, int, -1);
3 Attr(”deg”, int, GetDegree());
4 Exec(function(u,nbrs){
5 if(u.match < 0 && u.deg > 0 && u.pick != -2){
6 if(iter_num % 2 == 0){
7 u.pick == -1;
8 for(v in nbrs: v.match < 0 && v.id > u.pick){
9 u.pick = v.id;

10 }
11 if(u.pick == -1) u.pick = -2;
12 } else{
13 for(v in nbrs: v.pick == u.id && u.pick == v.id){
14 u.match == v.id; break;
15 }
16 }
17 });

Snippet 6. Maximal Matching in SCALEG

6 EXPERIMENTS

Datasets. We use 6 real-world datasets of different sizes
obtained from LAW [47]. DBLP (DB), Orkut (OR), Twitter
(TW) and Friendster (FR) are social network graphs. UK and
ClueWeb (CW) are webgraphs. Table 1 shows the dataset
details. |V | and |E| represent the number of vertices and
edges respectively. degmax and degavg denote the maximum
and average vertex degree in each dataset respectively.
Experimental settings. We run our experiments on a cluster
of 10 machines connected by Gigabit Ethernet. Each ma-
chine has one 3.0GHz Intel Xeon E3-1120 CPU (4 cores),
64GB DDR3 RAM and 610GB disk. Unless specified, we use
6 machines, each with 4 cores by default.

We compare our system SCALEG with 5 representa-
tive existing systems including in-memory systems: Pregel,
Pregel+ [48], PowerGraph [10], and out-of-core system
GraphD [49]. We also include Blogel [50] for some re-
searchers’ interests [35], [51]. All systems are implemented
in C++. We use Yan’s implentation [48] of Pregel. In terms of
Pregel+, we adopt the mirroring mode in the experiments.
Similar to [48], we select the vertex mirror threshold as the
minimum value between 1000 and the value computed us-
ing their cost model. If not stated, we use the default settings
of compared systems. For ease of expression, we represent
the system names SCALEG, Pregel, Pregel+, PowerGraph,
Blogel and GraphD by SG, PRG, PPL, PG, BLG respectively.
GD and GDIR represent GraphD without and with its ID
recoding technique, respectively.
Algorithms. To evaluate system performance, we use 9
algorithms including single-phase algorithms: breadth first
search (BFS), connected component (CC), PageRank (PR),
personalized PageRank (PPR), core decomposition (Core)
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Fig. 6. Comparison with Existing Systems (Running Time)

[52] and graph coloring (Color) [53] and multi-phase al-
gorithms: maximal independent set (MIS) [54], maximal
matching (MM) [53]. Among them, BFS, CC, PR, PPR
and MIS are separable algorithms. Core, Color and MM
are non-separable algorithms. An algorithm is separable if
commutative and associative operation is to be applied on
transmitted messages where optimization techniques like
combiner can be applied. The ID recoding of GraphD is also
only applicable to separable algorithms. We also include
triangle counting (TC) for scalability testing. Due to the
space limit, we omit the implementation details here. Note
that BFS, CC and PR are the most popular algorithms that
existing works adopt to test system performance, and they
are all single-phase separable algorithms. To the best of our
knowledge, this is the first work to involve such various
algorithms to show the stability of system performance.
Metrics. We report the running time and communication
cost to compare the system performance. Running time is
counted from the moment when the data graph is totally
loaded in the cluster to the time when the computation is
completed. Note that data loading and result dumping time
are excluded. Communication cost is the sum of data size
transferred among workers in the cluster. Note that neither
the cost of partitioning an input graph nor distributing it
to workers is included. To specially compare with the disk-
based system GraphD, we also report disk I/O and memory
cost in Section 6.3.

6.1 Efficiency over Different Algorithms
We compare the system efficiency when running different
algorithms over given datasets. The running time results

are shown in Fig. 6. We use NE and NA to represent the
cases that the system is Not Effective or Not Applicable to
that algorithm respectively. OOM, OOD and TO represent
Out Of Memory, Out Of Disk and Time Out respectively.
We consider an algorithm running as time out when it can’t
finish within 24 hours. We can see that SG exhibits the best
overall performance over different algorithms.

Fig. 6 (a)-(e) show the running times on separable algo-
rithms which are popularly adopted for comparison in exist-
ing works. SG runs significantly and consistently faster than
disk-based system GraphD. Specifically, SG outperforms GD
and GDIR by 14.7x and 7.8x on average respectively. This
benefits from no message disk I/O and less communication
cost in SG. The attributes syncing of SG avoids unnecessary
message transmission which not only reduces communica-
tion cost but also supports keeping messages in memory.
However, the push-based method adopted in GraphD causes
large volume of message transmission which causes high
communication cost (see Fig. 7). To guarantee scalability,
GraphD saves messages on disk which, however, sacrifices
efficiency because of high message I/O cost. Besides, merge-
sorting message files on disk in GraphD is very time-
consuming. The ID recoding technique of GDIR improves ef-
ficiency compared to GD by eliminating incoming message
disk I/O. However, the outgoing message disk I/O is still
unavoidable. SG also outperforms in-memory systems PRG,
PPL and PG by 5.2x, 5.3x and 9.8x on average respectively.
This is because SG saves communication cost from the
message sending incurred by high-degree vertices in push-
based methods (PRG and PPL) and extra pull requests
in pull-based methods (PG). SG is outperformed by the
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Fig. 7. Comparison with Existing Systems (Communication Cost)

block-centric system BLG running CC because BLG saves
communication cost in a subgraph. However, BLG is only
effective on specific algorithms where vertices in the same
subgraph share the same values like CC [40].

Fig. 6 (f)-(h) show the experimental results on non-
separable algorithms. The advantages of SG over these
systems are still considerable. For example, SG outper-
forms PRG, PPL, PG, and GD by 198.2x, 249.3x, 89.4x, and
311.8x on average, respectively. The speedup can even reach
906.0x when running Core on UK compared to PPL. This
is because the optimization techniques in existing systems
like combiners, ID recoding which are suppose to reduce
communication cost and disk I/O cost are inapplicable on
non-separable algorithms.
Communication Cost Comparison We also report the com-
munication cost comparison results of evaluated systems in
Fig. 7. The results are mostly consistent with the running
time presented above considering more communication cost
leads to longer running time. In most cases, SG incurs less
communication cost than that of compared systems due to
the sync model. The gap is even bigger on non-separable
algorithms where optimization techniques like combiners
are inapplicable. BLG has less communication cost in PR
and PPR because we only report the communication cost of
B-mode [50] (same with running time). The whole program
needs to run V-mode first.

6.2 Scalability Test
In this section, we evaluate the scalability of all systems by
varying the number of tested graph size and used machines
respectively. We choose 5 representative algorithms BFS,
PR, Core, MM and TC to report the results in this part.

Varying the Number of Machines. Firstly, we test the
scalability of SG in comparison with existing systems by
varying the number of used machines. For each machine,
all four cores are used. We run selected algorithms over two
large datasets Twitter and Friendster. The results are shown
in Fig. 8.

The experimental results show that, in most cases, with
the increasing number of machines used, better efficiencies
are achieved. This is because the greater number of ma-
chines used, more parallel computation happens and the
less computation time consumes. As a result, total run-
ning time reduces. However, more machines also means
more communication cost. So, when saved computation cost
doesn’t compensate increased communication cost, the total
time couldn’t be reduced but will increase. This explains
in some cases how the more machines used, more time is
consumed. For example, running Core on PG over Twitter,
the total time increases when eight machines used compared
to six machines.

Among existing systems, in-memory systems show bet-
ter efficiency than disk-based system GD. However, for
memory-intensive algorithm like TC which generates huge
amount of messages, all in-memory systems cause OOM
error. While GD can finish running TC when all 10 machines
are used. Note that when less machines are used for GD,
the large volume of messages causes OOD error. Different
from existing systems, SG shows excellent overall perfor-
mance for all kinds of algorithms. In terms of cpu-intensive
algorithms, it outperforms existing in-memory systems. For
example, it is averagely 36.6, 27.1 and 11.4 times faster than
PRG, PPL and PG respectively running Core on Twitter
for different number of machines. For memory-intensive
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algorithms, SG is competitive compared to GD. For instance,
SG and GD are the only two systems that finish running TC
on Twitter. It is worth noticing that GD can only finish when
all ten machines are used. Nevertheless, SG is able to finish
even when only two machines are used which makes our
system more generally applicable. Adding to this, though
both systems finish when all 10 machines are used, SG
is 33.1 times faster than GD. This further demonstrates
the good combinational performance of SG compared with
existing systems.

Varying Graph Size. We also test the system scalability
by varying graph size. We adopt the largest used dataset
ClueWeb and randomly sample 2−1, 2−2, 2−3, 2−4 of all
edges to vary the graph size. The experimental results are
shown in Fig. 9. Note that TC results are not reported be-
cause no system can finish running TC on any used dataset
within 24 hours. Also, PG and BLG are not shown because
they both couldn’t finish on used big graphs because of
OOM error.

The results show that with dataset size increasing, the
running time of all systems increase as well. All systems
show similar increasing behavior. In-memory systems PRG
and PPL show good efficiency but can’t finish when the
graph is too large. For example, they can only finish on the
smallest graph used when running PR. While disk-based
system GraphD shows better scalability but weak efficiency.
GD is the slowest system in the results. With ID recoding,
GDIR gets similar running time with in-memory systems

PRG and PPL. Our new system SG shows better perfor-
mance in terms of efficiency and scalability. For example,
only SG and GraphD finish running BFS on the largest used
graph within 24 hours. Besides, SG is 7.3 and 6.0 times faster
than GD and GDIR respectively.

6.3 Comparison with GraphD
We also compare our system with GD in terms of disk I/O
and memory cost. In terms of disk I/O, we report the total
disk input and output of all machines in the cluster. In
terms of the memory cost, we report the maximum resident
memory usage across all machines used in the experiments.
Due to the space limit, we only report the results of running
BFS and PR over four largest datasets UK, TW, FR and CW
in Fig. 10.
Disk I/O. From Fig. 10(a) and Fig. 10(b) , we can see that
the disk I/O of GraphD is much larger than that of SCALEG.
This is because the large amounts of messages in GraphD
incur a lot of disk read and write operations for storing gen-
erated messages from memory into disk and loading stored
messages for sending from disk to memory. In particular,
the average disk I/Os of GD are 3.6 and 16.4 times that of
SG for BFS and PR respectively. We can also find that ID
recoding is effective on reducing messages hence reduces
disk I/O. As a result, the average disk I/Os of GDIR are
2.1 and 5.4 times that of SG for BFS and PR respectively.
However, for non-seperable applications where combiners
and ID recoding are not applicable, the differences are more
severe. For example, the disk I/Os of GD running Color on
OR and UK are 58.9 and 24.1 times of that of SG respectively.
Memory. In terms of memory cost, we can see that the
memory cost of SG is generally higher than GraphD because
messages are kept on disk for GraphD. However, even in
a small cluster like used in our experiment, SG can run
applications on graphs with billion edges. The fact that
GD requires extra memory buffers for message streams and
merge-sorting compared to SG explains why on smaller
datasets like UK, GD shows a bit larger memory cost than
SG. ID recoding in GDIR helps to reduce memory cost.

6.4 Other Issues
Fault tolerance is important to a system. It is not considered
in current work because the authors of PowerGraph state in
their paper [9] that the overhead, typically a few seconds for
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Fig. 10. Comparison with GraphD

largest graph used, is relatively small compared to the total
running time. This is consistent with our experiments. For
example, the total time of PG for running Color on Twitter,
a dataset also used in their paper, is 23 hours. However,
we leave the implementation of SG’s fault tolerance in the
future. Also, asynchronous mode is not considered because
it is not general and is only effective on algorithms with
asymmetric convergence behavior and low workload [45].

7 CONCLUSION

We propose a disk-based system SCALEG for vertex-centric
graph processing with a simple programming interface in
this work. Programmers only need to specify the computing
logic. Several techniques are proposed to reduce both disk
I/Os in each machine and message I/Os via the network.
In SCALEG, all messages are managed in memory and are
bounded by the number of vertices. Disk I/O is bounded
by O(m/B) where m and B stand for the number of edges
and block size respectively. Different structures are carefully
designed so that SCALEG efficiently supports partial com-
putation and automatic vertex activation. Extensive experi-
mental results validate the superb efficiency of SCALEG on
large graphs.

ACKNOWLEDGMENT

Lu Qin is supported by ARC FT200100787. Lijun Chang
is supported by ARC DP160101513 and FT180100256. Ying
Zhang is supported by ARC DP180103096 and FT170100128.

REFERENCES

[1] R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden,
M. Snir, and K. Pingali, “Gluon: A communication-optimizing
substrate for distributed heterogeneous graph analytics,” in Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2018, pp. 752–768.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[3] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao,
and C. Tian, “Parallelizing sequential graph computations,” in
Proceedings of the 2017 ACM International Conference on Management
of Data. ACM, 2017, pp. 495–510.

[4] M. Han and K. Daudjee, “Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing sys-
tems,” Proceedings of the VLDB Endowment, vol. 8, no. 9, pp. 950–
961, 2015.

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: a framework for machine
learning and data mining in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of data. ACM, 2010, pp. 135–146.

[7] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective techniques for
message reduction and load balancing in distributed graph com-
putation,” in Proceedings of the 24th International Conference on World
Wide Web. International World Wide Web Conferences Steering
Committee, 2015, pp. 1307–1317.

[8] Q. Zhang, A. Acharya, H. Chen, S. Arora, A. Chen, V. Liu, and
B. T. Loo, “Optimizing declarative graph queries at large scale,”
in Proceedings of the 2019 International Conference on Management of
Data. ACM, 2019, pp. 1411–1428.

[9] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Presented as part of the 10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12), 2012, pp.
17–30.

[10] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein, “Powergraph,” 2010. [Online]. Available:
https://github.com/jegonzal/PowerGraph

[11] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix: Big
(ger) graph analytics on a dataflow engine,” Proceedings of the
VLDB Endowment, vol. 8, no. 2, pp. 161–172, 2014.

[12] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel,
“Chaos: Scale-out graph processing from secondary storage,” in
Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015, pp. 410–424.

[13] D. Yan, Y. Huang, M. Liu, H. Chen, J. Cheng, H. Wu, and C. Zhang,
“Graphd: distributed vertex-centric graph processing beyond the
memory limit,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 29, no. 1, pp. 99–114, 2018.

[14] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: differentiated
graph computation and partitioning on skewed graphs,” in
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys 2015, Bordeaux, France, April 21-24, 2015, L. Réveillère,
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