Recent Development of Lithium Borohydride-based Materials for Hydrogen Storage

Wenxuan Zhang, Xin Zhang, Zhenguo Huang, Haiwen Li, Mingxia Gao, Hongge Pan, Yongfeng Liu*

W. X. Zhang, Dr. X. Zhang, Prof. M. X. Gao, Prof. H. G. Pan, Prof. Y. F. Liu
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering,
Zhejiang University, Hangzhou 310027, China
E-mail: mselyf@zju.edu.cn
Prof. H. G. Pan, Prof. Y. F. Liu
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an,
710021, China
Prof. Z. G. Huang
School of Civil & Environmental Engineering, University of Technology Sydney, 81
Broadway, Ultimo, NSW, 2007, Australia
Prof. H. W. Li
Hefei General Machinery Research Institute, Hefei 230031, China

Keywords: hydrogen, hydrogen storage, borohydrides, LiBH4, thermodynamics, kinetics

Abstract:

Lithium borohydride (LiBH₄) has been attracting extensive attention as an exemplary highcapacity complex hydride for solid-state hydrogen storage applications because of its high hydrogen capacities (18.5 wt% and 121 kg H₂ m⁻³). However, the strong and highly directional covalent and ionic bonds within LiBH₄ structure induce high desorption temperatures, slow kinetics and poor reversibility, which make large-scale application impractical. To improve its hydrogen cycling performance, several strategies including cation/anion substitution, catalyst doping, reactive compositing and nanoengineering, have been developed to tailor the thermodynamics and kinetics of hydrogen storage process. For example, largely reduced operation temperatures and remarkably improved hydrogen storage reversibility under moderate conditions have been achieved by the synergistic effect of nanostructuring and nanocatalysis. Herein, the state-of-the-art development of LiBH₄-based hydrogen storage materials is summarized, including the basic physical and chemical properties, the principles of thermodynamic and kinetic manipulation and the straetegies to improve hydrogen storage properties. The remaining challenges and the main directions of future research are also discussed.

1. Introduction

The rapid development of human society has led to an ever-growing demand for energy and serious issuse such as climate change.^[11] Hydrogen is considered as a clean energy carrier because it has the highest gravimetric energy density (142 MJ kg⁻¹) among all the typical energy fuels as well as being highly abundant, environmentally benign and renewable.^[21] It is therefore expected in the future to replace the fossil fules used in industrial, residential and commercial sectors, including storing energy, generating electricity, cooking, and fuelling automobiles.^[3] One of the most successful example is hydrogen-based fuel cell vehicles, which have been commercialized by Toyota, Hyundai, and Honda.^[4] A variety of wind-hydrogen, solar-hydrogen, and solar-wind-hydrogen energy systems have been desgined and evaluated in Japan, USA, China, Canada, Germany, Norway, Greece, Spanish, etc.^[5] However, the use of hydrogen as an energy carrier is faced with a tough problem since hydrogen is a gas at room temperature and atmospheric pressure, and its volumetric energy density is extremely low.^[6] Traditionally, hydrogen can be stored as pressurized gas and cryogenic liquid.^[7] Those processes can improve the density, but are extremely energy intensive. A safe, efficient and economic method for hydrogen storage and transportation is of critical importance.

Materials-based solid state hydrogen storage technique, in which hydrogen is bonded by either chemical or physical forces, has been becoming very attractive, thanks to their high gravimetric and volumetric storage capacities and safe operating pressures.^[8] A wide variety of materials have been studied for hydrogen storage, including interstitial hydrides, binary hydrides, complex hydrides and adsorbents.^[9] **Figure 1** shows the typical classification of solid hydrogen storage materials. Due to their high hydrogen capacity, complex hydrides are among the most studied.^[10]

Complex hydrides represent a family of hydrides composed of metal cations and hydrogencontaining complex anions, in which hydrogen is covalently bound to a central atom.^[11] With light weight and high hydrogen content, complex hydrides have attracted intense interests for

hydrogen storage applications. In particular, lithium borohydride (LiBH₄) has 18.5 wt% H, one of the most promising materials to meet the ultimate targets of on-board hydrogen storage for light-duty fule cell vehicles published by the US Deprtment of Energy.^[12] However, the high desorption temperatures, slow kinetics, and poor reversibility caused by the strong and highly directional covalent and ionic bonds within LiBH₄ structure lead to unfavourable hydrogen cycling performance. Considerable work has been conducted to tackle these problems, and several strategies have been proposed and developed to tailor thermodynamics and kinetics of hydrogen storage process, including cation/anion substitution, catalyst doping, reactive compositing and nanoengineering. This review deals with the recent development of LiBH₄-based hydrogen storage materials, especially focusing on the strategies for thermodynamics and kinetics and kinetics tailoring with the aim at improving hydrogen cycling performance.

2. Basic Physical and Chemical Properties of LiBH₄

LiBH₄ is a white solid at room temperature with a melting point of 278 °C and a density of 0.68 g/cm³.^[13] The standard formation enthalpy of LiBH₄ ($\Delta_f H^0$) is -190.8 kJ mol⁻¹.^[14] It is soluble in some strong polar organic solvents, such as methyl tert-butyl ether, diethyl ether, tetrahydrofuran,^[15] but reacts violently with H₂O to liberate H₂. LiBH₄ exists in four crystal polymorphs (**Figure 2**).^[16] At room temperature, it is in the orthorhombic space group *Pnma*, in which each Li⁺ ion is surrounded by four [BH₄]⁻ tetrahedra and vice versa.^[17] The tetrahedral [BH₄]⁻ groups are aligned along two orthogonal directions with severe distortion in respect to bond lengths [*d*(B-H) = 1.04-1.28 Å] and angles (H-B-H = 85.1-120.1°) (**Figure 2**a). The lattice parameters are determined to be *a* = 7.18 Å, *b* = 4.43 Å and *c* = 6.80 Å. A phase transition occurs from orthorhombic to hexagonal (space group *P6₃mc*) upon heating to 108 °C.^[17] In the hexagonal phase, the tetrahedral configuration is adjusted and the [BH₄]⁻ tetrahedra align along the *c*-axis with more symmetric arrangement. One [BH₄]⁻ group is far away from Li⁺, and one Li-B bond length becomes 3.11 Å while the other three shrinks to 2.55 Å (**Figure 2**b). After

being subjected to a pressure of 1.1-10 GPa at room temperature, LiBH₄ transforms into a new phase with pseudo-tetragonal structure (space group *Ama2*), which then changes to cubic phase (space group *Fm-3m*) above 10 GPa.^[18] In *Ama2* phase, the [BH₄]⁻ group presents a nearly square-planar coordination by four Li⁺ ions (**Figure 2**c), while in the cubic phase the Li⁺ ions and [BH₄]⁻ groups are octahedrally coordinated (**Figure 2**d).

Historically, LiBH₄ was first synthesized from ethyl lithium (LiEt) and diborane in 1940 by Schlesinger and Brown as described below.^[19]

$$LiEt + B_2H_6 \rightarrow LiBH_4 + BEtH_2 \tag{1}$$

Afterwards, they replaced LiEt by LiH by the following reaction.

$$LiH + \frac{1}{2}B_2H_6 \rightarrow LiBH_4 \tag{2}$$

Moreover, reacting LiH or LiAlH₄ with BF₃ etherate or alkylborates gives rise to LiBH₄ under the right conditions.^[20]

$$4LiH + BF_3 \cdot Et_2O \rightarrow LiBH_4 + 3LiF + Et_2O \tag{3}$$

$$LiAlH_4 + B(OMe)_3 \rightarrow LiBH_4 + Al(OMe)_3 \tag{4}$$

Alternatively, LiBH₄ can be produced by direct reaction of Li metal or LiH with elemental B. The reaction conditions are very harsh because of the inertness of B (T: ~600-700 °C, $p(H_2)$: ~ 70-350 bar for LiH and B).^[21]

$$LiH + B + \frac{3}{2}H_2 \rightarrow LiBH_4 \tag{5}$$

$$Li + B + 2H_2 \to LiBH_4 \tag{6}$$

Most practically, LiBH₄ is produced by the cation exchange reaction between LiCl(Br) and NaBH₄ in isopropylamine.^[22]

$$LiCl(Br) + NaBH_4 \rightarrow LiBH_4 + NaCl(Br) \tag{7}$$

For large-scale applications, the cost of LiBH₄ needs to go down and a better synthetic method is needed.

3. Fundamentals of Hydrogen Storage in LiBH4

For a long time, LiBH₄ was only used in chemical synthesis as a raw material for various organic redox processes and preparing other borohydrides.^[15] In 2003, Züttel et al. reported hydrogen storage properties of LiBH₄ for the first time.^[23] Their work stimulated intense interest in using borohydrides for hydrogen storage in the following two decades.

Considerable work has been conducted to understand the thermal decomposition behavior of LiBH₄. In general, LiBH₄ decomposes into LiH and B along with the release of H₂ upon heating as described below.^[24]

$$LiBH_4 \rightarrow LiH + B + \frac{3}{2}H_2 \tag{8}$$

In fact, the thermal decomposition process of LiBH₄ is much more complicated with a multistep decomposition pathway as revealed by differential thermal analysis (DTA) studies.^[25] Three main thermal events were detected in sequence while heating from room temperature to 600 °C, including (1) a polymorphic phase transition at around 110 °C; (2) the melting of LiBH₄ at around 278 °C; and (3) decomposition into LiH and B with H₂ evolution at around 485 °C, as summarized in **Figure 3**.^[26] Recent reports also revealed the formation of B-containing intermediates, including Li₂B₁₂H₁₂ or Li₂B₁₀H₁₀, during thermal decomposition of LiBH₄.^[27] In particular, Pitt et al. observed a new γ -Li₂B₁₂H₁₂ polymorph and a substoichiometric Li₂B₁₂H₁₂. *x* intermediate with solid-state NMR and X-ray diffraction (XRD) analysis, and proposed the decomposition sequence of LiBH₄ as follows.^[28] However, the exact decomposition mechanism of LiBH₄ is still not thoroughly understood so far.

$$12LiBH_4 \to \gamma - Li_2B_{12}H_{12} + 10LiH + 13H_2 \tag{9}$$

$$\gamma - Li_2 B_{12} H_{12} \to Li_2 B_{12} H_{12-x} + \frac{x}{2} H_2$$
 (10)

$$Li_2B_{12}H_{12} + 10LiH \rightarrow (12)a - BLi_{(y+2)/12} + (10-y)LiH + \frac{(12-x+y)}{2}H_2$$
 (11)

In theory, the hydrogen desorption of LiBH₄ is thermodynamically reversible because of the endothermic nature. The decompostion products LiH and B were rehydrogenated to yield LiBH₄ at 600 °C and 350 bar H₂ or 727 °C and 150 bar H₂.^[26,29] The quite high hydrogenation temperatures likely originate from the inertness of elemental B, making it hard to form B-H bonds. Therefore, tailoring thermodynamics and kinetics is of critical importance for improving hydrogen storage properties of LiBH₄, especially for reducing the operating temperatures and speeding up the reaction rates.

4. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in LiBH4

The typical reaction between hydrogen and materials involves the adsorption and absorption of H₂ molecules, the breaking of H-H bonding, the diffusion of H atoms, and the formation of X-H (X=metal, boron, etc) bonds. In a typical reversible hydride, the hydrogen atoms are stored in interstices of structures or chemically bonded to the central elements. The hydrogen is detached by changing the thermodynamic conditions, for example, decreasing system pressure or increasing operating temperature. Here, the operating temperatures for hydrogen storage strongly depend on the thermal stability of hydrides and the kinetic energy barriers. To combine with PEMFCs, hydrogen storage systems are preferable to work below 80 °C.^[12] However, LiBH₄ starts releasing H₂ above 300 °C even under vacuum, which is too high for practical application. To reduce the operating temperature, numerous efforts have been devoted to tailoring the thermodynamics and kinetics for hydrogen storage in LiBH₄. In the following parts, we summarize in detail the recently developed strategies for tailoring thermodynamics, kinetics,

and both of them, including cation/anion substitution, catalyst doping, reactive compositing and nanostructuring, as displayed in **Figure 4**.

4.1 Tailoring Thermodynamics for Hydrogen Storage in LiBH4

From the thermodynamics point of view, the reaction temperature for hydrogen release from a metal hydride is mainly determined by the enthalpy change (ΔH) as described by the Gibbs free energy equation, since the entropy change (ΔS) is often considered to be a constant, which mainly originates from the gaseous hydrogen. Therefore, a feasible approach to reduce the desorption temperature is to decrease the ΔH values, which can be enabled by the destabilization of borohydrides or the stabilization of the decomposition products (**Figure 5**).^[30]

The partial substitution of cations or anions is a frequently used strategy to thermodynamically destabilize metal borohydrides. A series of bimetallic or eutectic borohydrides have been prepared and characterized by combining LiBH₄ with other metal borohydrides (e.g., NaBH₄, KBH₄, Mg(BH₄)₂, Ca(BH₄)₂, Zn(BH₄)₂, Sc(BH₄)₃, Zr(BH₄)₄).^[31] The reported bimetallic borohydrides include LiZr(BH4)5, Li₂Zr(BH4)6, LiK(BH4)2, LiSc(BH4)4, LiZn₂(BH₄)₅.^[31a,31c,32] An eutectic phenomenon between LiBH₄ and Mg(BH₄)₂ was experimentally disclosed, which allows the release of hydrogen at a temperature lower than that of their individual component.^[31f] The Li_{1-x}Mg_{1-y}(BH₄)_{3-x-2y} displayed a largely decreased thermal stability and a distinctly different decomposition behavior from pristine LiBH₄.^[31g] The melting point of the 0.725LiBH₄-0.275KBH₄ system was even reduced to 105 °C along with the concurrence of dehydrogenation.^[33] For the $xLiBH_4+(1-x)Ca(BH_4)_2$ system, reduced desorption temperatures were observed while x = 0.6-0.8.^[34] The partial replacement of H⁻ ions by F⁻ ions also successfully reduced the decomposition temperature of LiBH₄ as demonstrated by Yin et al.^[35] With the replacement of H⁻ ions, the decomposition enthalpy of Li[BH_{4-x}] F_x could be reduced to 36.5 kJ mol⁻¹ H₂, and the onset dehydrogenation temperature was reduced to 100 °C. The decomposition of LiBH₃F commenced even at a lower temperature of ~80 °C.^[36]

By mixing LiBH₄ with TiF₃ and TiCl₃, respectively, Fang et al. revealed that the substitution of F^- ions for H⁻ ions was much more effective in the reduction of desorption temperature than Cl^{-,[37]} In contrast, partially replacing BH₄⁻ in LiBH₄ with Br⁻ gave rise to the formation of a more stable *h*-Li(BH₄)_{0.5}Br_{0.5} phase.^[38] In addition, mixing LiBH₄ with NH₃·BH₃ to form a new LiBH₄·NH₃BH₃ complex also reduced the phase transformation enthalpy by 18%, and the hydrogen desorption capacity reached 15.7 wt% in the temperature range of 100-450 °C, which is remarkably superior to pristine LiBH₄.^[39] However, the reversibility of hydrogen storage has not been improved by partial substitution.

Alternatively, stabilization of the dehydrogenation products is also highly effective approach for tailoring the thermodynamics of hydrogen storage in LiBH₄. In this concept, LiBH₄ combines with reactive additives to form metal borides rather than elemental B after dehydrogenation, which reduces the overall desorption enthalpy change and increases the desorption equilibrium pressure, consequently reducing the operating temperature and improving the reversibility of hydrogen storage.^[40] This was first demonstrated by Vajo et al. in 2005.^[41] They observed the full reversibility of LiBH₄ while coupled with MgH₂ at a stoichiometric molar ratio (2:1) under relative mild conditions (< 450 °C). The overall reaction process is expressed as follows.

$$2LiBH_4 + MgH_2 \leftrightarrow 2LiH + MgB_2 + 4H_2 \tag{12}$$

Here, the formation of MgB₂ induced a reduction of 25 kJ mol⁻¹ H₂ in the desorption enthalpy change with respect to pure LiBH₄, and the desorption temperature was decreased to 225 °C at 1 bar of equilibrium pressure. Mechanistic investigation revealed a stepwise reaction process upon heating, where MgH₂ first decomposed into H₂ and Mg, which then reacted with LiBH₄.^[42] After that, a variety of reactive destabilization systems were developed, including LiBH₄/Mg, LiBH₄/Al, LiBH₄/CaH₂, LiBH₄/ScH₂, LiBH₄/CeH₂, LiBH₄/YH₃, LiBH₄/LaH₃, LiBH₄/Mg₂NiH₄, LiBH₄/Mg₂FeH₆, LiBH₄/Li₃AlH₆, LiBH₄/LiAlH₄, LiBH₄/Mg(AlH₄)₂, and

LiBH₄/Ca(AlH₄)₂.^[43] **Table 1** lists their hydrogen storage parameters. Yang et al. compared the destabilization effects of various metals and metal hydrides, including Al, Mg, Ti, Sc, V, Cr, MgH₂, CaH₂ and TiH₂, based on thermodynamics predicted by first-principles calculations.^[43b,43c] Metal borides were detected after dehydrogenation for MgH₂, Mg, Al, and CaH₂ systems. Furthermore, it was found that the 2LiBH₄/Al system stored reversibly 8.5 wt% H at 400-450 °C with 38.2 kJ mol⁻¹ H₂ of enthalpy change.^[43d] The LiBH₄/LiAlH₄ combination liberated 8.7 wt% H at 500 °C.^[43e] A reversible hydrogen capacity of ~9.0 wt% was measured for 6LiBH₄/CaH₂ system at 400 °C and 83–100 bar H₂ pressure with a reaction enthalpy change ranging from 40.7 to 60.2 kJ mol⁻¹ H₂.^[43f] By combining LiBH₄ with MgH₂ and CaH₂ together, the ending temperature for hydrogen release was further reduced by 160 °C.^[44] Similarly, a mixture of LiBH₄, LiAlH₄ and MgH₂ delivered 7.62 wt% of hydrogen capacity at 280 °C with good reversibility.^[43g] The LiBH₄/Mg₂NiH₄ composite started releasing hydrogen from 250 °C, thanks to the significantly low enthalpy ($\Delta H \sim 15.4$ kJ mol⁻¹ of H₂) and entropy ($\Delta S \sim 62.2$ J/K mol⁻¹ H₂).^[45] At 270 °C, a direct reaction between solid LiBH₄ and Mg₂NiH₄ was observed, leading to the formation of a ternary boride phase MgNi_{2.5}B₂.^[46] This mechanism is distinctly different from the well-known 2LiBH₄-MgH₂ system as discussed above.^[42] For 2LiBH₄/Mg₂FeH₆ system, however, an increased entropy change (147 J K⁻¹ mol⁻¹ H₂) was observed, which is responsible for improved thermodynamic properties.^[43h] Gao et al. reported a 2LiBH₄-2MgH₂-Ca(BH₄)₂ ternary system which started to release hydrogen from 320 °C and completed at 370 °C with ca. 8.1 wt% H capacity.^[47] For the LiBH₄-NaBH₄-Mg(BH₄)₂ ternary system, hydrogen release occurred at 276 and 365 °C (peak temperature).^[48] Ismail et al. reported a component conversion from NaAlH₄-MgH₂-LiBH₄ to LiAlH₄-MgH₂-NaBH₄ after ball milling.^[49] Similar phenomenon was also observed for the Na₃AlH₆-LiBH₄ and MgH₂-Na₃AlH₆-LiBH₄ systems.^[50] The 2LiBH₄-Mg(AlH₄)₂ combination gave off 10.8 wt% H below 400 °C with an onset temperature as low as 60 °C.^[43i] Recently, Bi₂Te₃ was used as a new

destabilizing agent to form the $LiBH_4$ - Bi_2Te_3 composite, which started desorbing hydrogen at 61 °C with a total hydrogen capacity of 9 wt%.^[51]

Unlike the above reactive hydride composites, LiBH₄ can also be destabilized by combining with LiNH₂ to form new quaternary hydrides, i.e., Li₃BN₂H₈ and Li₄BN₃H₁₀.^[52] Moreover, the ammoniate of LiBH₄ released 17.8 wt% H in a closed system at 135-250 °C.^[53] The largely reduced desorption temperature was mainly attributed to the strong affinity between protonic $H^{\delta+}$ and hydridic $H^{\delta-}$. Unfortunately, the release of NH₃ by-product and the exothermic nature are quite unfavorable for practical applications. Introducing MgH₂ to form LiBH₄-LiNH₂-MgH₂ composite partially addressed these issues.^[54] Based upon what has been reported so far, novel strategies involving more effective destabilizing agents are needed to further improve the hydrogen cycling property of LiBH₄.

4.2 Reducing Kinetic Barriers for Hydrogen Storage in LiBH4

In addition to thermodynamics, the operating temperature for a hydrogen storage material is also closely related to the kinetic barriers, which control the reaction rate of hydrogen release and uptake. In comparison with traditional interstitial metal hydrides, the kinetic barriers for hydrogen storage in complex hydrides are usually much higher because of the low catalytic activity of constituent elements for the dissociation and reformation of H-H bonding and the complicated reaction pathways, especially for LiBH₄. Adding catalysts and nanostructuring have been proven to be effective in reducing kinetic energy barriers for hydrogen storage reaction of LiBH₄.

4.2.1 Catalytic Additives

Catalyst enables fast and effective dissociation of hydrogen molecules on the materials' surface, which is of critical importance for improving kinetics of hydrogen storage in hydrides. **Table 2** summarizes some typical catalytic additives and their effects. At first, investigations were mainly focused on metal oxides and halides.^[23,55] Züttel et al. first evaluated the catalytic

effectiveness of SiO₂ and found that 25 wt% SiO₂-containing LiBH₄ released hydrogen from 200 °C.^[23] Yu et al. reported the catalytic activity of several transition metal oxides for hydrogen desorption from LiBH₄ in the order: Fe₂O₃>V₂O₅>Nb₂O₅>TiO₂>SiO₂.^[55a] The onset dehydrogenation temperature of Fe₂O₃-catalyzed LiBH₄ (mass ratio: 2:1) was only 100 °C. Au et al. studied the effects of a series of metal halides such as TiCl₃, TiF₃ and ZnF₂.^[55b] Approximately 3.5 wt% of H was released from LiBH₄-0.1TiF₃ at 150 °C, which was further increased to 8.5 wt% at 450 °C. Unfortunately, the evolution of the B₂H₆ impurity was also increased. A much superior catalytic activity was obtained for TiF4 since the TiF4-modified LiBH₄ released 6.3 wt% H at 150 °C.^[56] This result indicates that the high-valence Ti compounds are much more effective. Moreover, the addition of FeCl₂ and NiCl₂ induced the liberation of all hydrogen in LiBH4. Their borides were believed to be the catalytic species and facilitated hydrogen release process.^[55c] Similarly, the halides of rare earth metals also presented catalytic activity to some extent.^[55d] The dehydrogenation temperatures were reduced to 220-320 °C with the presence of CeCl₃ or LaCl₃. The Ce-based halides were much superior to those of La. The metallic Ni-doped LiBH₄ system released the majority of hydrogen below 600 °C, and achieved the partial hydrogenation at 600 °C and 100 atm.^[55e] The hydrogenation pressure was largely reduced. Xu et al. successfully prepared 9.7 nm-sized Ni supported on graphene (Ni/G) by using a hydrogen thermal reduction method, which exhibited superior catalytic activity for hydrogen storage in LiBH₄.^[57] Adding 20 wt% Ni/G induced hydrogen desorption from LiBH₄ starting at 180 °C and around 12.8 wt% of H was desorbed within 45 min at 450 °C. More importantly, the hydrogen capacity stabilized at 9.8 wt% at 400 °C and under 30 bar H₂ after 30 cycles. Meng et al. reported similar results using well-dispersed Ni nanoparticles supported by porous carbon as catalytic additives.^[58] Further first-principles calculations revealed that transition metal modification decreased the hydrogenation removal energy during the H atom release process from the bulk, therefore favoring hydrogen desorption.^[59] The Ti-doped LiBH₄ was demonstrated to have a good dehydrogenation

performance. Two dimensional layered MXene Ti₃C₂, nanosized Ce₂S₃, and NiFe₂O₄ were also used to improve hydrogen storage properties of LiBH₄.^[60] The onset dehydrogenation temperature of 40 wt% Ti₃C₂-containing LiBH₄ was 120 °C and approximately 5.37 wt% hydrogen could be liberated within 1 h at 350 °C with a largely reduced activation energy (70.3 kJ mol⁻¹ H₂).^[60a] The initial dehydrogenation temperature of the LiBH₄-20 wt% Ce₂S₃ composite was decreased to 250 °C, and the release of hydrogen reached 4 wt% within 3000 s at 400 °C, which is 1.67 times higher than that of pristine LiBH₄.^[60b] As for nanosized NiFe₂O₄, a 9 mol% addition reduced the onset and peak dehydrogenation temperature to 89 °C and 190 °C, respectively, lowered by 226 °C and 260 °C relative to pristine LiBH₄.^[60c]

In addition, carbon-based materials, including activated carbon, carbon nanotubes, graphene, g-C₃N₄, etc., have also attracted considerable attentions for catalyzing hydrogen desorption from LiBH₄. A 30 wt% SWCNTs-modified LiBH₄ ball milled for 1 h started to decompose around 280 °C, which is about 150 °C lower than that of pristine LiBH₄ treated under identical conditions, and hydrogen desorption reached 12.3 wt% while heating to 550 °C.^[61] SWNTs and activated carbon were found to have better catalytic effects on the hydrogen storage properties of LiBH₄ than graphite.^[62] A reduction of 60 °C in the onset desorption temperature was observed for MWCNTs-modified LiBH4.^[63] Similarly, with the addition of C_{60} , the dehydrogenation temperature of LiBH₄ was lowered to ~320 °C.^[64] The presence of 20 wt% graphene reduced the onset dehydrogenation temperature of LiBH₄ to 195 °C, and the peak temperature to 300 °C.^[65] The addition of 3D porous fluorinated graphene enabled a fast and successive dehydrogenation process at 305 °C, which is much lower than pure LiBH₄.^[66] Theoretical predication revealed that C₃N₄ was a potential dehydrogenation catalyst for LiBH₄.^[67] This was experimentally evidenced in the LiBH₄-MgH₂ system as the apparent activation energy was reduced from ~ 200 kJ mol⁻¹ H₂ to 126 kJ mol⁻¹ H₂ with the introduction of Ni@g-C₃N₄.^[68]

Recently, investigations on catalyst-modified LiBH₄ were expanded to organic materials. The onset temperature of hydrogen desorption from a 20 wt% polyaniline-containing LiBH₄ was as low as 75 °C, and the hydrogen capacity remained at 3.9 wt% after 5 cycles. Mechanistic studies revealed that upon dehydrogenation, the oxygen-containing groups of polyaniline reacted with LiBH₄ to generate Li₃BO₃ and LiBO₂, which exhibited a good catalytic effect on LiBH₄.^[69] This was further proven by Li *et al.*^[70] By using niobium ethoxide as the precursor, Li₃BO₃ and NbH were *in situ* formed by reacting with LiBH₄ upon heating. The introduction of Li-B-O compounds reduced the onset dehydrogenation temperature to 200 °C, and the hydrogen capacity retention was determined to be as high as 91% after 30 cycles. This sufficiently indicates the effectiveness of the Li-B-O compounds in catalyzing the hydrogen storage process of LiBH₄.

In general, highly active catalysts can effectively enhance the reaction rate for hydrogen storage in hydrides, even added in small amounts. As for LiBH₄, however, the amount of catalytic additives is often higher than 10 wt%, even up to 50 wt%. In addition, most reported catalytic additives reacted with LiBH₄ forming new compounds, which makes the actual catalytically active species unclear. The corresponding catalytic mechanisms therefore remain elusive. Further efforts should be devoted to finding out the real mechanims, which will help to develop more effective catalysts.

4.2.2 Nanostructuring or Nanoconfinement

Reducing particle size has been frequently used to improve hydrogen storage kinetics of hydrides, especially for complex hydrides, owing to largely increased surface area and shortened diffusion distances, which enables a low kinetic barrier for hydrogen absorption and desorption.^[71] Due to the strong reducing capability and complicated elemental composition, it is quite difficult to synthesize the isolated complex hydride in nanoscale, especially for LiBH₄. Several unique preparation processes have been developed for this purpose.^[72] In 2014, Pang

and co-workers proposed a novel mechanical-force-driven physical vapour deposition method.^[72a] By using [LiBH₄(MTBE)]_n (MTBE: methyl tert-butyl ether) as the precursor, LiBH₄ nanobelts with widths of 10-40 nm were successfully synthesized, which showed significantly lowered dehydrogenation temperature as measured by TPD-MS (**Figure 6**). With a solvent evaporation strategy, Li *et al.* obtained LiBH₄ nanoparticles with sizes ranging from 10.6 to 147.4 nm, stabilized by poly(methl methacrylate).^[72b] The particle sizes depended on the concentration of LiBH₄ in tetrahydroguran (THF). Wang *et al.* reported that the binding force between the surfactant and LiBH₄ controlled the growth and stabilization of LiBH₄ nanoparticles.^[72e] By reacting diborane (B₂H₆) with nanosized-LiH obtained via thermal decomposition of alkyllithium, LiBH₄ nanoparticles were successfully fabricated.^[72d] B₂H₆ is highly toxic and flammable so it is better to develop different methods of synthesis. Antisolvent precipitation or solvent displacement proved effective in preparing LiBH₄ nanoparticles with a relatively good distribution of particle size.^[72e] For most of methods reported, however, suitable stabilizing agents are essential and their complete removal is an issue.

Nowadays, a more common approach to prepare nanosized LiBH₄ is nanoconfinement, where LiBH₄ was confined into a porous host material. **Table 3** summarizes hdyrogen storage properties of representative nanoconfined LiBH₄ systems. In 2008, Gross *et al.* successfully confined LiBH₄ into pyrolyzed resorcinol-formaldehyde aerogels with pore sizes of 13 and 25 nm by means of melt infiltration.^[73] This induced a remarkable reduction in the activation energy from 146 to 103 and 111 kJ mol⁻¹, respectively. After that, Cahen *et al.* loaded 33 wt% LiBH₄ into 4 nm-sized mesoporous carbon by solution impregnation in ethers.^[74] Nanosized LiBH₄ displayed a single desorption peak at 200-300 °C, 100 °C lower than that of bulk counterpart. Christian *et al.* deposited LiBH₄ nanoparticles on carbon nanotubes, which reduced the desorption activation energy even to 88 kJ mol⁻¹ H₂.^[75] Liu *et al.* observed a reduction of 240 °C in the onset desorption temperature after confining LiBH₄ into highly ordered hexagonally packed cylindrical nanoporous carbon (NPC) with an average pore size of 2 nm.^[76]

When the pore size was below 4 nm, the phase transition and melting of nanoconfined LiBH₄ were invisible upon heating.^[77] Using activated carbon nanofiber prepared from polyacrylonitrile as the host for nanoconfined LiBH4, reduction in onset and main dehydrogenation temperatures ($\Delta T = 128$ and 118 °C, respectively) together with suppression of B₂H₆ release were achieved simultaneously.^[78] Gausalawit-Utke et al. reported that confining LiBH₄ in poly(methyl methacrylate)-co-butyl methacrylate (LiBH₄-PMMA-co-BM) reduced the hydrogen desorption temperature of LiBH₄ to 80 °C, and the amount of hydrogen released reached 8.8 wt% H at 120 °C after 2h, while no hydrogen release was detected for pristine LiBH4 under the same conditions.^[79] Moreover, nano LiBH4-PMMA-co-BM can be partially hydrogenated at 140 °C under 50 bar H₂ for 12 h. LiBH₄ confined in porous hollow carbon nanospheres released rapidly 8.1 wt% H at 350 °C within 25 min.^[80] Using copper-metal-organic frameworks as the host, Sun et al. reduced the desorption temperature of LiBH₄ to 75 °C with the peak temperature at 110 °C, and observed an interaction between LiBH₄ and Cu²⁺ ions.^[81] By encapsulating LiBH₄ in carbon nanocages, hydrogen desorption temperature was reduced to 320 °C with an 200 °C onset temperature and rehydrogenation was obtained under 400 °C and 50 bar H₂.^[82] By using zeolite-templated carbon as a host material, Shao et al. detected hydrogen desorption at 194 °C for LiBH4, which is 181 °C lower than that of the bulk sample.^[83] Sun et al. even observed the release of 8.5 wt% H from LiBH₄ confined by SBA-15 within 10 min at 105 °C.^[84] However, the reversibility of hydrogen storage was lost because no hydrogen uptake was found at 450 °C under 70 bar H₂. Recently, a unique doublelayered carbon nanobowl-confined LiBH₄ composite with 80 wt% of loading was successfully prepared by melt infiltration, which readily desorbed and absorbed ~8.5 wt% of H at 300 °C and under 100 bar H₂ (Figure 7).^[85] Alternatively, porous TiO₂ tubes, CuS nanospheres, NiMnO₃ nanospheres, hierarchical ZnO/ZnCo₂O₄ nanoparticles and 2D Ti₃C₂ were also used as host materials to confine LiBH₄.^[79,86] With porous TiO₂ micro-tubes as the host (Figure 8), the nanoconfined LiBH₄ started releasing hydrogen at 180 °C, and the apparent activation

energy was reduced to 121.9 kJ mol⁻¹ H₂.^[86a] Hollow and porous CuS led to 40 °C of onset desorption temperature and 100 °C of peak temperature, but only 0.6 wt% of H was reversible at 300 °C under 60 bar H₂.^[79] The confinement of LiBH₄ in porous NiMnO₃ nanoparticles led to the release of hydrogen at 150 °C and the peak desorption temperature was 300 °C.^[86b] The peak desorption temperature was reduced to 275 °C for LiBH₄ confined in hierarchical porous ZnO/ZnCo₂O₄ nanoparticles, and 8.7 wt% H was liberated below 500 °C.^[86c] With a novel wet chemical process, Xia *et al.* obtained graphene-supported LiBH₄ nanolayers with a thickness of 4 nm, which showed a fast dehydrogenation at 340 °C with a capacity of 9.7 wt%.^[87] In particular, the hydrogen capacity of graphene-supported LiBH₄ nanolayers remained at 7.5 wt% after 5 cycles at 320 °C, corresponding to a capacity retention of 80%, which was nearly twice that of LiBH₄/G mixture after 3 cycles (**Figure 9**).

Although significant progress has been made in nanoconfined LiBH₄ for reversible hydrogen storage, the chemical inertness of host materials and low loading efficiency induce a penalty in gravimetric hydrogen capacity, sometimes making it even lower than that of traditional interstitial metal hydrides. In addition, the local confinement environments make it challenging to characterize the size effect. In these regards, the development of light-weight host materials and increasing effective loading should be emphasized. At the same time, a controllable fabrication of stable, support-free nanostructured LiBH₄ should be explored.

4.3 Simultaneously Tailoring Thermodynamics and Kinetics

Simultaneous adjustment of thermodynamics and kinetics is a key route to decrease the operating temperatures and enhance the reaction kinetics for hydrogen storage in LiBH₄. The most frequently used approach is introducing catalysts into reactive composites and nanoconfined systems. Nanoconfinement of reactive composites and mixed borohydrides is also an option. Considerable work has been conducted in recent years.

4.3.1 Catalyst Doping into Reactive Composites

The 2LiBH₄-MgH₂ combination is a typical thermodynamically destabilized system. To further enhance the hydrogen storage reaction kinetics, various catalytic additives were introduced into this system, including carbon materials, metals (Pd, Ni, Ru, Fe), metal halides (TiCl₃, TiF₃, ZrCl₄, CuCl₂, HfCl₄, VCl₃, NbF₅), metal oxides (Nb₂O₅, Sc₂O₃, Fe₂O₃, MgO) and metal borides (MgB₂, TiB₂, NbB₂). In 2005, Vajo et al. reported that 2LiBH₄-MgH₂-3 mol% TiCl₃ composite delivered reversible hydrogen capacity of 8-10 wt% at 315-450 °C.^[41] Increasing TiCl₃ to 5 mol%, the onset desorption temperature was further decreased to 240 °C.^[88] Compared with FeCl₂ and CoCl₂. NiCl₂ is the best catalyst because of the formation of MgNi₃B₂ which worked as the nucleation site for MgB2.^[89] Compared with TiF3, CeF3, LaF3 and FeF3, NbF5 presented the best catalytic activity due to the its reaction with LiBH₄ and the 0.05NbF₅-containing 2LiBH₄-MgH₂ system desorbed 8.1 wt% H below 450 °C.^[90] Furthermore, Mao et al. reported that NbF5 suppressed the formation of Li₂B₁₂H₁₂.^[91] The influence of MoCl₃ was also investigated, which led to a capacity of about 7 wt% hydrogen at 300 °C.^[92] The highly dispersed metallic Mo formed by the reaction with LiBH₄ was the reason for the improved hydrogen storage performance. In TiF3 and TiF4-modified systems, TiB2 was identified as nucleation agents for the formation of MgB₂ during dehydrogenation.^[93] Fan et al. found that amorphous TiB₂ and NbB₂ nanoparticles significantly improved the hydrogen storage performance of the 2LiBH₄-MgH₂ system.^[94] Zhao et al. observed the release of 10.8 wt% H from CoNiB-catalyzed 2LiBH₄-MgH₂ system below 500 °C.^[95] The use of CuCl₂ as a catalytic additive in 2LiBH₄-MgH₂ gave rise to the formation of Mg-Cu alloy, which promoted the nucleation of MgB₂ by working as heterogeneous nuclei.^[96]

The introduction of Pd nanoparticles into 2LiBH_4 -MgH₂ resulted in 80 °C of reduction in the initial dehydrogenation temperature from 340 to 260 °C and the total hydrogen capacity was determined to be 8.0 wt% below 400 °C.^[97] Mg₆Pd was detected after dehydrogenation. Approximately 7.9 wt% hydrogen was recharged into the dehydrogenated product at 400 °C and under 35 atm H₂ for 6 h. The Ru/C-doped 2LiBH_4 -MgH₂ sample liberated 8.39 wt% H

within 2 h at 380 °C, while only 6.37 wt% hydrogen was released for the undoped sample even after 5 h.^[98] The addition of Fe lowered the onset decomposition temperature by 30 °C and led to considerably faster isothermal dehydrogenation during the first cycle, thanks to the formation of nanocrystalline, well distributed FeB.^[99] The dehydrogenation temperature of Ti-containing 2LiBH₄-MgH₂ system was 50-70 °C lower than that of the additive-free system.^[100] Fan et al. revealed the catalytic effect of Nb₂O₅ on reversible hydrogen storage performances of 2LiBH₄-MgH₂ composite,^[101] which released approximately 6-8 wt% below 400 °C and stabilized at 5.16 wt% after 3 cycles. Compared with pure 2LiBH₄-MgH₂ composite, the addition of 10 mol% MgB₂ reduced the hydrogenation time to only half, which was further shortened to about one-fifth for 5 mol% Sc₂O₃.^[102] The presence of Li_xTiO₂ led to the direct formation of MgB₂ by suppressing the formation of Li₂B₁₂H₁₂ intermediate, consequently speeding up the first dehydrogenation.^[103] By co-doping Fe₂O₃ and TiF₃, the onset desorption temperature of 2LiBH₄-MgH₂ composite was reduced to 110 °C.^[104] With BaTiO₃ as an additive, the onset dehydrogenation temperature was decreased by 124 °C.^[105] Upon dehydrogenation, BaTiO₃ reacted with LiBH₄ forming BaB₆ and TiO₂. BaB₆ is beneficial to lower the stability of LiBH₄, while TiO₂ has a catalytic effect in improving the kinetics of hydrogenation/dehydrogenation. Titanium isopropoxide could significantly improve the kinetics of the 2LiBH₄-MgH₂ system.^[106] Mechanistic investigation revealed that the high dispersion of titanium-based additives resulted in a distinct grain refinement of MgB₂ and an increase in the number of reaction sites, which is responsible for the accelerated desorption and absorption.^[107]

An average dehydriding rate over 2 times faster than that of the neat LiBH₄/MgH₂ sample at 450 °C was obtained after adding 10 wt% SWNTs.^[108] A rapid hydrogen desorption was also observed for activated carbon-modified 2LiBH₄-MgH₂ composite due to the tailored nanophase structure.^[109] The pre-milled MWCNTs induced a reduction of 50 °C in dehydrogenation temperature.^[110] Further improvement of desorption kinetics was achieved after adding CNT into the Ni-catalyzed 2LiBH₄-MgH₂ system.^[111] By doping with 15 wt% MWCNTs-TiO₂,

compacted 2LiBH₄-MgH₂ delievered gravimetric and volumetric hydrogen storage capacities of 6.8 wt% and 68 g H₂ L⁻¹, respectively.^[112] Co and Ni-based catalysts improved hydrogen cycling performance of binary LiBH₄-Mg(BH₄)₂ and LiBH₄-LiNH₂ systems, respectively.^[113] Although hydrogen desorption temperatures were largely lowered with the presence of catalytic additives (**Table 4**), the reversibility of hydrogen storage in these binary systems has not been improved effectively, which is critical for practical applications.

4.3.2 Nanostructuring of Thermodynamically Destabilized Systems

Nanoconfinement was also employed to improve hydrogen storage properties of some reactive composites and mixed borohydrides, including LiBH4-MgH2, LiBH4-Mg2NiH4, LiBH4-LiAlH4, LiBH4-NaAlH4, LiBH4-MgH2-NaAlH4, LiBH4-NaBH4 LiBH4-KBH4, LiBH4-Mg(BH4)2, and LiBH₄-Ca(BH₄)₂. Table 5 summarizes hydrogen storage properties of these modified systems. In 2010, Nielsen et al. successfully confined LiBH₄ and MgH₂ nanoparticles in a nanoporous carbon aerogel scaffold with a pore size of ~ 21 nm by a stepwise synthesis process.^[114] The nanoconfined system showed rapid hydrogen desorption and a high degree of reversibility. 74% of the total hydrogen content in nanoconfined 2LiBH₄-MgH₂ was released below 320 °C, but it was only 26% for the bulk sample. By direct melt infiltration of bulk 2LiBH₄-MgH₂ into a nanoporous resorcinol-formaldehyde carbon aerogel scaffold, Gosalawit-Utke et al. observed the release of 90% of the total hydrogen storage capacity within 90 min at 425 °C.^[115] The activation energy of the decomposition of LiBH₄ and MgH₂ was decreased by 27 and 132 kJ mol⁻¹ H₂, respectively, due to nanoconfinement, and the calculated enthalpy changes were in the range of 46.21 kJ mol⁻¹ H₂.^[116] By pre-milling MgH₂, Gosalawit-Utke et al. obtained a dehydrogenation rate approximately twice faster for the nanoconfined sample than that of the sample without MgH₂ pre-milling.^[117] With a self-assembly followed by solution infiltration, Xia and coworkers fabricated a graphene-supported monodispersed 2LiBH₄-MgH₂ nanocomposite with a particle size of ~ 10.5 nm. The nanostructuring largely facilitated the physical contact between LiBH₄ and MgH₂ and shortened the mass transport distance, which

induced a reversible storage capacity of up to 8.9 wt% at 350 °C.^[118] Recently, a novel ball milling process fitted with aerosol spraying was used to fabricate a mixture of nano-LiBH₄ and nano-MgH₂, which delievered 5 wt% of reversible storage capacity at temperatures ≤ 265 °C.^[119] A nanoconfined LiBH₄-Mg₂NiH₄ showed a single-step reaction at around 300 °C with 4.2 wt% of hydrogen capacity.^[120] The main dehydrogenation temperature of the nanoconfined LiBH₄-LiAlH₄ was reduced by 94 °C when compared with the milled sample.^[121] Nanoconfinement of 2LiBH₄-NaAlH₄ enabled an onset of hydrogen release below 100 °C, which was 132 °C lower than that of bulk system.^[122] For the ternary system of LiBH₄-MgH₂-NaAlH₄, nanoconfinement not only converged multiple-step decomposition into a single step but also largely reduced the dehydrogenation temperature, approximately by 70 °C regarding the last dehydrogenation step.^[123]

The hydrogen storage properties of eutectic mixed borohydride systems were also significantly improved by nanoconfinement. The first report on the nanoconfinement effect of a binary borohydride mixture co-infiltrated into mesoporous scaffolds was made by Lee *et al.* in 2011.^[124] They infiltrated the eutectic LiBH₄–Ca(BH₄)₂ composite into the mesoporous channels of the carbon by melt infiltration and observed that the major dehydrogenation event occurred at ~300 °C, which is lower compared with the same composite without carbon. After infiltration, LiBH₄ and Ca(BH₄)₂ existed as an amorphous mixture inside the pores and there was a certain interaction with the mesoporous scaffolds, which likely contributed to a faster dehydrogenation.^[125] The CO₂-activated carbon aerogel scaffold was more inert and enabled faster kinetics and higher stability for the LiBH₄–Ca(BH₄)₂ eutectic system.^[126] Similar phenomenon was also observed in the LiBH₄–Oa(8H₄)₄ and LiBH₄-KBH₄ systems.^[33,127] The CO₂-activated carbon aerogel-confined 0.62LiBH₄–0.38NaBH₄ maintained ~70% of the initial capacity after 4 cycles, more than 3-fold that of bulk mixture.^[127] As for 0.725LiBH₄-0.275KBH₄, nanoconfinement lowered the main hydrogen release temperature by up to 200 °C in the first cycle.^[33,128] Nanoconfinement of 0.55LiBH₄–0.45Mg(BH₄)₂ in high surface area

carbon aerogel led to a favorable hydrogen release as illustrated by the release of 7.62 wt% H from room temperature to 500 °C.^[129] More than 10.8 wt% hydrogen (referred to borohydride) was released from porous hollow carbon nanospheres-confined LiBH₄-Mg(BH₄)₂ with 50% loading at 280 °C.^[130] The interfacial adhesion between carbon sphere and LiBH₄-Mg(BH₄)₂ was believed to be a critical factor for suppressing agglomeration during dehydrogenation cycles (**Figure 10**). Nanoconfinement altered reaction pathways of eutectic LiBH₄-Mg(BH₄)₂ as the multistep thermal decomposition pattern became a two-step reaction.^[131]

4.3.3 Synergy of Nanostructuring and Catalyst Doping

The synergetic effects of nanostructuring and nanocatalysis have been pursued to further improve hydrogen storage properties of LiBH₄ by fabricating catalyst-containing nanostructures. These are summarized in Table 6. In 2010, Ngene et al. combined nanosized Ni catalyst with nanoporous carbon scaffold-confined LiBH4,^[132] and obtained 10 wt% of hydrogen uptake per LiBH₄ at 320 °C under 40 bar H₂ while the Ni-free sample absorbed only 6 wt% H. The presence of Ni significantly enhanced the hydrogen uptake under mild conditions due to the *in situ* formation of Ni_xB.^[133] By doping with TiO₂, the dehydrogenation kinetics and reversibility of nanoconfined LiBH₄ in activated carbon nanofibers were further improved.^[134] In particular, Xian et al. constructed an active porous core-shell network with carbon nanotube as the core and nano-TiO₂ decorated porous amorphous carbon as the shell.^[135] The hybrid scaffold facilitated high loading of LiBH₄ and therefore high catalytic activity. There were reactions between TiO₂ and LiBH₄ generating LiTiO₂ and TiB₂. At a LiBH₄ loading of 60 wt%, the system released 7.3 wt% H within 60 min at 320 °C, and a reversible capacity of 5.1 wt% was achieved even after 20 cycles. LiBH₄ nanoparticles confined by poly(methylmethacrylate) (PMMA) and reduced graphene oxide modified melamine foam (GMF) desorbed 2.9 wt% H within 25 min at 250 °C, superior to the PMMA-free LiBH4/GMF sample.^[136] With nanoconfinement by carbon aerogels and catalysis of CoNiB nanoparticles, LiBH4 released 9.33 wt% H in 30 min at 350 °C and the activation energy was reduced from 59 kJ mol⁻¹ (per

LiBH₄) to 46 kJ mol^{-1.[137]} The maximum hydrogen release rate of activated carbon confined LiBH₄ doped with CeF₃ as the catalyst was 288 times higher than that of pure LiBH₄ at 350 °C.^[138] After introducing Ni and Co nanoparticles into N-doped graphene-rich aerogel confined LiBH₄, the liberation of hydrogen started at lower temperatures.^[139] Very recently, Zhang et al. achieved reversible desorption and absorption of ~9.2 wt% hydrogen at 300 °C and under 100 bar H₂ by synthesizing a Ni-decorated graphene-supported LiBH₄ nanocomposite (LiBH₄ nanoparticles: 5-10 nm, Ni nanocrystals: 2-4 nm).^[140] The presence of ultrafine Ni nanocrystals prevented effectively the formation of stable $B_{12}H_{12}^{2-}$ cluster during hydrogen cycling. After 100 cycles, the hydrogen capacity was around 8.5 wt%, corresponding to 92.4% of capacity retention, representing a stable cyclability (Figure 11). This is an important breakthrough in long-term cycling of metal borohydrides under mild conditions. Such a remarkable improvement was mainly attributed to the successful suppression of B₂H₆ byproduct evolution and the good physical contact between LiH and B after dehydrogenation due to a synergistic effect of nanostructuring and nanocatalysis. Several metal chlorides such as TiCl₃, TiCl₄ and ZrCl₄, were also introduced to nanoconfined LiBH₄-MgH₂ systems to achieve the synergistic effect of nanostructuring and nanocatalysis.^[141] Faster dehydrogenation kinetics was obtained for these samples. The TiCl₃-doped nanoconfined 2LiBH₄-MgH₂ required only 1 h to release 95% of hydrogen while 2.5 h was needed for the sample without TiCl₃. The addition of TiCl₄ further reduced the onset dehydrogenation temperature of nanoconfined 2LiBH₄-MgH₂ by 140 °C. The formation of Ti-MgH₂ alloy upon the first hydrogenation was believed to be the critical reason. We therefore believe that catalyst-nanoconfinement synergy should be further explored to enable metal borohydrides for practical reversible hydrogen storage applications.

5. Summary and Outlook

Limitations in the use of LiBH₄ for hydrogen storage are high opeartion temperatures, slow kinetics and poor reversibility. To address these issues, thermodynamics and kinetics tailoring are essential and considerable work has been conducted, including cation/anion substitution, catalyst doping, reactive compositing and nanoengineering. Partial substitution of cations or anions and compositing with metal and metal hydrides have been widely adopted for thermodynamics tailoring. A variety of bimetallic borohydrides and reactive composites have been developed for this purpose. A representative example is the 2LiBH₄-MgH₂ system, in which the desorption enthalpy change was reduced by 25 kJ mol⁻¹ H₂.

Introducing catalytic additives effectively reduced the operating temperatures for hydrogen storage in LiBH₄ by decreasing the kinetic barriers. Carbon materials, metals, metal halides, metal oxides and metal borides have been evaluated and compared. Mechanistic studies revealed that most of metal compounds were converted to borides after first dehydrogenation and hydrogenation. Experimental work highlighted the effectiveness of transition metals and their borides, especially metallic Ni. However, the amount of catalytic additives was often higher than 10 wt%, even up to 50 wt%, which largely reduced the usable hydrogen capacity. Nanoengineering has proved effective in tailoring hydrogen storage kinetics of LiBH₄, even to change thermodynamics when the particle size is small enough. Using porous host materials, the operating temperatures for hydrogen storage in LiBH₄ have been largely reduced and the hydrogen storage reversibility was significantly improved. However, the inertness of host materials to hydrogen and low loading efficiency need to be addressed. The evolution of B₂H₆ by-product can be effectively prevented by creating reactive composites, doping catalysts and nanoengineering. More importantly, the synergistic effects of nanostructuring and nanocatalysis enabled reversible storage of more than 9 wt% hydrogen with a stable cyclability at much milder conditions (300 °C and 100 bar H₂), representing an important progress in promoting LiBH₄-based hydrogen storage materials for practical mobile applications.

In our eyes, future research should concentrate on the dual tailoring of theremodynamics and kinetics for hydrogen storage in LiBH₄-based materials with high capacity, including but not limited to: i) searching for more effective destabilizing agents and fabricating nanosized reactive composite systems; ii) understanding the size-dependent catalytic activity of transition metals and their borides and optimizing their doping approaches; iii) designing and developing synthesis of novel support-free nanostructures of LiBH₄; iv) developing *in-situ* simultaneous formation of nanostructured LiBH₄ and nanocatalysts without supports; and v) understanding the underlying mechanisms of nanosynergy between nanostructuring and nanocatalysis for LiBH₄-based hydrogen storage systems. With these efforts, we hope to see further development in high-capacity LiBH₄-based hydrogen storage materials with favorable theremodyamics and kinetics in the near future.

Acknowledgements

W. Z. and X. Z. contributed equally to this work. This work was supported by the National Key R&D Program of China (2018YFB1502102), the Natural Science Foundation of Zhejiang Province (LD21E010002), the National Natural Science Foundation of China (52001277, 52071287), and the National Youth Top-Notch Talent Support Program. Z.H. acknowledges support under the Australian Research Council's (ARC) Discovery Projects funding scheme (DP170101773) and an ARC Future Fellowship (FT190100658).

Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

References

- [1] a) M. S. Dresselhaus, I. L. Thomas, *Nature*, 2001, 414, 332; b) S. Chu, A. Majumdar, *Nature*, 2012, 488, 294; c) S. M. Hwang, Y.-G. Lim, J.-G. Kim, Y.-U. Heo, J. H. Lim, Y. Yamauchi, M.-S. Park, Y.-J. Kim, S. X. Dou, J. H. Kim, *Nano Energy*, 2014, 10, 53; d) J. Lee, J. Moon, S. A. Han, J. Kim, V. Malgras, Y.-U. Heo, H. Kim, S.-M. Lee, H. K. Liu, S. X. Dou, Y. Yamauchi, M.-S. Park, J. H. Kim, *ACS Nano*, 2019, 13, 9607; e) H. R. Xue,
 - J. Q. Zhao, J. Tang, H. Gong, P. He, H. S. Zhou, Y. Yamauchi, J. P. He, Chem. Eur. J.

2016, 22, 4915; f) S. M. Hwang, S. Y. Kim, J.-G. Kim, K. J. Kim, J.-W. Lee, M.-S. Park, Y.-J. Kim, M. Shahabuddin, Y. Yamauchi, J. H. Kim, *Nanoscale*, 2015, 7, 8351.

- [2] a) L. Schlapbach, A. Züttel, *Nature* 2001, *414*, 353; b) T. He, P. Pachfule, H. Wu, Q. Xu,
 P. Chen, *Nature Rev. Mater.* 2016, *1*, 16059.
- [3] a) A. Midilli, I. Dincer, Int. J. Hydrogen Energy, 2007, 32, 511; b) I. P. Jain, Int. J. Hydrogen Energy, 2009, 34, 7368; c) J. O. Abe, A. P. I. Popoola, E. Ajenifuja, O. M. Popoola, Int. J. Hydrogen Energy, 2019, 44, 15072.
- [4] H. Yumiya, M. Kizaki, H. Asai, World Electr. Veh. J. 2015, 7, 85.
- [5] a) M. Momirlan, T. N. Veziroglu, *Renew. Sustain. Energy Rev.*, 2002, 6, 141; b) E. I. Zoulias, N. Lymberopoulos, Hydrogen-based Autonomous Power Systems, Springer, London, 2008; c) Z. X. Liu, Z. M. Qiu, Y. Luo, Z. Q. Mao, C. Wang, *Int. J. Hydrogen Energy*, 2010, 35, 2762; d) F. Sorgulu, I. Dincer, *Int. J. Hydrogen Energy*, 2018, 43, 5842.
- [6] a) L. Schlapbach, *Nature* 2009, 460, 809; b) K. T. Møller, T. R. Jensen, E. Akiba, H. W. Li, *Prog. Nat. Sci.: Mater. Int.* 2017, 27, 34; c) Q. L. Zhu, Q. Xu, *Energy Environ. Sci.* 2015, 8, 478; d) R. Mohtadi, S. Orimo, *Nat. Rev. Mater.* 2016, 2, 16091.
- [7] a) U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2009, 48, 6608; b) D. J.
 Durbin, C. Malardier-Jugroot, Int. J. Hydrogen Energy 2013, 38, 14595.
- [8] a) V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, *Int. J. Energy Res.* 2007, 31, 637; b)
 P. Chen, M. Zhu, *Mater. Today* 2008, 11, 36; c) M. Hirscher, V. A. Yartys, M. Baricco,
 J. Bellosta von Colbe, D. Blanchard, R. C. Bowman, D. P. Broom, C. E. Buckley, F.
 Chang, P. Chen, Y. W. Cho, J.-C. Crivello, F. Cuevas, W. I. F. David, P. E. de Jongh, R.
 V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G. E. Froudakis, D. M. Grant, E.
 M. Gray, B. C. Hauback, T. He, T. D. Humphries, T. R. Jensen, S. Kim, Y. Kojima, M.
 Latroche, H.-W. Li, M. V. Lototskyy, J. W. Makepeace, K. T. Møller, L. Naheed, P.
 Ngene, D. Noréus, M. M. Nygård, S.-i. Orimo, M. Paskevicius, L. Pasquini, D. B.
 Ravnsbæk, M. Veronica Sofianos, T. J. Udovic, T. Vegge, G. S. Walker, C. J. Webb, C.

- Weidenthaler, C. Zlotea, J. Alloys Compd. 2020, 827, 153548; d) V. A. Yartys, M. V.
 Lototskyy, E. Akiba, R. Albert, V. E. Antonov, J. R. Ares, M. Baricco, N. Bourgeois, C.
 E. Buckley, J. M. Bellosta von Colbe, J. C. Crivello, F. Cuevas, R. V. Denys, M.
 Dornheim, M. Felderhoff, D. M. Grant, B. C. Hauback, T. D. Humphries, I. Jacob, T. R.
 Jensen, P. E. de Jongh, J. M. Joubert, M. A. Kuzovnikov, M. Latroche, M. Paskevicius,
 L. Pasquini, L. Popilevsky, V. M. Skripnyuk, E. Rabkin, M. V. Sofianos, A. Stuart, G.
 Walker, H. Wang, C. J. Webb, M. Zhu, Int. J. Hydrogen Energy 2019, 44, 7809; e) X. B.
 Yu, Z. W. Tang, D. L. Sun, L. Z. Ouyang, M. Zhu, Prog. Mater. Sci. 2017, 88, 1; f) A.
 Schneemann, J. L. White, S. Y. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D.
 Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, V. Stavila, Chem. Rev. 2018, 118, 10775; g) Q. W. Lai, M. Paskevicius, D. A. Sheppard, C. E. Buckley, A. W. Thornton,
 M. R. Hill, Q. F. Gu, J. F. Mao, Z. G. Huang, H. K. Liu, Z. P. Guo, A. Banerjee, S.
 Chakraborty, R. Ahuja, K. F. Aguey-Zinsou, ChemSusChem 2015, 8, 2789; h) X. Zhang,
 Y. F. Liu, Z. H. Ren, X. L. Zhang, J. J. Hu, Z. G. Huang, Y. H. Lu, M. X. Gao, H. G. Pan, Energy Environ. Sci. 2021, DOI: 10.1039/D0EE03160G.
- [9] a) B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 2007, 32, 1121; b) P. Chen, Z. T. Xiong, G. T. Wu, Y. F. Liu, J. Hu, W. F. Luo, Scr. Mater. 2007, 56, 817; c) Y. F. Liu, H. G. Pan, M. X. Gao, Q. D. Wang, J. Mater. Chem. 2011, 21, 4743; d) Y. F. Liu, Z. H. Ren, X. Zhang, N. Jian, Y. X. Yang, M. X. Gao, H. G. Pan, Energy Technol. 2018, 6, 487; e) Y. F. Liu, Y. X. Yang, M. X. Gao, H. G. Pan, Chem. Rec. 2016, 16, 189; f) Y. H. Sun, C. Q. Shen, Q. W. Lai, W. Liu, D. W. Wang, K. F. Aguey-Zinsou, Energy Storage Mater. 2018, 10, 168; g) R. Kumar, A. Karkamkar, M. Bowden, T. Autrey, Chem. Soc. Rev. 2019, 48, 5350; h) S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Chem. Rev. 2007, 107, 4111; i) J. W. Ren, H. W. Langmi, B. C. North, M. Mathe, Int. J. Energy Res. 2015, 39, 607; j) A. Salehabadi, M. F. Umar, A. Ahmad, M. I. Ahmad, N. Ismail, M. Rafatullah, Int. J. Energy Res. 2020, 44, 11044; k) Y. S. Chua, P.

Chen, G. T. Wu, Z. T. Xiong, Chem. Commun. 2011, 47, 5116.

- [10] a) T. He, H. J Cao, P. Chen, *Adv. Mater.* 2019, *31*, 1902757; b) L. Z. Ouyang, K. Chen,
 J. Jiang, X. S. Yang, M. Zhu, *J. Alloys Compd.* 2020, *829*, 154597.
- [11] I. P. Jain, P. Jain, A. Jain, J. Alloys Compd. 2010, 503, 303.
- [12] DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles, https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storagelight-duty-vehicles, accessed: 2017.
- [13] G. L. Soloveichik, *Mater. Matters* **2007**, *2*, 11.
- [14] CRC Handbook of Chemistry and Physics, CRC Press/Taylor & Francis.
- [15] H. Hagemann, R. Černý, Dalton Trans. 2010, 39, 6006.
- [16] a) Y. Filinchuk, D. Chernyshov, V. Dmitriev, Z. Kristallogr. 2008, 223, 649; b) C. Li, P.
 Peng, D. W. Zhou, L. Wan, Int. J. Hydrogen Energy 2011, 36, 14512.
- [17] J. P. Soulié, G. Renaudin, R. Černý, K. Yvon, J. Alloys Compd. 2002, 346, 200.
- [18] Y. Filinchuk, D. Chernyshov, A. Nevidomskyy, V. Dmitriev, Angew. Chem. Int. Ed. 2008, 47, 529.
- [19] H. I. Schlesinger, H. C. Brown, J. Am. Chem. Soc. 1940, 62, 3429.
- [20] H. I. Schlesinger, H. C. Brown, B. Abraham, A. C. Bond, N. Davidson, A. E. Finholt, J. R. Gilbreath, H. Hoekstra, L. Horvitz, E. K. Hyde, J. J. Katz, J. Knight, R. A. Lad, D. L. Mayfield, L. Rapp, D. M. Ritter, A. M. Schwartz, I. Sheft, L. D. Tuck, A. O. Walker, J. Am. Chem. Soc. 1953, 75, 186.
- [21] a) O. Friedrichs, F. Buchter, A. Borgschulte, A. Remhof, C. N. Zwicky, P. Mauron, M. Bielmann, A. Züttel, *Acta Mater.* 2008, 56, 949; b) P. Mauron, F. Buchter, O. Friedrichs, A. Remhof, M. Bielmann, C. N. Zwicky, A. Züttel, *J. Phys. Chem. B* 2008, *112*, 906; c)
 O. Friedrichs, A. Borgschulte, S. Kato, F. Buchter, R. Gremaud, A. Remhof, A. Züttel, *Chem. Eur. J.* 2009, *15*, 5531.
- [22] H. C. Brown, Y. M. Choi, S. Narasimhan, Inorg. Chem. 1981, 20, 4454.

- [23] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, C. Emmenegger, J. Power Sources 2003, 118, 1.
- [24] A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, C. Emmenegger, J. Alloys Compd. 2003, 356-357, 515.
- [25] E. M. Fedneva, V. L. Alpatova, V. I. Mikheeva, Russ. J. Inorg. Chem. 1964, 9, 826.
- [26] A. Züttel, A. Borgschulte, S. Orimo, Scr. Mater. 2007, 56, 823.
- [27] O. Friedrichs, A. Remhof, S. J. Hwang, A. Züttel, Chem. Mater. 2010, 22, 3265.
- [28] M. P. Pitt, M. Paskevicius, D. H. Brown, D. A. Sheppard, C. E. Buckley, J. Am. Chem. Soc. 2013, 135, 6930.
- [29] S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, A. Züttel, J. Alloys Compd. 2005, 404-406, 427.
- [30] H. W. Li, Y. G. Yan, S. Orimo, A. Züttel, C. M. Jensen, Energies 2011, 4, 185.
- [31] a) D. Ravnsbæk, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F. Besenbacher, J. Skibsted, T. R. Jensen, Angew. Chem., Int. Ed. 2009, 48, 6659; b) Z. Z. Fang, X. D. Kang, J. H. Luo, P. Wang, H. W. Li, S. Orimo, J. Phys. Chem. C 2010, 114, 22736; c) E. A. Nickels, M. O. Jones, W. I. F. David, S. R. Johnson, R. L. Lowton, M. Sommariva, P. P. Edwards, Angew. Chem., Int. Ed. 2008, 47, 2817; d) Z. Z. Fang, X. D. Kang, P. Wang, H. W. Li, S. Orimo, J. Alloys Compd. 2010, 491, L1; e) M. Au, M. J. Meziani, Y. P. Sun, F. E. Pinkerton, J. Phys. Chem. C 2011, 115, 20765; f) M. Paskevicius, M. B. Ley, D. A. Sheppard, T. R. Jensen, C. E. Buckley, Phys. Chem. Chem. Phys. 2013, 15, 19774; g) E. G. Bardají, Z. Zhao-Karger, N. Boucharat, A. Nale, M. J. Van Setten, W. Lohstroh, E. Röhm, M. Catti, M. Fichtner, J. Phys. Chem. C 2011, 115, 6095.
- [32] a) H. W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, A. Züttel, *J. Alloys Compd.* 2007, 446-447, 315; b) H. Hagemann, M. Longhini, J. W. Kaminski, T. A. Wesolowski, R. Černý, N. Penin, M. H. Sørby, B. C. Hauback, G. Severa, C. M. Jensen, *J. Phys. Chem. A* 2008, *112*, 7551.

- [33] E. Roedern, B. R. S. Hansen, M. B. Ley, T. R. Jensen, J. Phys. Chem. C 2015, 119, 25818.
- [34] J. Y. Lee, D. Ravnsbæk, Y. S. Lee, Y. Kim, Y. Cerenius, J. H. Shim, T. R. Jensen, N. H. Hur, Y. W. Cho, J. Phys. Chem. C 2009, 113, 15080.
- [35] L. C. Yin, P. Wang, Z. Z. Fang, H. M. Cheng, Chem. Phys. Lett. 2008, 450, 318.
- [36] B. Richter, D. B. Ravnsbæk, M. Sharma, A. Spyratou, H. Hagemann, T. R. Jensen, *Phys. Chem. Chem. Phys.* 2017, 19, 30157.
- [37] Z. Z. Fang, X. D. Kang, Z. X. Yang, G. S. Walker, P. Wang, J. Phys. Chem. C 2011, 115, 11839.
- [38] L. H. Rude, O. Zavorotynska, L. M. Arnbjerg, D. B. Ravnsbæk, R. A. Malmkjær, H. Grove, B. C. Hauback, M. Baricco, Y. Filinchuk, F. Besenbacher, T. R. Jensen, *Int. J. Hydrogen Energy* 2011, 36, 15664.
- [39] J. H. Luo, H. Wu, W. Zhou, X. D. Kang, Z. Z. Fang, P. Wang, *Int. J. Hydrogen Energy* 2012, *37*, 10750.
- [40] J. J. Vajo, G. L. Olson, Scr. Mater. 2007, 56, 829.
- [41] J. J. Vajo, S. L. Skeith, F. Mertens, J. Phys. Chem. B 2005, 109, 3719.
- [42] F. E. Pinkerton, M. S. Meyer, G. P. Meisner, M. P. Balogh, J. J. Vajo, J. Phys. Chem. C 2007, 111, 12881.
- [43]a) S. V. Alapati, J. Karl Johnson, D. S. Sholl, *Phys. Chem. Chem. Phys.* 2007, *9*, 1438; b)
 J. Yang, A. Sudik, C. Wolverton, *J. Phys. Chem. C* 2007, *111*, 19134; c) D. J. Siegel, C. Wolverton, V. Ozoliņš, *Phys. Rev. B* 2007, *76*, 134102; d) X. D. Kang, P, Wang, L. P. Ma, H. M. Cheng, *Appl. Phys. A* 2007, *89*, 963; e) Q. He, D. D. Zhu, X. C. Wu, D. Dong, M. Xu, Z. F. Tong, *Molecules* 2019, *24*, 1861; f) F. E. Pinkerton, M. S. Meyer, *J. Alloys Compd.* 2008, *464*, L1; g) Y. W. Zhang, X. Z. Xiao, B. S. Luo, X. Huang, M. J. Liu, L. X. Chen, *J. Phys. Chem. C* 2018, *122*, 2528; h) M. R. Ghaani, M. Catti, A. Nale, *J. Phys. Chem. C* 2012, *116*, 26694; i) Y. P. Pang, Y. F. Liu, X. Zhang, Q. Li, M. X. Gao, H. G. Pan, *Chem. Asian J.* 2015, *10*, 2452; j) J. J. Vajo, T. T. Salguero, A. F. Gross, S. L. Skeith, G. L. Olson,

J. Alloys Compd. 2007, 446-447, 409; k) J. Purewal, S. J. Hwang, J. R. C. Bowman, E.
Rönnebro, B. Fultz, C. Ahn, J. Phys. Chem. C 2008, 112, 8481; l) S. A. Jin, Y. S. Lee, J.
H. Shim, Y. W. Cho, J. Phys. Chem. C 2008, 112, 9520; m) O. Friedrichs, J. W. Kim, A.
Remhof, F. Buchter, A. Borgschulte, D. Wallacher, Y. W. Cho, M. Fichtner, K. H. Oh, A.
Züttel, Phys. Chem. Chem. Phys. 2009, 11, 1515; n) Y. Zhang, Q. F. Tian, J. Zhang, S. S.
Liu, L. X. Sun, J. Phys. Chem. C 2009, 113, 18424; o) F. C. Gennari, Int. J. Hydrogen
Energy 2011, 36, 15231; p) Y. F. Zhou, Y. F. Liu, W. Wu, Y. Zhang, M. X. Gao, H. G.
Pan, J. Phys. Chem. C 2012, 116, 1588; q) X. C. Wu, X. H. Wang, G. Z. Cao, S. Q. Li, H.
W. Ge, L. X. Chen, M. Yan, J. Alloys Compd. 2012, 517, 127; r) D. M. Liu, C. Gao, Z. X.
Qian, T. Z. Si, Q. A. Zhang, Int. J. Hydrogen Energy 2013, 38, 3291.

- [44] Y. F. Zhou, Y. F. Liu, Y. Zhang, M. X. Gao, H. G. Pan, Dalton Trans. 2012, 41, 10980.
- [45] J. J. Vajo, W. Li, P. Liu, Chem. Commun. 2010, 46, 6687.
- [46] N. Bergemann, C. Pistidda, M. Uptmoor, C. Milanese, A. Santoru, T. Emmler, J. Puszkiel,
 M. Dornheim, T. Klassen, *J. Energy Chem.* 2019, *34*, 240.
- [47] M. X. Gao, J. Gu, H. G. Pan, Y. L. Wang, Y. F. Liu, C. Liang, Z. X. Guo, J. Mater. Chem. A 2013, 1, 12285.
- [48] E. M. Dematteis, C. Pistidda, M. Dornheim, M. Baricco, ChemPhysChem 2019, 20, 1348.
- [49] M. Ismail, Int. J. Hydrogen Energy, 2014, 39, 8340.
- [50] a) F. A. Halim Yap, N. S. Mustafa, M. S. Yahya, A. A. Mohamad, M. Ismail, Int. J. Hydrogen Energy, 2018, 43, 8365; b) F. A. Halim Yap, N. A. Ali, N. H. Idris, M. Ismail, Int. J. Hydrogen Energy, 2018, 43, 20882; c) F. A. Halim Yap, M. Ismail, J. Phys. Chem. C 2018, 122, 23959.
- [51] P. Kumari, P. Pal, K. Shinzato, K. Awasthi, T. Ichikawa, A. Jain, M. Kumar, Int. J. Hydrogen Energy 2020, 45, 16992.
- [52] a) F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh, M. D. Kundrat, J. Phys. Chem. B 2005, 109, 6; b) M. Aoki, K. Miwa, T. Noritake, G. Kitahara, Y. Nakamori, S.

Orimo, S. Towata, *Appl. Phys. A* 2005, *80*, 1409; c) Y. F. Liu, K. Luo, Y. F. Zhou, M. X.Gao, H. G. Pan, *J. Alloys Compd.* 2009, *481*, 473.

- [53] X. L. Zheng, G. T. Wu, W. Li, Z. T. Xiong, T. He, J. P. Guo, H. Chen, P. Chen, *Energy Environ. Sci.* 2011, 4, 3593.
- [54] a) G. J. Lewis, J. W. A. Sachtler, J. J. Low, D. A. Lesch, S. A. Faheem, P. M. Dosek, L. M. Knight, L. Halloran, C. M. Jensen, J. Yang, A. Sudik, D. J. Siegel, C. Wolverton, V. Ozolins, S. Zhang, J. Alloys Compd., 2007, 446-447, 355; b) J. R. Hattrick-Simpers,, J. E. Maslar, M. U. Niemann, C. Chiu, S. S. Srinivasan, E. K. Stefanakos, L. A. Bendersky, Int. J. Hydrogen Energy, 2010, 35, 6323; c) A. Sudik, J. Yang, D. Halliday, C. Wolverton, J. Phys. Chem. C, 2008, 112, 4384.
- [55] a) X. B. Yu, D. M. Grant, G. S. Walker, *J. Phys. Chem. C* 2009, *113*, 17945; b) M. Au, A. R. Jurgensen, W. A. Spencer, D. L. Anton, F. E. Pinkerton, S. J. Hwang, C. Kim, R. C. Bowman, *J. Phys. Chem. C* 2008, *112*, 18661; c) B. J. Zhang, B. H. Liu, *Int. J. Hydrogen Energy* 2010, *35*, 72881 d) B. J. Zhang, B. H. Liu, *Z. P. Li*, *J. Alloys Compd.* 2011, *509*, 751; e) G. L. Xia, Y. H. Guo, Z. Wu, X. B. Yu, *J. Alloys Compd.* 2009, *479*, 545.
- [56] Y. F. Liu, H. A. I. Zhou, Y. F. Ding, M. X. Gao, H. G. Pan, *Funct. Mater. Lett.* 2011, 04, 395.
- [57] J. Xu, Y. Li, J. Y. Cao, R. R. Meng, W. C. Wang, Z. D. Chen, *Catal. Sci. Technol.* 2015, 5, 1821.
- [58] X. H. Meng, C. B. Wan, Y. T. Wang, X. Ju, J. Alloys Compd. 2018, 735, 1637.
- [59] a) Z. N. Huang, Y. Q. Wang, D. Wang, F. S. Yang, Z. Wu, Z. X. Zhang, Comput. Theor.
 Chem. 2018, 1133, 33; b) X. H. Mo, W. Q. Jiang, S. L. Cao, Results Phys. 2017, 7, 3236.
- [60] a) Y. P. Fan, D. D. Chen, X. Y. Liu, G. X. Fan, B. Z. Liu, *Int. J. Hydrogen Energy* 2019, 44, 29297; b) J. S. Wang, Z. B. Wang, Y. Li, D. D. Ke, X. Z. Lin, S. M. Han, M. Z. Ma, *Int. J. Hydrogen Energy* 2016, 41, 13156; c) J. Zhang, P. Li, Q. Wan, F. Q. Zhai, A. A.

Volinsky, X. H. Qu, *RSC Adv.* **2015**, *5*, 81212.

- [61] Z. Z. Fang, X. D. Kang, H. B. Dai, M. J. Zhang, P. Wang, H. M. Cheng, Scr. Mater. 2008, 58, 922.
- [62] Z. Z. Fang, X. D. Kang, P. Wang, Int. J. Hydrogen Energy 2010, 35, 8247.
- [63] F. Agresti, A. Khandelwal, G. Capurso, S. L. Russo, A. Maddalena, G. Principi, Nanotechnology 2010, 21, 065707.
- [64] R. H. Scheicher, S. Li, C. M. Araujo, A. Blomqvist, R. Ahuja, P. Jena, *Nanotechnology* 2011, 22, 335401.
- [65] J. Xu, R. R. Meng, J. Y. Cao, X. F. Gu, Z. Q. Qi, W. C. Wang, Z. D. Chen, Int. J. Hydrogen Energy 2013, 38, 2796.
- [66] W. Zhang, G. Xu, L. J. Chen, S. Y. Pan, X. Jing, J. S. Wang, S. M. Han, Int. J. Hydrogen Energy 2017, 42, 15262.
- [67] X. D. Zhao, Z. N. Ma, D. H. Wu, X. Zhang, Y. Jing, Z. Zhou, Int. J. Hydrogen Energy 2015, 40, 8897.
- [68] X. Huang, X. Z. Xiao, X. C. Wang, Z. D. Yao, C. T. Wang, X. L. Fan, L. X. Chen, *Energy Storage Mater.* 2018, 13, 199.
- [69] Y. F. Ma, Y. Li, T. Liu, X. Zhao, L. Zhang, S. M. Han, Y. J. Wang, J. Alloys Compd.
 2016, 689, 187.
- [70] Z. L. Li, M. X. Gao, J. Gu, K. C. Xian, Z. H. Yao, C. X. Shang, Y. F. Liu, Z. X. Guo, H.
 G. Pan, ACS Appl. Mater. Interfaces 2020, 12, 893.
- [71] P. E. de Jongh, P. Adelhelm, *ChemSusChem* **2010**, *3*, 1332.
- [72] a) Y. P. Pang, Y. F. Liu, M. X. Gao, L. Z. Ouyang, J. W. Liu, H. Wang, M. Zhu, H. G. Pan, *Nat. Commun.* 2014, *5*, 3519; b) Y. T. Li, Q. G. Zhang, F. Fang, Y. Song, D. Sun, L. Z. Ouyang, M. Zhu, *RSC Adv.* 2014, *4*, 983; c) T. Wang, K. F. Aguey-Zinsou, *Energy Technol.* 2019, *7*, 1801159; d) L. Wang, M. Z. Quadir, K. F. Aguey-Zinsou, *Int. J. Hydrogen Energy* 2016, *41*, 6376; e) Q. W. Lai, T. Wang, Y. H. Sun, K. F. Aguey-Zinsou,

Adv. Mater. Technol. 2018, 3, 1700298.

- [73] A. F. Gross, J. J. Vajo, S. L. Van Atta, G. L. Olson, J. Phys. Chem. C 2008, 112, 5651.
- [74] S. Cahen, J. B. Eymery, R. Janot, J. M. Tarascon, J. Power Sources 2009, 189, 902.
- [75] M. Christian, K. F. Aguey-Zinsou, *Nanoscale* 2010, *2*, 2587.
- [76] X. F. Liu, D. Peaslee, C. Z. Jost, E. H. Majzoub, J. Phys. Chem. C 2010, 114, 14036.
- [77] X. Liu, D. Peaslee, C. Z. Jost, T. F. Baumann, E. H. Majzoub, *Chem. Mater.* 2011, 23, 1331.
- [78] S. Thiangviriya, R. Utke, Int. J. Hydrogen Energy 2015, 40, 4167.
- [79] R. Gosalawit-Utke, S. Meethom, C. Pistidda, C. Milanese, D. Laipple, T. Saisopa, A.
 Marini, T. Klassen, M. Dornheim, *Int. J. Hydrogen Energy* 2014, 39, 5019.
- [80] S. Wang, M. X. Gao, K. C. Xian, Z. L. Li, Y. Shen, Z. H. Yao, Y. F. Liu, H. G. Pan, ACS Appl. Energy Mater. 2020, 3, 3928.
- [81] W. W. Sun, S. F. Li, J. F. Mao, Z. P. Guo, H. K. Liu, S. X. Dou, X. B. Yu, *Dalton Trans.* **2011**, 40, 5673.
- [82] L. L. Guo, Y. Li, Y. F. Ma, Y. Liu, D. D. Peng, L. Zhang, S. M. Han, Int. J. Hydrogen Energy 2017, 42, 2215.
- [83] J. Shao, X. Z. Xiao, X. L. Fan, X. Huang, B. Zhai, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen, *Nano Energy* 2015, 15, 244.
- [84] T. Sun, J. Liu, Y. Jia, H. Wang, D. L. Sun, M. Zhu, X. D. Yao, *Int. J. Hydrogen Energy* 2012, *37*, 18920.
- [85] R. Y. Wu, X. Zhang, Y. F. Liu, L. C. Zhang, J. J. Hu, M. X. Gao, H. G. Pan, Small 2020, 16, 2001963.
- [86] a) H. Q. Liu, L. F. Jiao, Y. P. Zhao, K. Z. Cao, Y. C. Liu, Y. J. Wang, H. T. Yuan, J. Mater. Chem. A 2014, 2, 9244; b) X. Xu, L. Zang, Y. Zhao, Y. Liu, Y. Wang, L. Jiao, Int. J. Hydrogen Energy 2017, 42, 25824; c) X. H. Xu, L. Zang, Y. R. Zhao, Y. Zhao, Y. J. Wang, L. F. Jiao, J. Power Sources 2017, 359, 134; d) L. Zang, W. Y. Sun, S. Liu, Y. K.

Huang, H. T. Yuan, Z. L. Tao, Y. J. Wang, ACS Appl. Mater. Interfaces 2018, 10, 19598.

- [87] G. L. Xia, Y. B. Tan, X. W. Chen, F. Fang, D. L. Sun, X. G. Li, Z. P. Guo, X. B. Yu, Adv. Sci. 2017, 4, 1600257.
- [88] P. Sridechprasat, Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, *Int. J. Hydrogen Energy* 2011, 36, 1200.
- [89] J. Shao, X. Z. Xiao, L. X. Chen, X. L. Fan, S. Q. Li, H. W. Ge, Q. D. Wang, J. Mater. Chem. 2012, 22, 20764.
- [90] a) H. Q. Kou, X. Z. Xiao, J. X. Li, S. Q. Li, H. W. Ge, Q. D. Wang, L. X. Chen, *Int. J. Hydrogen Energy* 2012, *37*, 1021; b) X. Z. Xiao, J. Shao, L. X. Chen, H. Q. Kou, X. L. Fan, S. S. Deng, L. T. Zhang, S. Q. Li, H. W. Ge, Q. D. Wang, *Int. J. Hydrogen Energy* 2012, *37*, 13147; c) H. Q. Kou, G. Sang, Z. Y. Huang, W. H. Luo, L. X. Chen, X. Z. Xiao, C. W. Hu, Y. L. Zhou, *Int. J. Hydrogen Energy* 2014, *39*, 7050.
- [91] J. F. Mao, Z. P. Guo, X. B. Yu, H. K. Liu, Int. J. Hydrogen Energy 2013, 38, 3650.
- [92] G. L. Xia, H. Y. Leng, N. X. Xu, Z. L. Li, Z. Wu, J. L. Du, X. B. Yu, Int. J. Hydrogen Energy 2011, 36, 7128.
- [93] a) X. D. Kang, K. K. Wang, Y. J. Zhong, B. Yang, P. Wang, *Phys. Chem. Chem. Phys.* **2013**, *15*, 2153; b) F. Karimi, M. V. C. Riglos, A. Santoru, A. Hoell, V. S. Raghuwanshi,
 C. Milanese, N. Bergemann, C. Pistidda, P. Nolis, M. D. Baro, G. Gizer, T. T. Le, P. K.
 Pranzas, M. Dornheim, T. Klassen, A. Schreyer, J. Puszkiel, *J. Phys. Chem. C* 2018, *122*, 11671.
- [94] X. L. Fan, X. Z. Xiao, L. X. Chen, X. H. Wang, S. Q. Li, H. W. Ge, Q. D. Wang, J. Mater. Chem. A 2013, 1, 11368.
- [95] Y. P. Zhao, L. Z. Ding, T. S. Zhong, H. T. Yuan, L. F. Jiao, *Int. J. Hydrogen Energy* 2014, 39, 11055.
- [96] Y. Jiang, B. H. Liu, J. Alloys Compd. 2011, 509, 9055.
- [97] B. C. Weng, X. B. Yu, Z. Wu, Z. L. Li, T. S. Huang, N. X. Xu, J. Ni, J. Alloys Compd.

2010, *503*, 345.

- [98] J. F. Mao, Z. P. Guo, X. B. Yu, H. K. Liu, J. Alloys Compd. 2011, 509, 5012.
- [99] J. A. Puszkiel, F. C. Gennari, P. A. Larochette, J. M. Ramallo-López, U. Vainio, F. Karimi,
 P. K. Pranzas, H. Troiani, C. Pistidda, J. Jepsen, M. Tolkiehn, E. Welter, T. Klassen, J.
 Bellosta von Colbe, M. Dornheim, *J. Power Sources* 2015, 284, 606.
- [100] H. Y. Shao, M. Felderhoff, C. Weidenthaler, J. Phys. Chem. C 2015, 119, 2341.
- [101] M. Q. Fan, L. X. Sun, Y. Zhang, F. Xu, J. Zhang, H. L. Chu, *Int. J. Hydrogen Energy* 2008, 33, 74.
- [102] U. Bösenberg, J. W. Kim, D. Gosslar, N. Eigen, T. R. Jensen, J. M. B. von Colbe, Y. Zhou, M. Dahms, D. H. Kim, R. Günther, Y. W. Cho, K. H. Oh, T. Klassen, R. Bormann, M. Dornheim, *Acta Mater.* 2010, *58*, 3381.
- [103] J. A. Puszkiel, M. V. Castro Riglos, F. Karimi, A. Santoru, C. Pistidda, T. Klassen, J. M. Bellosta von Colbe, M. Dornheim, *Phys. Chem. Chem. Phys.* 2017, 19, 7455.
- [104] H. Zhang, Y. X. Zhou, L. X. Sun, Z. Cao, F. Li, Chem. J. Chinese U. 2012, 33, 781.
- [105] J. S. Wang, S. M. Han, Z. B. Wang, D. D. Ke, J. J. Liu, M. Z. Ma, Dalton Trans. 2016, 45, 7042.
- [106] U. Bösenberg, S. Doppiu, L. Mosegaard, G. Barkhordarian, N. Eigen, A. Borgschulte, T. R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim, R. Bormann, *Acta Mater*. 2007, 55, 3951.
- [107] E. Deprez, A. Justo, T. C. Rojas, C. López-Cartés, C. Bonatto Minella, U. Bösenberg, M. Dornheim, R. Bormann, A. Fernández, *Acta Mater.* 2010, 58, 5683.
- [108] P. J. Wang, Z. Z. Fang, L. P. Ma, X. D. Kang, P. Wang, Int. J. Hydrogen Energy 2008, 33, 5611.
- [109] K. K. Wang, X. D. Kang, J. H. Luo, C. C. Hu, P. Wang, Int. J. Hydrogen Energy 2013, 38, 3710.
- [110] I. H. Cho, S. Gang, H. Lee, J. H. Shim, M. Park, Y. N. Choi, Int. J. Hydrogen Energy

2016, *41*, 22090.

- [111] F. Cova, F. C. Gennari, P. A. Larochette, RSC Adv. 2015, 5, 90014.
- [112] P. Plerdsranoy, S. Chanthee, R. Utke, Int. J. Hydrogen Energy 2017, 42, 978.
- [113] a) J. Chen, Y. Zhang, Z. T. Xiong, G. T. Wu, H. Chu, T. He, P. Chen, *Int. J. Hydrogen Energy* 2012, *37*, 12425; b) Y. Zhang, Z. Y. Lan, N. Jian, Z. Ren, J. J. Hu, M. X. Gao, H. G. Pan, Y. H. Lu, Y. F. Liu, *Catal. Sci. Technol.* 2017, *7*, 1838; c) Y. Zhang, Y. F. Liu, Y. X. Yang, Y. Li, J. J. Hu, M. X. Gao, H. G. Pan, *Mater. Res. Bull.* 2018, *97*, 544.
- [114] T. K. Nielsen, U. Bösenberg, R. Gosalawit, M. Dornheim, Y. Cerenius, F. Besenbacher,T. R. Jensen, ACS Nano 2010, 4, 3903.
- [115] R. Gosalawit-Utke, T. K. Nielsen, I. Saldan, D. Laipple, Y. Cerenius, T. R. Jensen, T. Klassen, M. Dornheim, J. Phys. Chem. C 2011, 115, 10903.
- [116] R. Gosalawit-Utke, C. Milanese, T. K. Nielsen, F. Karimi, I. Saldan, K. Pranzas, T. R. Jensen, A. Marini, T. Klassen, M. Dornheim, *Int. J. Hydrogen Energy* 2013, 38, 1932.
- [117] R. Gosalawit–Utke, S. Thiangviriya, P. Javadian, D. Laipple, C. Pistidda, N. Bergemann,
 C. Horstmann, T. R. Jensen, T. Klassen, M. Dornheim, *Int. J. Hydrogen Energy* 2014, 39, 15614.
- [118] G. L. Xia, Y. B. Tan, F. L. Wu, F. Fang, D. L. Sun, Z. P. Guo, Z. G. Huang, X. B. Yu, Nano Energy 2016, 26, 488.
- [119] a) Z. Ding, Y. Lu, L. Li, L. Shaw, *Energy Storage Mater.* 2019, 20, 24; b) Z. Ding, L. Shaw, ACS Sustainable Chem. Eng. 2019, 7, 15064; c) Z. Ding, H. Li, L. Shaw, Chem. Eng. J. 2020, 385, 123856.
- [120] P. Javadian, C. Zlotea, C. M. Ghimbeu, M. Latroche, T. R. Jensen, J. Phys. Chem. C 2015, 119, 5819.
- [121] P. Plerdsranoy, R. Utke, Int. J. Hydrogen Energy 2015, 40, 7083.
- [122] P. Javadian, D. A. Sheppard, C. E. Buckley, T. R. Jensen, Crystals 2016, 6, 70
- [123] P. Plerdsranoy, R. Utke, J. Phys. Chem. Solids 2016, 90, 80.

- [124] H. S. Lee, Y. S. Lee, J. Y. Suh, M. Kim, J. S. Yu, Y. W. Cho, J. Phys. Chem. C 2011, 115, 20027.
- [125] H. S. Lee, S. J. Hwang, H. K. Kim, Y. S. Lee, J. Park, J. S. Yu, Y. W. Cho, J. Phys. Chem. Lett. 2012, 3, 2922.
- [126] P. Javadian, D. A. Sheppard, C. E. Buckley, T. R. Jensen, Nano Energy 2015, 11, 96.
- [127] P. Javadian, D. A. Sheppard, C. E. Buckley, T. R. Jensen, *Int. J. Hydrogen Energy* 2015, 40, 14916.
- [128] F. Peru, S. Payandeh, G. Charalambopoulou, T. R. Jensen, T. Steriotis, *C-J. Carbon Res.***2020**, *6*, 19.
- [129] P. Javadian, T. R. Jensen, Int. J. Hydrogen Energy 2014, 39, 9871.
- [130] J. G. Zheng, Z. D. Yao, X. Z. Xiao, X. C. Wang, J. H. He, M. Chen, H. Cheng, L. T. Zhang,
 L. X. Chen, *Int. J. Hydrogen Energy* 2021, *46*, 852.
- [131] Z. Zhao-Karger, R. Witter, E. G. Bardají, D. Wang, D. Cossement, M. Fichtner, J. Mater. Chem. A 2013, 1, 3379.
- [132] P. Ngene, M. van Zwienen, P. E. de Jongh, Chem. Commun. 2010, 46, 8201.
- [133] P. Ngene, M. H. W. Verkuijlen, Q. Zheng, J. Kragten, P. J. M. van Bentum, J. H. Bitter, P. E. de Jongh, *Faraday Discuss.* 2011, 151, 47.
- [134] C. Sitthiwet, S. Thiangviriya, N. Thaweelap, S. Meethom, D. Kaewsuwan, N. Chanlek,R. Utke, J. Phys. Chem. Solids 2017, 110, 344.
- [135] K. C. Xian, B. Nie, Z. G. Li, M. X. Gao, Z. L. Li, C. X. Shang, Y. F. Liu, Z. X. Guo, H. G. Pan, *Chem. Eng. J.* 2021, 407, 127156.
- [136] Y. D. Fan, D. D. Chen, Z. L. Yuan, Q. Chen, G. X. Fan, D. Zhao, B. Z. Liu, *Front. Chem.***2020**, *8*, 45.
- [137] Y. P. Zhao, L. F. Jiao, Y. C. Liu, L. J. Guo, L. Li, H. Q. Liu, Y. J. Wang, H. T. Yuan, Int. J. Hydrogen Energy 2014, 39, 917.
- [138] H. Zhou, L. T. Zhang, S. C. Gao, H. Z. Liu, L. Xu, X. H. Wang, M. Yan, Int. J. Hydrogen

Energy 2017, 42, 23010.

- [139] A. Gasnier, G. Amica, J. Juan, H. Troiani, F. C. Gennari, J. Phys. Chem. C 2020, 124, 115.
- [140] X. Zhang, L. C. Zhang, W. X. Zhang, Z. H. Ren, Z. G. Huang, J. J. Hu, M. X. Gao, H. G. Pan, Y. F. Liu, *Nano Energy* 2021, *83*, 105839.
- [141] a) R. Gosalawit-Utke, C. Milanese, P. Javadian, J. Jepsen, D. Laipple, F. Karmi, J. Puszkiel, T. R. Jensen, A. Marini, T. Klassen, M. Dornheim, *Int. J. Hydrogen Energy* 2013, 38, 3275; b) R. Gosalawit-Utke, C. Milanese, P. Javadian, A. Girella, D. Laipple, J. Puszkiel, A. S. Cattaneo, C. Ferrara, J. Wittayakhun, J. Skibsted, T. R. Jensen, A. Marini, T. Klassen, M. Dornheim, *J. Alloys Compd.* 2014, 599, 78; c) R. Utke, S. Thiangviriya, P. Javadian, T. R. Jensen, C. Milanese, T. Klassen, M. Dornheim, *Mater. Chem. Phys.* 2016, 169, 136.

Figure 1 Classification of solid hydrogen storage materials.

Figure 2 Four crystal structures of LiBH₄: (a) Pnma, (b) P6₃mc, (c) Ama2, and (d) Fm-3m. Reproduced with permission.^[16b] Copyright 2011, Elsevier.

Figure 3 Enthalpy diagram of the phases and intermediate products of LiBH₄. Reproduced with permission.^[26] Copyright 2007, Elsevier.

Figure 4 Strategies to tailor thermodynamics and kinetics of hydrogen cycling by LiBH₄.

Figure 5 Schematic illustration of two main approaches to tailor the thermodynamic stabilities of metal borohydrides.^[30]

Figure 6 Schematic illustration of (a) the preparation process, (b) TEM image, (c) HRTEM image and (d) TPD-MS of the LiBH₄ nanobelts. Reproduced with permission.^[72a] Copyright 2014, Springer Nature.

Figure 7 (a) Schematic illustration of the melt infiltration procedure; (b) SEM image of mesoporous carbon hollow spheres (MCHSs); (c) SEM, (d) TEM image, (e) STEM-EDS mapping, (f) hydrogen desorption, (g) absorption (g), and (h) 2nd desorption curves of MCHSs-confined LiBH₄ (80 wt% loading). Reproduced with permission.^[85] Copyright 2020, Wiley.

Figure 8 (a) SEM, (b, c) TEM, and (d) HRTEM of the as-prepared TiO₂; (e) TEM, (f) HRTEM and (g) hydrogen desorption curves of LiBH₄@TiO₂ composites. Reproduced with permission.^[86a] Copyright 2014, RSC Publishing.

Figure 9 (a) SEM, (b, c) TEM, (d) HRTEM, (e) hydrogen desorption and (f) cycling of the as-synthesized LiBH₄@G. Reproduced with permission.^[87] Copyright 2017, Wiley.

Figure 10 (a) SEM images of hollow carbon nanospheres (HCNS), (b) 30LMBH@HCNS, (c) 50LMBH@HCNS and (d) 67LMBH@HCNS composites, (e) HAADF TEM observation and corresponding EDS mapping of 50LMBH@HCNS composite, and (f) schematic illustration of the improved reversible hydrogen storage properties of over-infiltrated 50LMBH@HCNS composite. Reproduced with permission.^[130] Copyright 2021, Elsevier.

Figure 11 (a) Schematic illustration of the preparation process, (b) TEM image, (c) EDS mapping, (d) HRTEM image, and (e) cycling stability of nano-LiBH₄/Ni@G composite. Comparison of isothermal dehydrogenation performance of nano-LiBH₄/Ni@G with other hydride-based hydrogen storage materials (f). Reproduced with permission.^[140] Copyright 2021, Elsevier.

System	H capacity	T_{onset}	$\Delta H (kJ mol^{-1} H_2)$	Reaction	Ref.
2LiBH ₄ -MgH ₂	8.0-10.0	270	40.5	$LiBH_4 + 1/2MgH_2 \rightarrow LiH + 1/2MgB_2 + 2H_2$	[41]
2LiBH ₄ -Mg	5.6			$2\text{LiBH}_4 + \text{Mg} \rightarrow \text{MgB}_2 + 2\text{LiH} + 3\text{H}_2$	[43b]
2LiBH ₄ -Al	8.5		18.8	$2\text{LiBH}_4 + \text{Al} \rightarrow \text{AlB}_2 + 2\text{LiH} + 3\text{H}_2$	[43d]
LiBH ₄ -LiAlH ₄	8.7	138		$LiBH_4 + LiAlH_4 \rightarrow 3/2LiH + 1/2LiAl + 1/2AlB_2 + 13/4H_2$	[43e]
6LiBH ₄ -CaH ₂	9.1	150	59.2	$6LiBH_4 + CaH_2 \rightarrow 6LiH + CaB_6 + 10H_2$	[43f]
LiBH ₄ -0.58LiAlH ₄ - 32MgH ₂	7.62	280	78±8.86	$32MgH_2+0.58LiAlH_4 + LiBH_4 \rightarrow 0.25MgAlB_4 + 0.0275Mg_{17}Al_{12} + 0.53Li_3Mg_7 + 27.6Mg + 35.2 H_2$	[43g]
2LiBH ₄ -Mg ₂ FeH ₆	7.45	217	72	$4LiBH_4 + 2Mg_2FeH_6 \rightarrow MgB_2 + 4LiH + 12H_2 + 2FeB + 3Mg$	[43h]
LiBH ₄ - 1/2Mg(AlH ₄) ₂	10.8	60		$LiBH_{4}+1/2Mg(AlH_{4})_{2} \rightarrow 1/4MgAlB_{4}+3/8LiAl+1/8Al_{3}Mg_{2}+5/8LiH+59/16H_{2}$	
LiBH ₄ - 1/4Mg(AlH ₄) ₂	11.5	89		$LiBH_4+1/4Mg(AlH_4)_2 \rightarrow 1/4MgAlB_4+1/4Al+3/4LiH+21/8H_2$	[43i]
LiBH4- 1/6Mg(AlH4)2	11.8	112		$LiBH_4+1/6Mg(AlH_4)_2 \rightarrow 1/6MgAlB_4+1/6LiAl+5/6LiH+3B+27/12H_2$	
LiBH ₄ -2ScH ₂	4.5	280	34.1	$ScH_2 + 2LiBH_4 \rightarrow ScB_2 + 2LiH + 4H_2$	[43k]
6LiBH ₄ -CeH ₂	4.6	260	44	$6LiBH_4 + CeH_2 \rightarrow CeB_6 + 6LiH + 10H_2$	[430]
6LiBH ₄ -LaH ₂	5.1	260	70	$6LiBH_4 + LaH_2 \rightarrow LaB_6 + 6LiH + 10H_2$	[430]
12LiBH4-2LaH3- 17MgH2	6.9	225		$12 LiBH_4 + 2LaH_3 + 17MgH_2 \rightarrow 2LaB_6 + 12LiH + 17Mg + 38H_2$	[43p]
LiBH ₄ -Li ₃ AlH ₆	8.5	160		$LiBH_4 + Li_3AlH_6 \rightarrow 1/2LiAl + 1/2AlB_2 + 7/2LiH + 13/4H_2$	[43q]
10LiBH ₄ -Ca(AlH ₄) ₂	8.8	150		$10\text{LiBH}_4+\text{Ca}(\text{AlH}_4)_2 \rightarrow \text{CaB}_6+2\text{AlB}_2+10\text{LiH}+19\text{H}_2$	[43r]
6LiBH ₄ -CaH ₂ - 3MgH ₂	8.0	290		$6LiBH_4 + CaH_2 + 3MgH_2 \rightarrow 6LiH + CaB_6 + 3Mg + 13H_2$	[44]
4LiBH ₄ -5Mg ₂ NiH ₄	4.8	250	15.4 ± 2	$4LiBH_4 + 5Mg_2NiH_4 \rightarrow 2MgNi_{2.5}B_2 + 4LiH + 8MgH_2 + 8H_2$	[45,46]
2LiBH ₄ -Ca(BH ₄) ₂ - 2MgH ₂	8.1	320	40.3	$Ca(BH_4)_2 + 2LiBH_4 + 2MgH_2 \rightarrow 1/3CaH_2 + 2/3CaB_6 + 2LiH + 2Mg + 26/3H_2$	[47]
12LiBH ₄ -Bi ₂ Te ₃	9.0	61		$12LiBH_4 + Bi_2Te_3 \rightarrow 3Li_2Te + 2Li_3Bi + 12B + 24H_2$	[51]
LiBH ₄ -2LiNH ₂	10.0	250		$LiBH_4 + 2 LiNH_2 \rightarrow Li_3BN_2 + 4 H_2$	[52a]
Li(NH ₃) _{4/3} BH ₄	17.8	135		$Li(NH_3)_{4/3}BH_4 \rightarrow 1/3 Li_3BN_2 + 2/3 BN + 4H_2$	[53]

 Table 1 Hydrogen storage properties of LiBH₄-based reactive destabilization systems

Catalytia Additives	Addition	H capacity	Tonset	E _a (kJ mol ⁻¹	Isothermal desorption	Def
Catalytic Additives	amount	(wt%)	(°C)	H ₂)	performance	Kel.
SiO ₂	25 wt%	9	~200	156 ± 20		[23]
Fe ₂ O ₃	66.7 wt%	~6	~100			[55a]
V_2O_5	66.7 wt%	~5.5	~100			[55a]
Nb ₂ O ₅	80 wt%	~4	~100			[55a]
TiO ₂	80 wt%	~3.5	~100			[55a]
TiCl ₃	10 mol%	6	100			[55b]
TiF ₃	10 mol%	8.5	~100			[55b]
ZnF_2	10 mol%	6	~120			[55b]
FeCl ₂	50 mol%	~18	~100			[55c]
CoCl ₂	50 mol%	~12	~100			[55c]
NiCl ₂	50 mol%	18.3	~100			[55c]
$(Ce,La)(Cl,F)_3$	25 mol%	3.05				[55d]
Ni	33 mol%	17.2	300			[55e]
TiF ₄	25 mol%	5.3	65			[56]
Ni supported on graphene	20 wt%	15.2	180		450 °C, 45 min, 12.8 wt% H	[57]
Ni supported by porous carbon	20 wt%	~15	180			[58]
Ti_3C_2 MXene	40 wt%	~9	120	70.3	350 °C, 1h, 5.37 wt% H	[60a]
Ce_2S_3	20 wt%	~7	250	157.82	400 °C, 3000 s, 4.0 wt% H	[60b]
NiFe ₂ O ₄	7 mol%	10.84	88			[60c]
As-prepared single-walled carbon nanotubes	30 wt%	12.3	280			[61]
Single-walled carbon nanotubes	30 wt%	12.3			450 °C, 90 min, 10 wt% H	[62]
Activated carbon	30 wt%	11.2			450 °C, 90 min, 10 wt% H	[62]
Graphite	30 wt%	9.9			450 °C, 90 min, 6.5 wt% H	[62]
Multi-walled carbon nanotubes	64 wt%	~5.5	210			[63]
Graphene	20 wt%	11.4	230	40	450 °C, 90 min, 9.2 wt% H	[65]
Three-dimensional porous Fluorinated graphene	20 wt%	10.01	204	130.87	400 °C, 1000 s , 3.45 wt% H	[66]
Porous Li ₃ BO ₃	33 wt%	~8	105		450 °C, 2000 s, 4.12 wt% H	[69]
Li ₃ BO ₃ -NbH	6 mol%	6.8	180	127.4	400 °C, 60 min , 6.8 wt% H	[70]

Table 2 Hydrogen storage properties of LiBH4 mixed with catalytic additives.

Scaffolds	Tonset/Tpeak (°C)	H Capacity (wt%)	E _a (kJ mol ⁻¹ H ₂)	Isothermal desorption performance	Method	Ref.
Nanoporous carbon scaffolds	230/381	3.7	103±4	300 °C, 12.5 wt% h ⁻¹	melt impregnation (280-300 °C)	[73]
Mesoporous carbon	200/335	6.0	-	300 °C, 90 min, 3.4 wt% H	MTBE assisted wet impregnation	[74]
Carbon nanotubes	75/-	0.27 ± 0.05	88±5		THF assisted wet impregnation	[75]
Highly ordered nanoporous carbon	220/342	7.5	-	-	melt impregnation (300°C, 60 bar, 30 min)	[76,77]
Activated carbon nanofiber	272/357	11.7 (referred to LiBH ₄)	-	-	melt impregnation (350 °C, 80 bar, 12 h)	[78]
PMMA-co-BM polymer matrix	80/105	8.8 (referred to LiBH ₄)		120 °C, 4 h, 0.74 wt% H	THF assisted wet impregnation	[79]
Porous hollow carbon nanospheres	200/356	8.3	93.9- 129.7	350 °C, 25 min, 8.1 wt% H	melt impregnation (300 °C, 100 bar, 30 min)	[80]
Cu-MOFs	75/110	$0.0048 \text{ mol g}^{-1}$			Ether assisted wet impregnation	[81]
Carbon nanocages	200/320	7.18	113.5	350 °C, 2250 s, 3.57 wt% H	melt impregnation (310 °C, 60 bar, 2 h)	[82]
Zeolite-templated carbon	194/336	13.4 (referred to LiBH ₄)	129.0	300 °C, 33.3 wt % h ⁻¹	melt impregnation (300 °C, 140 bar, 30 min)	[83]
Ordered mesoporous silica (SBA-15)	45/92	~11 (referred to LiBH ₄)	545	105 °C, 10 min, 8.5 wt% H	THF assisted wet impregnation	[84]
Double-layered carbon nanobowl	225/353	10.9	121.4	300 °C, 82.4 wt % h ⁻¹	melt impregnation (300 °C, 100 bar, 5-30 min)	[85]
Porous TiO ₂ micro-tubes	183/291	14.715	121.9	310 °C, 1 h, 2.47 wt% H	THF assisted wet impregnation	[86a]
Porous NiMnO ₃ microspheres	150/300	7.3	129.8	300 °C, 1 h, 2.8 wt% H	THF assisted wet impregnation	[86b]
Hierarchical Pporous ZnO/ZnCo ₂ O ₄ nanoparticles	169/275	8.7	120.22	300 °C, 60 min, 3.4 wt% H	THF assisted wet impregnation	[86c]
Ti ₃ C ₂	176.2/278.4,322.8	11.3	94.44	380 °C, 1 h, 9.6 wt% H	THF assisted wet impregnation	[86d]
Graphene	~200/346	~12	119.6	340 °C, 60 min, 9.7 wt% H	thermal treatment (120 °C, 3 days)	[87]

$\label{eq:table3} \textbf{Table 3} \ \text{Hydrogen storage properties of nanoconfined LiBH_4 systems}$

Catalytic Additives	Addition amount	H Capacity (wt%)	T _{onset} (°C)	E _a (kJ mol ⁻¹)	Ref.
TiCl ₃	2-3 mol%	8-10			[41]
TiCl ₃ / HfCl ₄ / ZrCl ₄ / VCl ₃	3 mol%		260		[88]
TiCl ₃	5 mol%	6-7	240		[88]
NiCl ₂	10 mol%	9.4	~275	$119.5 \pm 6.9 (MgH_2), 116.1 \pm 3.8 (LiBH_4)$	[89]
NbF ₅	5 mol%	8.1	350		[90a]
NbF ₅	9 wt%	8.31	~360		[90c]
TiF4	10 mol%	>9			[93b]
TiB_2/NbB_2	5 mol%	10		101.2-116.2 (MgH ₂), 104.6-105.1 (LiBH ₄)	[94]
CoNiB	10 wt%	10.8	180	137 (MgH ₂), 116 (LiBH ₄)	[95]
Pd	9 wt%	8.0	260		[97]
Ru supported on multiwalled carbon nanotubes	20 wt%	11	250-300		[98]
Fe	10 mol%	7	300		[99]
Nb_2O_5	16 wt%	7.4	~200	139.96 (MgH ₂), 156.75 (LiBH ₄)	[101]
Fe ₂ O ₃ +TiF ₃	10 wt%	9.6	110		[104]
BaTiO ₃	20 wt%	7.48	299	138.54	[105]
Single-walled carbon nanotubes	10 wt%	10	~300		[108]
multi-walled carbon nanotubes (MWCNTs)	LiBH ₄ :MWCNTs =1:1	12	250		[110]
multiwall carbon nanotubes decorated with TiO_2	15 wt%	6.8	355		[112]

Table 4 Hydrogen storage properties of catalyst-modified 2LiBH₄-MgH₂ system

System	Scaffolds	H Capacity (wt%)	T _{onset} (°C)	E _a (kJ mol ⁻¹)	Isothermal desorption performance	ΔH (kJ mol ⁻¹ H ₂)	Method	Ref.
2LiBH ₄ - MgH ₂	nanoporous carbon aerogel scaffold	4.7	~260	-	390 °C, 20 h, 3.9 wt%		MgH ₂ impregnation and LiBH ₄ melt infiltration	[114]
2LiBH ₄ - MgH ₂	nanoporous resorcinol- formaldehyde carbon aerogel scaffold	3.5	2~250	-	425 °C, 90 min, 90% of total capacity		melt impregnation (310°C, 60 bar, 90 min)	[115]
2LiBH ₄ -MgH ₂	Resorcinol- formaldehyde aerogel scaffolds	3.6	250- 300	89±2 (MgH ₂), 279±5 (LiBH ₄)	-	46.21	MgH ₂ impregnation and LiBH ₄ melt infiltration (310°C, 60 bar, 30 min)	[116]
2LiBH ₄ -MgH ₂	Carbon aerogel scaffold	3.9	200	124.8 (MgH ₂), 124.8(LiBH ₄)	320 °C, 2 h, 4.54 wt%		melt infiltration (310°C, 64 bar, 30 min)	[117]
2LiBH ₄ -MgH ₂	Graphene	9.1	235	-	400 °C, 40 min, 9.1wt%	39.2	solvothermal treatment, wet impregnation with THF as solvent	[118]
LiBH4-Mg2NiH4	templated carbon	3.4	100				melt infiltration (300°C, 100- 150 bar, 30 min)	[120]
LID114 ⁻¹ VI <u>8</u> 21NIII14	carbon aerogel	4.2	200		450 °C, 1.6 h, 3.8 wt%		melt infiltration (300°C, 100- 150 bar, 30 min)	[120]
LiBH4-LiAlH4	Activated carbon nanofiber	4.8	220	-	-	-	wet impregnation with THF and diethyl ether as solvent	[121]

 Table 5 Hydrogen storage properties of nanoconfined thermodynamically destabilized systems

2LiBH4-NaAlH4	Mesoporous carbon aerogel scaffold	2.48	<100	-	-	-	melt infiltration (310°C, 110 bar, 30 min)	[122]
LiBH4–MgH2–NaAlH	carbo n aerogel scaffold	3.0	150	-	-	-	melt infiltration (310°C, 100 bar, 45 min)	[123]
0.68LiBH ₄ - 0.32Ca(BH ₄) ₂	Mesoporous Carbon	5	230	-	-	-	melt infiltration (230°C, 3 bar, 30 min)	[124,12 5]
0.7LiBH4-0.3Ca(BH4)	CO ₂ -activated carbon aerogel	7.71	243	130	270~331 , °C 6.8 wt%		melt infiltration (230°C, 110-	[126]
	carbon aerogel scaffolds	3.36	~150	156	270~331°C, 3 wt%		130 bar, 30 min)	
0.62LiBH ₄ -0.38NaBH	carbon aerogel scaffolds	3.95	~200	116-118	-	-	melt infiltration (240°C, 140- 168 bar, 30 min)	[127]
0.725LiBH ₄ - 0.275KBH ₄	mesoporous CMK-3 type carbon	6.7	177	-	-	-	melt infiltration (125°C, 100 bar, 30 min)	[128]
0 55LiBH4-	nanoporous carbon aerogels	2.68	~150				melt infiltration (190°C, 110-	
$0.45 Mg(BH_4)_2$	CO ₂ -activated carbon aerogel scaffolds	7.64	~200				130 bar, 30 min)	[129]
LiBH ₄ -Mg(BH ₄) ₂	hollow carbon nanospheres	12	~200	165.1 ± 2.8	280 °C, 300 min, 10.8 wt%		melt infiltration (190°C, 60 bar, 1 h)	[130]

System	Scaffolds	Catalytic Additives	H Capacity (wt% H ₂)	T _{onset} /T _{peak} (°C)	E _a (kJ/mol)	Isothermal desorption performance	Method	Ref
LiBH ₄	porous carbon	Ni	10 (referred to LiBH ₄)	200/350		400 °C, 25 min, 3.5 wt%	melt infiltration	[132, 133]
LiBH ₄	activated carbon nanofibers	TiO ₂	5.2	~260/359			melt infiltration	[134]
LiBH ₄	active porous core– shell network structure	TiO ₂	9.8	220/316	91.56	320 °C, 60 min, 7.3 wt%	melt infiltration	[135]
LiBH ₄	Reduced graphene oxide (rGO) modified melamine foam	poly(methylmethacrylate)	11	94/-		250 °C, 25 min, 2.9 wt%	wet impregnation	[136]
LiBH ₄	carbon aerogels	CoNiB	15.9	192/320	46.39	350 °C, 30 min, 9.33 wt%	wet impregnation	[137]
LiBH ₄	activated carbon	CeF ₃	12.8	160- 180/320.1- 326.2	108	350 °C, 500 s, 11.8 wt%	melt infiltration	[138]
LiBH ₄	graphene	Ni	11.6	130/285	106	200°C, 600 min, 7.5 wt%	solvothermal process	[140]
2LiBH ₄ - MgH ₂	carbon aerogel	TiCl ₃	3.58	250/277		425 °C, 2 h, 3.5 wt%	melt infiltration	[141a]
2LiBH ₄ - MgH ₂	carbon aerogel	TiCl ₄	3.4	140/		425 °C, 0.5 h, 3.6 wt%	melt impregnation	[141b]
2LiBH ₄ - MgH ₂	carbon aerogel	ZrCl ₄	5.4	200/		425 °C, 5 h, 3.7 wt%	melt impregnation	[141c]

Table 6 Hydrogen storage properties of nanoconfined LiBH₄-based systems with various additives

This review covers the recent development of LiBH₄-based materials for hydrogen storage. Effective strategies for tailoring thermodynamics and kinetics of hydrogen cycling processes are summarized, including cation/anion substitution, reactive compositing, catalyst doping and nanoengineering. The challenges and the directions of future research are also analyzed and discussed.

Keywords: hydrogen, hydrogen storage, borohydrides, LiBH4, thermodynamics, kinetics

Wenxuan Zhang, Xin Zhang, Zhenguo Huang, Haiwen Li, Mingxia Gao, Hongge Pan, Yongfeng Liu*

Recent Development of Lithium Borohydride-based Materials for Hydrogen Storage

ToC figure

