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Abstract 14 

The fermentation process for wastewater treatment and H2 production simultaneously is gaining 15 

attention. In this study, machine learning (ML)-assisted procedures were used to analyze and 16 

model H2 production from wastewater by this process. Different ML-assisted procedures were 17 

assessed based on mean square error (MSE) and R2 to select the most robust models for 18 

modelling the fermentation process. The research showed that gradient boosting machine 19 

(GBM), support vector machine (SVM), random forest (RF) and AdaBoost were the most 20 

appropriate, which were optimized by grid search and deeply analyzed by permutation variable 21 

importance (PVI) to identify the relative importance of the variables. All four models 22 

demonstrated promising performances in predicting H2 productions with determination 23 

coefficient values of 0.893, 0.885, 0.902 and 0.889. The MSE of these models were 0.015, 24 

0.015, 0.016 and 0.015, respectively. Moreover, RF-PVI demonstrated better performance in 25 

variables’ relative importance showing that acetate (A), butyrate (B), A/B, ethanol, Fe and Ni 26 

have a higher importance in decreasing order. 27 

 28 
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1. Introduction 36 

The explosion of the world population and urbanization and industrialization have caused 37 

serious challenges in energy deficiency, freshwater shortage, and environmental pollution 38 

(Hosseinzadeh et al., 2021). Fossil fuels have long been the dominating source of energy 39 

generation, which has led to growing emission of various pollutants (e.g. NOx, CO, PM) and 40 

greenhouse gases (e.g. CO2) into the atmosphere resulting in deteriorating air quality and global 41 

warming (Hosseinzadeh et al., 2020b; Huang et al., 2019). Based on the reports (Alassi et al., 42 

2019; Mai-Moulin et al., 2021), renewable energy currently provides less than 25% of the total 43 

global energy requirement, which will be increased to more than half in 2040. Currently, 44 

bioenergy represents the highest portion of renewable energy (Gómez-Marín and Bridgwater, 45 

2021). In addition, wastewater and solid wastes are regarded as one of the main sources of 46 

health and environmental challenges (Alidadi et al., 2016; Zorpas, 2020). In order to tackle the 47 

current challenges, different technologies can be adopted, e.g. generating energy from 48 

renewable sources (Hosseinzadeh et al., 2021), sorting and recycling of solid wastes (Alidadi 49 

et al., 2016), and advanced oxidation processes for wastewater treatment (Bao et al., 2020a; 50 

Bao et al., 2020b; Kamranifar et al., 2021). Furthermore, developing technologies that can 51 

simultaneously address the mentioned problems is exciting and rewarding, supporting 52 

individual nations to meet the UN Sustainable Development Goals (Hosseinzadeh et al., 2021).  53 

Dark fermentation is when the microorganisms syntrophically treat wastewater and 54 

produce biohydrogen simultaneously (Sekoai et al., 2021). Therefore, the dark fermentation 55 

process can address all three challenges mentioned, i.e. energy deficiency, freshwater shortage 56 

and environmental pollution. As a sustainable process, it has received extensive attention owing 57 

to several merits, e.g. considerable capability in the consumption of various substrates, no need 58 

for light, cheap and simple reactor configurations, and the ability to produce biohydrogen under 59 

ambient temperature and pressure (Baeyens et al., 2020; Pradhan et al., 2016; Sekoai et al., 60 

2021). However, the performance of the process is affected by different operating conditions, 61 
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e.g. pH, temperature, substrate, process type, hydraulic retention time (HRT) and the 62 

metabolites produced during the process (Wong et al., 2014). Solution pH can influence the 63 

performance of the process through different ways, e.g. in the selection of a suitable microbial 64 

community (Toquero and Bolado, 2014; Zhao et al., 2015), maintaining surface charge on the 65 

microbial membrane simplifying the nutrient absorption by the microorganism and providing 66 

an appropriate environment for the enzymes’ activity catalyzing H2 production (Liu et al., 2012; 67 

Wong et al., 2014). Temperature can affect the physiological activities of the microorganisms 68 

in H2 production, and the higher the temperature, the lower the solubility of H2, and 69 

consequently, the lower the consumption of the produced H2 by H2 consumer microorganisms 70 

in the process (Wong et al., 2014). The type of substrate plays a crucial role in the H2 production 71 

by this process. Each mole of glucose and lactose can theoretically produce 12 moles and 23 72 

moles H2, respectively; however, the process is less efficient in practice (Wong et al., 2014). 73 

Most of the thermal enthalpies are consumed to produce volatile fatty acids (VFAs), the most 74 

important metabolites in this process. Correspondingly, the common maximum H2 production 75 

efficiency is 4 moles and 2 moles H2 per mole of glucose using the acetate and butyrate 76 

pathways. The acetate to butyrate ratio determines the type of the dominant H2 production 77 

pathway. If the ratio is more than one, the pathway will be via acetate; otherwise, the pathway 78 

will be via butyrate. Moreover, providing all co-factors by the substrate required for H2 79 

producing bacteria is another aspect of substrate effectiveness (Wong et al., 2014). For example, 80 

the hydrogenase enzymes catalyzing H2 are categorized into [Fe-Fe] and [Ni-Fe], based on the 81 

metals at their active sites. Therefore, Fe2+ and Ni2+ are two of the key ingredients of the 82 

enzymes used for H2 production, which should be provided by the substrates (Karadag and 83 

Puhakka, 2010). In addition, the loss of the adapted inoculum and avoiding the trace elements 84 

deficiency over the process are the other effective factors affected by the process mode, the 85 

hydraulic retention time (HRT) and the inoculum proportion (Cao et al., 2019; Li et al., 2020).  86 
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Therefore, optimizing the dark fermentation process is key to its success, which the 87 

experimental and numerical procedures can accomplish. The numerical modelling of the 88 

process is highly complementary and usually faster and more economical than the experimental 89 

approach. In comparison, there has been a wide range of experimental studies conducted to 90 

optimize the fermentation process. Yet, there is a lack of studies regarding the application of 91 

the modelling procedures in the fermentation process. In addition, to the best of our knowledge, 92 

there is no study yet to consider all of those parameters together to study the fermentation 93 

process, which is very important to pre-design the process before the experimental study. More 94 

importantly, the relative importance of the effective factors should be determined to support the 95 

experimental design and optimization of operating conditions, which will reduce the number of 96 

experiments for achieving the intended outcome.  97 

Machine learning (ML)-assisted approaches are vigorous techniques to learn and model the 98 

complicated correlations among the dependent and independent variables in various processes 99 

or phenomena. These approaches do not need to understand all complicated background 100 

mechanisms of the processes to master the potential correlations. Various types of such 101 

approaches can model different types of processes; however, the performances of these 102 

approaches can be different in various applications. So far, there is a major knowledge gap 103 

regarding the application of these approaches in H2 production from wastewater by the 104 

fermentation process. More importantly, there is no study to systematically investigate the 105 

application of various ML-assisted approaches in the fermentation process to select the most 106 

vigorous ones for modelling and analysis purposes.  107 

Therefore, this study aims first to apply different ML-assisted procedures, i.e. gradient 108 

boosting machine (GBM), support vector machine (SVM), random forest (RF), AdaBoost, 109 

multilayer perceptron (MLP), linear regression (LR) and Ridge in H2 production from 110 

wastewater through the fermentation process. Key parameters including Fe, Ni, biomass 111 

proportion, acetate (A), butyrate (B), A/B, ethanol, pH, HRT and COD are considered inputs 112 
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to select the more robust procedures, which are then used to carefully model and analyze the 113 

process. Finally, the performances of the chosen models will be compared using the outcomes, 114 

and the relative importance of the effective factors will be studied by permutation variable 115 

importance procedure. 116 

 117 

2. Materials and Methods 118 

2.1. Data collection and processing 119 

To model and analyze H2 production from wastewater by fermentation process, a detailed 120 

literature review was accomplished by considering a wide spectrum of factors, e.g. reporting 121 

the acetic and butyric acids proportions over the process, the presence of Fe and Ni as cofactors 122 

and enzymatic metals, comparable units presenting H2 production, the application of same 123 

inoculum in the process and the other operating condition in wastewater treatment by dark 124 

fermentation process. A schematic setup for the production of H2 from wastewater by dark 125 

fermentation process is presented in Fig. 1. Based on the literature search, 211 data points were 126 

selected and extracted from the published papers (Dessì et al., 2020; Karadag and Puhakka, 127 

2010). The extraction of the experimental data was carried out by Plot Digitizer. In addition, 128 

experimental data were normalized to a range of 0-1, using Eq. 1, to avoid overfitting and reduce 129 

the computation complexity (You and Zhang, 2017): 130 

Normalized value (𝑋𝑋) =  xi−minimum value of data
maximum value of data −minimum value of data

× (1 − 0) + 0.1         (Eq. 1) 131 

where 𝑥𝑥𝑖𝑖 is any data. 132 

 133 
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 134 

Fig. 1. Schematic setup for H2 production from wastewater by dark fermentation (Dessì et al., 135 

2020). 136 

 137 

2.2. Pearson correlation coefficient 138 

In order to compute the linear correlation or relation validity between two parameters affecting 139 

the H2 production in the fermentation process, the Pearson correlation coefficient (r) was used. 140 

Pearson correlation coefficient was calculated by Eq. 2 (Hasheminasab et al., 2020). 141 

    𝑟𝑟𝑥𝑥𝑥𝑥 = ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)(𝑌𝑌𝑖𝑖−𝑌𝑌�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�)2𝑛𝑛

𝑖𝑖=1

                                                     (Eq. 2) 142 

where Y and X are the peer parameters,Y andX are the means of the peer parameters studied 143 

for their linear correlations, and n is the sample size. 144 

 145 

2.3. Selection of ML-assisted procedures and modelling generality 146 

Regarding the Occam’s Razor’s principle stating that “a model should be as simple as possible, 147 

and as complex as needed” (Baeten et al., 2018), along with the different performances of the 148 
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various ML-assisted procedures in different applications (Hosseinzadeh et al., 2020a; 149 

Hosseinzadeh et al., 2020c; Zaghloul et al., 2021), the selection of the most appropriate 150 

procedures will be crucial. Therefore, seven ML-assisted procedures, including gradient 151 

boosting machine (GBM), support vector machine (SVM), random forest (RF), AdaBoost, 152 

multilayer perceptron (MLP), linear regression (LR) and Ridge from Scikit-learn library were 153 

pre-screened by considering the default hyperparameters which may be obtained from to find 154 

the more proper approaches. The mean square error (MSE) and determination coefficient (R2) 155 

were used to evaluate the outcomes of pre-screened approaches. To pre-screen and conduct 156 

deeply modelling, all datasets were randomly partitioned into training datasets (80%) and test 157 

datasets (20%). To avoid wasting the data and overfitting, cross-validation with 5-folds was 158 

used to check the validation of the developed models. The test dataset was applied to monitor 159 

the generalization performance of the developed model (Serfidan et al., 2020). To tune the 160 

hyperparameters, a grid search was defined for each of the selected procedures. Finally, the 161 

tuned hyperparameters were used in developing and testing the models. MSE (Eq. 3) and R2 162 

(Eq. 4) were used to assess and choose each procedure's most proper developed models. It is 163 

worth highlighting that the average of the statistical indices in all folds was considered to 164 

evaluate the performances of the validation phase over the modelling process.  165 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ �𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1                                               (Eq. 3) 166 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖)𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖−𝑦𝑦𝑚𝑚)𝑁𝑁
𝑖𝑖=1

                                                        (Eq. 4) 167 

where yprd,i  nnd  𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖  are the predicted and real proportions of H2 production, consecutively; ym is the 168 

mean of real H2 production, and N is the total number of data points. 169 

 170 

2.4. Support vector machine (SVM) 171 

SVM was proposed by Cortes and Vapnik as a supervised and well known machine learning 172 

approach designed according to the minimization of the structural risk and the theory of 173 

statistical learning (Cortes and Vapnik, 1995). This approach has been efficaciously applied for 174 
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different applications, e.g. regression problems, text detection, troubleshooting and image 175 

retrieval. There are three different layers in the SVM structure network, i.e. input, hidden and 176 

output layers (Zendehboudi et al., 2018). The independent and dependent variables are located 177 

in the input and output layers, respectively. In the hidden layer, kernels are defined as a 178 

collection of the mathematical functions getting the inputs and converting them into the 179 

required forms. SVM algorithms make benefit from various types of kernels. Finding a 180 

hyperplane through nonlinear mapping to properly train the model/classify the data is the key 181 

gist of this procedure. The nonlinear input area is transferred into a high dimensional feature 182 

space. According to the reports, SVM has demonstrated better performance than the 183 

conventional statistical models in all regression analysis, pattern recognition and classification 184 

fields. When SVM is used for regression and function approximation, it is called support vector 185 

regression (SVR). General kernel functions, e.g. linear, radial basis function (rbf), and 186 

polynomial (poly) are commonly applied in various SVMs (Zendehboudi et al., 2018).  187 

The independent variables were regarded as the inputs to develop an SVR model for H2 188 

production from wastewater by the dark fermentation process. The generality of the modelling 189 

was based on the condition in section 2.2. However, to tune the hyperparameters and selection 190 

of the best kernel, a grid search was defined to tune and optimize all the hyperparameters, i.e. 191 

C (1, 100 and 50), epsilon (0.01, 0.1, 0.15, 0.3, 0.8, 1 and 2), and degree (2, 3, 4 and 5), to find 192 

the best condition of the hyperparameters for each of the kernels. Then, the tuned 193 

hyperparameters along with the related kernel were used to develop the models. In the end, the 194 

most appropriate one was selected.   195 

 196 

2.5. Gradient boosting machine (GBM) 197 

GBM is an ensemble and powerful supervised machine learning approach proposed first by 198 

Friedman and can model and analyze data for regression and classification problems (Cai et al., 199 

2020; Friedman, 2001). In GBMs, which are from the decision tree category, there are three 200 
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elements, i.e. weak and strong learner, loss function and additive model. The weak or base 201 

learner is introduced as the initial decision trees, having at least rarely better prediction strength 202 

than the random guess; the strong one is a learner whose performance in prediction is 203 

considerable and created with a combination of several weak learners. GBMs use training 204 

decision trees in a gradual, additive and serial method to model and analyze the processes by 205 

boosting the weak learners into the strong ones. In order to reduce the total error or loss function, 206 

new weak or base learners are added and trained to decrease the error of the model. Meanwhile, 207 

the present weak learners in the model will not be altered (Grillone et al., 2020; Nguyen et al., 208 

2021). To develop a GBM for this process, a grid search was employed to find the best condition 209 

of the hyper-parameters in a grid. Although finding the hyperparameters’ proper proportions in 210 

a grid sometimes needs unacceptable time, it can assure to find the optimal conditions of the 211 

hyper-parameters (Zhou et al., 2021). Some of the main hyper-parameters considered in this 212 

procedure were the number of gradient boosted trees (n_estimator), a minimum number of 213 

samples per leaf (min_samples_leaf) and required to split an internal node (min_samples_split), 214 

maximum depth of trees of GBM (max_depth) and the number of features for best split 215 

(max_features). These parameters were tuned in the ranges (100-1000), (2, 3, 4, 5, 6 and 7), (2, 216 

3, 4, 5, 6 and 7), (1, 2, 3, 4 and 5) and (2, 3, 4, 5, 6 and 7) consecutively. 217 

 218 

2.6. Random Forest (RF) 219 

RF is a supervised machine learning approach that models both classification and regression 220 

phenomena (Li et al., 2018), which Breiman first proposed to work according to the regression 221 

trees (Ma and Cheng, 2016). RF produces a wide range of decision trees as a function of 222 

regression so that the ultimate proportion of the response variable is the mean of all decision 223 

trees (Li et al., 2018). As a single regression tree is insufficient to develop a proper model in 224 

most items, the RF algorithm was suggested to resolve the problem (Ma and Cheng, 2016). In 225 

developing the RF model, the generality of the modelling was conducted based on section 2.2 226 
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and in a grid search. The hyperparameters, i.e. number of gradients boosted trees (n_estimator), 227 

a minimum number of samples per leaf (min_samples_leaf) and required to split an internal 228 

node (min_samples_split) and the number of features for best split (max_features) were tuned 229 

in the ranges (100-1000), (1, 2, 3, 4, 5, 6, 7 and 8), (0.5, 1 2, 3, 4, 5 and 6) and (2, 3, 4, 5, 6, 7 230 

and 8) consecutively. 231 

 232 

2.7. AdaBoost 233 

The AdaBoost procedure can be applied for classification and regression problems (Min and 234 

Luo, 2016). This procedure is classified as an ensemble machine learning based on finding a 235 

promising predictor from a number of weak predictors (Min and Luo, 2016). The generality of 236 

the AdaBoost model development for this process was according to the mentioned condition in 237 

section 2.2. However, to tune the hyperparameters and selection of the best loss function, a grid 238 

search was defined to tune and optimize all the hyperparameters, i.e. several gradients boosted 239 

trees (n_estimator) and learning rate in the ranges (20-500) and (0.1, 0.5, 1, 2, 3, 4 and 5) 240 

respectively. In addition, like all three other models (SVR, GBM and RF), the learning curve 241 

were prepared to show the goodness of fit of the models. 242 

 243 

2.7. Variable importance evaluation 244 

Permutation variable importance (PVI) proposed by Breiman (2001) is a procedure to inspect 245 

any fitted model in the tabular data. This procedure considers the developed model's errors in 246 

predicting the output with a random permutation of the considered input. So that the more the 247 

errors, the more the importance of the feature (Mohammadifar et al., 2021). Regarding the 248 

errors, MSE was used to measure the relative importance of the features.  There are various 249 

merits for PVI procedure, e.g. fast and easy to calculate, a general method, considering both 250 

individual and interactive effects of each variable (Altmann et al., 2010; Antoniadis et al., 2021; 251 

Wei et al., 2015). To identify the relative importance of the input variables in H2 production 252 
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from wastewater through dark fermentation process, PVI procedure was used for all the 253 

developed GBM, SVR, RF and AdaBoost models.  254 

 255 

2.8. Comparison of model performance 256 

Four statistical indices, determination coefficient (R2), MSE and MAE (Eq. 5) were used to 257 

compare the performances and strengths of the developed SVR, GBM, RF and AdaBoost 258 

models to predict the H2 production from wastewater by the fermentation process. It is worth 259 

mentioning that the test datasets were used to calculate the mentioned statistical parameters.  260 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1− ∑ |𝑦𝑦𝑖𝑖−𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                    (Eq. 5) 261 

where 𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖  and n are predicted value, actual value and total number of data points, 262 

respectively.  263 

 264 

3. Results and discussion 265 

3.1. Selection of ML-assisted procedures 266 

The performances of various ML-assisted procedures in modelling H2 production from 267 

wastewater using dark fermentation were assessed, with their results presented in Table 1. 268 

Based on the statistical indices' values indicating the models' prediction strengths (Table 1), 269 

GBM, SVR, RF and AdaBoost were selected as the most efficient modelling procedures. 270 

Furthermore, various studies demonstrate promising performances of GBM, SVR, RF and 271 

AdaBoost in different applications (Almuhtaram et al., 2021; Thompson and Dickenson, 2021; 272 

Xia et al., 2020; Xing et al., 2019). Therefore, these four procedures were used in this study to 273 

model the H2 production by fermentation process deeply. 274 

 275 

 276 

 277 
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Table 1. Performances of different ML-assisted procedures in modelling H2 production during 278 

dark fermentation process 279 

 GBM RF AdaBoost SVR MLP LR Ridge 

Total-Train R2 0.985 0.976 0.910 0.853 0.737 0.766 0.750 

Total-Test R2 0.802 0.805 0.805 0.734 0.685 0.693 0.670 

Train MSE 0.002 0.004 0.014 0.023 0.038 0.037 0.040 

Test MSE 0.023 0.023 0.023 0.032 0.038 0.037 0.039 

 280 

3.2. SVR 281 

3.2.1. Kernel selection and tunning the hyperparameters  282 

To select the most appropriate kernel, the different conditions of the hyperparameters were 283 

tuned by grid search with each mentioned kernels. All values of the tuned hyperparameters and 284 

their MSE and R2 values in different modelling phases are listed in Table 2. As can be observed, 285 

rbf was shown as the best kernel with C, degree and epsilon of 11, 2 and 0.01 consecutively. 286 

The MSE and R2 of the training and validation phases were 0.021 and 0.864, and 287 

0.024 and 0.845 correspondingly. 20% of the unseen data points regarded as the test dataset 288 

were used to test the performance of the developed model in H2 production by fermentation 289 

process as well. As observed in Table 2 and Fig. 2, the prediction strength of this model was 290 

88.5%, with an MSE of 0.016. Moreover, the prediction strength of the SVR model in the test 291 

phase showed the considerable performances of this model in this field. In addition, Chen et al. 292 

(2015) used SVM to model the production of iturin A through the fermentation process. Using 293 

asparagine concentration, glutamic acid and proline as inputs, they introduced SVM as a proper 294 

model with a relatively low root MSE of 466.13, which agrees with the present study.  295 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/asparagine
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 296 

Fig. 2. The presentation of the SVR model. a) correlation coefficient of the model in test 297 

phase, b) learning curve of the developed model, and c) prediction strength of the model in 298 

test phase.299 
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Table 2. SVR model outcomes using various kernels with tuned hyperparameters 

 Tuned hyper-parameters by grid search  Determination coefficient (R2)  MSE 

C degree epsilon  Train validation Total-Train Test  Train validation Total-Train Test 

Linear 91 2 0.15  0.747 0.713 0.746 0.745  0.038 0.043 0.039 0.035 

rbf 11 2 0.01  0.864 0.845 0.863 0.885  0.021 0.024 0.021 0.016 

poly 21 2 0.01  0.856 0.814 0.855 0.874  0.021 0.029 0.022 0.017 
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3.2.2. SVR learning curve  

Underfitting and overfitting are two main problems, which can be observed in models 

developed by machine learning procedures. In underfitting, the model cannot learn the process, 

while overfitting is more complicated, according to which the generalizability of the model will 

not be acceptable; that is, the developed model only memorizes the train dataset and cannot 

predict the unseen dataset (Bejani and Ghatee, 2021). Since demonstrating the fact that there is 

no underfitting and overfitting in the developed models is regarded as a very important part of 

the modelling process, the learning curve, which is deemed as an effective tool to show 

underfitting/overfitting/good fitting condition of the models was provided for the developed 

model. The learning curve is an efficient tool showing the performance of the model in training 

and validation phases over different epochs (Braga et al., 2019). The learning curve of the SVR 

model in train and validation phases are depicted in Fig. 2. Based on which MSEs of the 

validation decreased approximately to epoch 70, followed a stable and consistent condition with 

a small gap with train minimum MSEs pointing out that there is no overfitting and underfitting. 

 

3.3. GBM  

To develop the GBM, the considered hyperparameters, i.e. number of gradient boosted trees, 

maximum depth of trees of GBM, number of features for best split, a minimum number of 

samples per leaf, minimum number of samples per split were tuned in a grid search, and the 

obtained best condition of these parameters were 100, 5, 6, 3 and 6 respectively. With respect 

to this condition, the training and cross-validation were conducted, and the R2 values (0.996 

and 0.813) and MSE values (0.0005 and 0.027) were obtained for these two phases 

correspondingly. The obtained R2 for the total train (train and validation) along with the test 

phases were 0.995 and 0.893, and MSEs of 0.0008 and 0.015, respectively, showing that the 

model has considerable prediction strength (89.3%) in H2 prediction from wastewater by the 

fermentation process. Fig. 3 depicts the test dataset's fitting condition in the model's test phase, 
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demonstrating promising prediction strength of the model. In addition, Zhuang et al. (2021) 

applied GBM to model a membrane bioreactor performance in COD, NH4-N and TN removal. 

Their GBM model could show a considerable performance with R2 of 0.847, 0.792 and 0.851 

correspondingly. Therefore, these findings show the considerable potential of GBM in different 

applications. 

 

 

Fig. 3. The presentation of the GBM model; a) correlation coefficient of the model in test 

phase; b) learning curve of the developed model, and c) prediction strength of the model in 

the test phase. 

 

In addition, in order to check the good fitting condition of the model and showing there is 

no overfitting in the model, as observed in Fig. 3, the MSEs of the training and validation phases 

experienced a decreasing trend with the same pattern with a small gap between themselves 



18 
 

pointing out that there is no overfitting. Approximately from epoch 60 there is a constant and 

stable condition in the MSEs of these phases. 

 

3.4. RF 

The hyperparameters were tuned in a grid search to construct an RF model. Following 

optimization, the appropriate conditions were determined to be 7, 1000, 1 and 2 for the number 

of features for best split, several gradients boosted trees, a minimum number of samples per 

leaf, and a minimum number of samples per split, respectively. Regarding the conditions 

attained, the R2 and MSE for the training phase (0.973, 0.004) and validation phase (0.823, 

0.025) were obtained in the same order. The attained R2 for the total train (train and validation) 

coupled with the test phases were 0.975 and 0.902, with MSE of 0.004 and 0.016, 

correspondingly demonstrating that the model has considerable prediction strength (86.3%) in 

H2 prediction from wastewater by the fermentation process. Fig. 4 depicts the fitting condition 

of the test dataset in the test phase of the model. All of the provided information presents an 

acceptable model for this process. 

In addition, as observed in Fig. 4, the MSE of the various epochs during training and 

validation phases approximately experienced a decreasing trend and showed that there is no 

overfitting on the developed RF model. It can be seen that these MSEs follow the same pattern 

with a minimum gap between themselves for training and validation phases from almost epoch 

60, pointing out that the prediction strengths and errors of the condition in these two phases 

experience stability and consistency.   
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Fig. 4. The presentation of the RF model; a) correlation coefficient of the model in test phase; 

b) learning curve of the developed model, and c) prediction strength of the model in test 

phase. 

 

3.5. AdaBoost  

3.5.1. Loss function selection and tunning the hyperparameters  

To select the most appropriate loss function, the mentioned different conditions of the 

hyperparameters were tuned by grid search with each mentioned loss function. All values of 

the tuned hyperparameters and their MSE and R2 values in different modelling phases have 

been listed in Table 3. As can be seen, linear was the best loss function with n_estimator and 

learning rate of 200 and 0.1, respectively. The MSE and R2 of the training and validation phases 

were (0.014 and 0.027) and (0.901 and 0.801) correspondingly. 
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Table 3. AdaBoost model outcomes using various loss functions with tuned hyperparameters  

 Grid search (R2) 

Train 

(R2) 

validation 

(R2) 

Total-

Train 

(R2) 

Test 

MSE 

Train 

MSE 

validation 

MSE 

Total-

Train 

MSE 

Test n-estimator learning 

rate 

Linear 200 0.1 0.901 0.801 0.889 

 

0.888 0.014 0.027 0.015 0.023 

Square 80 1.0 0.911 

 

0.816 

 

0.909 

 

0.844 

 

0.012 0.025 

 

0.013 

 

0.029 

 

Exponential 260 0.1 0.914 0.813 0.906 0.847 0.013 0.027 0.014 0.024 
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Like the previous models, 20% of the unseen data points regarded as the test dataset were 

used to test the performance of the developed model in H2 production by the fermentation 

process. As observed in Table 3 and Fig. 5, the considerable prediction strength of this model 

in the test phase was obtained 87.4% with an MSE of 0.023. In addition, Thompson and 

Dickenson (2021) applied AdaBoost to detect de facto reuse in water. In a way that TOC, 

turbidity, temperature, ORP, conductivity, pH, UVA254 and tryptophan-like fluorescence were 

used as inputs to model the quality of a surface water resource before intake for drinking 

purpose to produce proper alerts for the operators to perform required actions to intake water 

with better quality. The model developed could successfully work with an accuracy of more 

than 99%, demonstrating the high potential of AdaBoost in other different applications.  
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Fig. 5. The presentation of the AdaBoost model; a) correlation coefficient of the model in test 

phase; b) learning curve of the developed model, and c) prediction strength of the model in 

test phase. 

 

Furthermore, the learning curve of the developed AdaBoost model (Fig. 5) points out the 

training and validation learning condition of the developed model in different epochs, 

representing no overfitting in the developed model. 

 

3.6. Relative importance of the variables 

The obtained relative importance of the variables by PVI procedure in the developed GBM, 

SVR, RF and AdaBoost is demonstrated in Fig 6. As observed, different importance values w 

were obtained for the inputs by PVI of each of these four models. Regarding the results, ethanol 

shows more importance in H2 production from wastewater by the dark fermentation process, 

which can be completely justified. In strict anaerobic processes, solventogenesis and 

acidogenesis are two main pathways producing solvent, e.g. ethanol, and acid, e.g. acetate and 

butyrate, respectively. Since ethanol as a solvent can undesirably affect some of the H2 

producing bacteria, and solventogenesis is not a friendly pathway for H2 production,  the 

considerable importance of this variable can completely be reasonable (Wong et al., 2014). In 

addition, the demonstrated higher importance of A/B ratio and acetate and butyrate by the SVR-

PVI and RF-PVI can be justified because A/B ascertains whether the fermentation pathway is 

acetate or butyrate one. The proportion of the produced H2 from one mole glucose in the acetate 

pathway is two folds higher than that of the butyrate one (Liu et al., 2006; Wong et al., 2014). 

Regarding the importance of Fe and Ni as cofactors of the H2 production pathways in the dark 

fermentation process, since [Fe-Fe] and [Ni-Fe] are two groups presented in the H2 catalyzing 

enzymes, basically, it seems that the higher importance of the Fe can be more justifiable than 

Ni (Karadag and Puhakka, 2010). However, it is obvious that the considerable importance of 



23 
 

biomass, COD and pH cannot be ignored in the dark fermentation process because, without 

biomass and COD, the biological activity leading to H2 production will not be possible. At 

alkaline pH, hydrogen-producing bacteria will not properly activate and produce H2 (Durán et 

al., 2020). The less importance of these three variables in Fig. 5, especially in RF-PVI, can be 

attributed to the fact that the optimum range of pH, COD and biomass in the dark fermentation 

process have been cleared. Most researchers consider the optimum condition, so there is a limit 

range of values for these variables resulting in these outcomes. Therefore, among all these four 

analyses, RF-PVI and SVR-PVI procedures pointed out more accurate conditions in 

comparison to the others. Overall, RF-PVI can be more better option than SVR-PVI as well.  

 

Fig. 6. Permutation variable importance through a) GBM; b) SVR; c) RF; d) AdaBoost 

models  

3.7. Comparison of the models 
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In order to assess the performances of the developed models, i.e. GBM, SVR, RF and 

AdaBoost, three various statistical indexes showing the strengths of the models in H2 

production from wastewater by fermentation process were employed. Based on the results in 

Table 4, approximately all four developed models pointed out the same strengths; however, 

there were a few differences between these models. From the errors, both MSE and MAE, SVR 

had the lowest one followed by GBM, RF and AdaBoost with increasing order. The residual 

errors of these models in the test phase are presented in Fig 7. Furthermore, regarding the R2 of 

these models, RF showed rarely better performance than the others did. Generally with 

considering both R2 and errors, SVR and GBM and RF demonstrated promising performance 

compared to the AdaBoost one.  

 

Table 4. Performance comparison of GBM, SVR, RF and AdaBooost models developed for 

H2 production from wastewater by fermentation 

Models Statistical indices 

R2 MSE MAE 

GBM 0.893 0.015 0.097 

SVR 0.885 0.015 0.092 

RF 0.902 0.016 0.098 

AdaBoost 0.889 0.015 0.117 
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Fig. 7. The residual errors of the developed GBM, SVR, RF and AdaBoost models in prediction 

of H2 production from wastewater by fermentation process. 

 

 

3.8. Pearson correlation coefficient 

This analysis shows the linear relationships between the variables. However, it is worth 

highlighting that if the correlation of both variables considered is input, the R will be near 0; 

however, the opposite statement is incorrect (Nguyen et al., 2021). As shown in Fig. 8 pointing 

out colour map correlation matrix and pair-wise scatter correlation plots of the variables, Fe 

and Ni have a strong negative correlation showing that the more the biomass, the more the 

consumption of the Fe and Ni. It is clear that the correlation between the Fe-biomass with 0.27 

is rarely higher than the Ni-biomass correlation, which can be attributed to the fact that the 

enzymes catalyzing the biohydrogen production are [Fe-Fe] and [Ni-Fe] groups requiring more 

Fe than the Ni (Karadag and Puhakka, 2010). Furthermore, the strong negative correlation 

between the pH and COD can be observed because the more the COD, the more the production 

of the VFAs reduces the pH.  
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Fig. 8. Correlation coefficients of the independent variables affecting H2 production from 

wastewater in the fermentation process. 

 

4. Conclusions 

H2 production from wastewater by dark fermentation process is regarded as an interesting 

process. Seven different types of machine learning approaches were pre-screened to model this 

process to find the most appropriate ones for this application. Based on the results, the SVR, 

GBM, RF and AdaBoost were selected and deeply model this process. The results showed that 

all four developed models showed approximately the same performance to the dark 

fermentation process of H2 production from wastewater. Regarding permutation relative 

variable importance, the RF-PVI demonstrated better outcomes, based on which acetate, 

butyrate, A/B ratio, ethanol, Fe and Ni were identified as the most important ones with a 

decreasing order.   
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