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Abstract 

 

We develop a return variance decomposition model to separate the role of different types of information 

and noise in stock price movements. We disentangle four components: market-wide information, private 

firm-specific information revealed through trading, firm-specific information revealed through public 

sources, and noise. Overall, 31% of the return variance is from noise, 37% from public firm-specific 

information, 24% from private firm-specific information, and 8% from market-wide information. Since the 

mid-1990s, there has been a dramatic decline in noise and an increase in firm-specific information, 

consistent with increasing market efficiency.  
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The issue of what drives stock price movements is a fundamental question in finance with implications for 

understanding risk, informational efficiency, and asset pricing. By understanding the stock return 

generating process, researchers can address questions such as whether private information is more 

important than public information, whether the role of market-wide information is increasing or decreasing 

over time, or how much noise is in stock price movements. A methodology for measuring the return 

generating process is also useful for evaluating the impacts of recent phenomena such as the growth in 

passive investing and algorithmic trading, among others. This paper develops a new tool that allows stock 

returns to be decomposed into various information components while simultaneously allowing for price 

changes to occur due to non-informational reasons.  

There are currently two dominant approaches to decomposing the drivers of stock price changes. One 

approach exploits the canonical discounted cash flow valuation model to divide a return series into cash 

flow and discount rate related return components (Campbell and Shiller, 1988a, 1988b; Campbell, 1991). 

The second decomposes returns into market-wide news and firm-specific news using the 𝑅2 from a 

regression of stock returns on market returns (Morck, Yeung, and Yu, 2000).  

The existing decompositions have limitations, which we overcome with the variance decomposition 

developed in this paper. The first limitation of existing decompositions arises from ignoring the role of 

noise in stock returns. Noise can distort the existing measures. For example, an improvement in market 

efficiency from a reduction in idiosyncratic noise in prices will increase the 𝑅2 measure, yet an increase in 

the 𝑅2 is usually interpreted as a decrease in market efficiency. The second limitation is the inability of 

existing methods to disentangle information into more refined categories.  

We propose a new return variance decomposition model that explicitly accounts for noise and 

partitions information into various sources. For example, in the baseline model, we decompose the 

information in stock returns into market-wide information, firm-specific information revealed through 

trading on private information, and firm-specific information revealed through public news. The framework 

can be easily extended to further decompose the information components into cash flow and discount rate 
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sub-components or other partitions. Our approach allows for a more nuanced understanding of the specific 

sources of information that is impounded into stock prices along economically meaningful dimensions.  

The empirical model that we propose is based on the permanent-transitory decomposition of 

Beveridge and Nelson (1981), which has been used in applications ranging from low-frequency 

macroeconomic business cycles to intraday analysis of financial markets. The intuition for how our 

decomposition works is as follows. First, in the baseline model we use a vector autoregression (VAR) to 

measure how a stock’s return responds to three shocks including (i) market returns, (ii) firm-specific order 

flow, and (iii) other firm-specific shocks captured in the stock return residual. We use the VAR impulse 

response functions to estimate the stock’s dynamic price response to each of these shocks. For example, a 

sudden burst of unexpected buying of a stock typically causes the stock price to temporarily overreact 

(referred to as “price pressure”) and then subsequently revert to a new equilibrium level through time. For 

each shock, we trace forward the price adjustment process until the price stabilizes. That point provides an 

estimate of the long-run effect of the shock once the transient effects, including underreaction or 

overreaction, have dissipated. These long-run impacts, which are the permanent components in the 

Beveridge and Nelson (1981) decomposition, provide estimates of the information in each shock. For 

example, the long-run impact of a shock to market returns is the estimated market-wide information in that 

shock. Similarly, the long-run impact of a shock to firm-specific order flow or a shock to firm-specific 

returns not associated with order flow (the stock return residual) is the estimated firm-specific private 

information and the firm-specific public information contained in those shocks, respectively. Conversely, 

the transient returns from each shock, which cause prices to depart from their efficient or equilibrium levels, 

make up the estimated noise in prices.  

We estimate the model using daily returns on all common stocks listed on the NYSE, AMEX, and 

NASDAQ between 1960 and 2015, performing the variance decomposition separately for every stock in 

every year. Overall, we find that roughly 31% of daily return variance is noise. Firm-specific information 

accounts for the majority (61%) of stock return variance, with market-wide information accounting for the 

remaining 8% of variance in the full sample. We further partition firm-specific information and find that 
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public firm-specific information plays a larger role than private firm-specific information that is impounded 

into prices through trading (37% and 24% of variance, respectively). While the estimates suggest that noise 

makes up an economically meaningful share of daily stock return variance, the estimate is substantially 

lower than estimates of noise at intra-day horizons (82%).1  

We find substantial time-series variation in the components of variance. Our results indicate that 

market efficiency is not static, but rather it is dynamic and the dynamics are heavily influenced by the 

environment.2 Some key trends stand out. First, noise increases from the 1970s to the mid-1990s, 

particularly around a period of collusion by dealers that widened bid-ask spreads. The subsequent decline 

in noise corresponds to a period of general improvement in liquidity and exogenous decreases in tick sizes 

(minimum price increments). Separating the sample by firm size shows that the noise component decreases 

monotonically with firm size. Larger firms have less noise in their prices, as expected. When separating the 

sample by industry we observe only minor fluctuations in the different components of variance, suggesting 

that the findings are not specific to a particular industry, nor are they driven by a certain segment of the 

economy. 

Second, the role of firm-specific information has increased through time, driven largely by increases 

in the amount of public firm-specific information that is reflected in prices. This trend is consistent with 

increasing informational efficiency through time, which one may expect given a variety of regulations such 

as the Regulation Fair Disclosure (2000) and the Sarbanes Oxley Act (2002) that have increased the quality 

and quantity of corporate disclosure.  

Third, while market-wide information tends to spike during crises, at other times it is generally not 

a substantial driver of individual stock returns and typically accounts for around 5–15% of stock return 

variance. The time-series results shed some light on recent concerns that the rapid growth in passive 

investing could harm the firm-specific information in stock prices (e.g., Cong and Xu, 2017) and so too 

 
1 Extrapolating from Hasbrouck (1991b, 1993) for the year 1989. 
2 Because we re-calculate the decomposition each year for each stock, our measure is able to vary along with changes 

in market structure.  
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could the growth in high-frequency trading (e.g., Baldauf and Mollner, 2020). Our results indicate that the 

proportion of firm-specific information in prices has continued to increase throughout the period of growth 

in passive investing and algorithmic trading. 

We validate the results from our methodology by conducting four tests. First, we test hypotheses of 

how the variance components are expected to relate to various stock characteristics. Second, we examine 

the effect of exogenous tick size reductions on information and noise. Third, we examine how exogenous 

shocks to analyst coverage impact public firm-specific information. Finally, we examine mutual fund 

trading shocks driven by investor redemptions and how they impact noise and information. In all four tests 

our results comport to the well-documented results in the literature, providing support that the measures 

behave as we expect. We also compare our information measures to the Hou and Moskowitz (2005) delay 

measure and the French and Roll (1986) variance ratio and find again that our measures behave as expected.  

Being able to accurately measure the amount and type of information in asset prices is vital to 

understanding the impacts of recent trends and innovations in finance. This paper makes a methodological 

contribution to the literature by developing a richer and more general variance decomposition that allows 

the separation of variance into multiple information and noise components. In decomposing information, 

the key assumptions in our baseline model are that market returns capture market-wide information, 

allowing for noise, and that the permanent impact of trading in the stock captures private information, also 

allowing for noise. While these assumptions follow the theoretical and empirical literature3, they are 

debatable and researchers can use the framework with alternative assumptions, leading to different 

information components. Incorporating alternative assumptions is simply a matter of changing the empirical 

shock proxies in the VAR. For example, public information can cause price changes independent of trading 

and price changes due to trading on the public information. Whether the latter should be regarded public or 

private information is a subjective matter—one interpretation (the one taken in this paper’s decomposition) 

 
3 For example, in market microstructure theory models (e.g., Kyle, 1985; Glosten and Milgrom, 1985) the permanent 

price impact of signed trading volume reflects private information, and this notion is used in empirical models that 

separate public and private information, such as Hasbrouck (1991a, 1991b). 
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is that the trading reveals private interpretations of the public information and is therefore counted as private 

information, yet another interpretation is that because the trading was triggered by public information its 

impact should be labelled public information. Also, the framework can be easily adapted to other 

information partitions also by changing the empirical shock measures in the VAR.  

Methodologically, our paper is related to Hasbrouck (1993) who pioneers the application of the 

Beveridge and Nelson (1981) decomposition to intraday financial market data. Hasbrouck uses the 

decomposition to quantify the noise in trade prices as a summary measure of market quality. Similar to 

Hasbrouck (1993), we also separate information and noise. Unlike Hasbrouck (1993), we apply our 

approach to daily returns that are more broadly available and allow a long-horizon examination of changes 

in the informational characteristics of stock prices. Also in contrast to Hasbrouck (1993), we partition 

information into different types (market-wide, public, private) and quantify their contributions to variance.  

Our method is also related to papers that decompose the information in stock prices. For example, 

Campbell and Shiller (1988a, 1988b), Chen and Zhao (2009), Chen, Da, and Zhao (2013), and Campbell 

(1991) decompose return variance into cash flow news and discount rate news. Roll (1988) and Morck, 

Yeung, and Yu (2000) perform simple decompositions of returns into market-wide variations and firm-

specific variations. Similar to these papers, we apply our decomposition to isolate market-wide and firm-

specific information. But unlike the existing papers, we separate information from noise and show that this 

separation is important because noise otherwise biases inference about the types of information in prices. 

We also partition information into a more granular set of components.  

Our study is related to a growing body of literature on the impact of noise in the return process. For 

instance, Blume and Stambaugh (1983) and Asparouhova et al. (2013) show that noise at daily frequencies 

causes an economically meaningful bias in returns, equal to 50% or more of the corrected estimate and 

explains much of the size effect. Jegadeesh (1990) and Lehmann (1990) document significant reversals in 

stock returns at monthly and weekly horizons, respectively, also consistent with the notion that daily, 

weekly, and monthly returns contain substantial noise. Asparouhova et al. (2010) find that noisy prices lead 

to biases in intercept and slope coefficients obtained in any OLS regression using return as the dependent 
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variable. In addition, an extant literature considers noise in prices by examining price efficiency measures 

such as autocorrelations, variance ratios, reversal strategies, delay measures, post-earnings drift, 

profitability of momentum strategies, and intraday return predictability based on past order flow or past 

returns (e.g., Rosch, Subrahmanyam, and van Dijk, 2017; Griffin, Kelly, and Nardari, 2010). Our model 

provides a convenient method to estimate noise and is a tool that will allow future research to more 

systematically examine the drivers and effects of noise. 

Finally, this paper fits with a growing body of literature studying the price efficiency of markets over 

time. The results of our work complement those found in Bai, Philippon, and Savov (2016) and Farboodi, 

Matray, Veldkamp, and Venkateswaran (2021). Bai et al. (2016) show that in more recent times stock prices 

of S&P 500 firms have become more informative in that they more accurately predict future cash flows. 

Farboodi et al. (2021) also focus on price informativeness. Both papers show that the improvements in price 

informativeness have been concentrated in large, growth stocks. Farboodi et al. (2021) go on to introduce 

a new structural method to measure price informativeness. Our paper takes a different approach, using the 

variance decomposition technology to disentangle different types of information and noise. Whereas the 

related papers focus on the ability of stock prices to incorporate low frequency fundamental information, 

the methodology this paper develops captures higher frequency information from different sources, as well 

as the noise process. The difference in information and horizons may explain why we find that the noise 

component of small stocks declines the most, whereas Farboodi et al. (2021) and Bai et al. (2016) show 

that the tendency for stock prices to reflect quarterly fundamental information has improved the most for 

large stocks. The difference highlights the role this paper’s methodology has in capturing information at 

higher frequencies and from different sources beyond quarterly and annual financial reports. 

 

1. Empirical model for variance decomposition 

This section sets out the empirical model that we use to separate noise and various sources of 

information. It begins by explaining the motivation for the way we choose to partition information, noting 
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that the framework can be adapted to alternative partitions. It then explains the intuition for how the 

empirical decomposition separates information and noise, followed by the details of the empirical model. 

 

1.1. Model motivation 

There are many sources of information in prices and therefore also many ways that the information 

can be partitioned. For example, there is market-wide information and stock-specific information, public 

information and private information, cash flow information and discount rate information, information from 

company disclosures and information from other sources such as media, overnight information and intraday 

information, and so on. While the variance decomposition framework that we propose can be adapted to 

partition information in any of these different ways, we illustrate the approach by choosing a particular 

partition based on two dimensions of information that have long been of interest in finance and can help 

understand the evolving informativeness of stock markets. 

The first is the distinction between market-wide and firm-specific information. This dimension has 

long been of interest because firm-specific information is vital for efficient resource allocation across firms 

(e.g., Wurgler, 2000). The amount of firm-specific information in prices is considered a key measure of the 

effectiveness of a stock market in its informational role and determines the “real effects” of financial 

markets (e.g., Bond, Edmans, and Goldstein, 2012). It is also a key determinant of diversification benefits 

in portfolios of stocks and systematic risk (e.g., Savor and Wilson, 2014). 

The second is the distinction between public information such as information disseminated by 

companies and private information such as proprietary analysis by fundamental investors. In market 

microstructure theory models, information in prices is either part of the public information set or is private 

information that gets impounded into prices through the course of trading (e.g., Kyle, 1985; Glosten and 

Milgrom, 1985). This distinction is important because the amount of private information in prices 

determines the extent to which corporate managers can use stock prices to learn about their own firms’ 

fundamentals and incorporate this information in the corporate investment decisions (e.g., Chen, Goldstein, 

and Jiang, 2007). The amount of public information in prices gives a measure of the quality of the disclosure 
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environment, which can help evaluate substantial changes in the regulation of corporate information 

disclosure in recent decades (e.g., Regulation Fair Disclosure (2000) and the Sarbanes Oxley Act (2002)). 

Such regulations could result in better disclosure crowding out private information acquisition, or an 

improvement in the informativeness of prices. 

Therefore, we choose to split information into market-wide and stock-specific components and 

further split firm-specific information into public and private information, although as we noted other 

partitions are possible and can be accommodated by the variance decomposition approach that we propose. 

The requirements for selecting an information partition are twofold. First, the shocks to the information set 

must be measurable because an empirical proxy for all but one of the information sources must be included 

in the VAR with the omitted information source captured in the residual. Second, the information 

components must be complete in that they sum to total information. 

To show how these sources of information translate into return variances, we derive a modified 

version of the Jin and Myers (2006) model. In their original model, the intrinsic value of the firm is the 

present value of future operating cash flows. Cash flows are affected by market-wide and firm-specific 

information shocks. We extend this setup by injecting noise into the model as one of the shocks to cash 

flow information.4 We also split firm-specific information into a part that is revealed through trading on 

private information, and a part revealed through public information such as company announcements and 

news.  

With these extensions to the Jin and Myers (2006) model, stock return variance is made up of four 

distinct sources of variation, which can be expressed as four variance shares: 

 
𝜂𝑗 =

𝑉𝑎𝑟(𝜀𝑗,𝑡)

𝑉𝑎𝑟(𝜀1,𝑡 + 𝜀2,𝑡 + 𝜀3,𝑡 + 𝜀4,𝑡)
, (1) 

 
4 This could be interpreted as taking the perfect information that is provided to the market in the original model and 

making it imperfect due to noise such as estimation errors. It could also be interpreted as the addition of noise traders 

to the model in the spirit of Black’s (1986) notion that “noise trading is trading on noise as if it were information.” 

Finally, the ultimate result of injecting noise is that returns vary around the efficient returns, which in real markets can 

occur due to frictions such as a discrete pricing grid, non-synchronous trading, or imperfect liquidity leading to 

temporary price pressure. 
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with 𝑗 = {1, 2, 3, 4}, corresponding to variance driven by market-wide information (𝜂1), private firm-

specific information revealed through trading (𝜂2), public firm-specific information (𝜂3), and noise (𝜂4). 

The extended version of this model and the proofs are in the Internet Appendix Section 8.  

For simplicity, in the extension of the Jin and Myers (2006) model above we assume like in the original 

model each of these components are independent, but in the empirical model we allow information and 

noise to be correlated. Theoretical (Collin-Dufresne and Fos, 2016) and empirical (Collin-Dufresne and 

Fos, 2015) studies show that noise and information are positively related. Noise is needed for markets to 

be liquid (e.g., Kyle, 1985; Glosten and Milgrom, 1985) and to incentivize information acquisition and 

thereby make prices informative (e.g., Grossman and Stiglitz, 1980; Kyle 1984, 1989; Admati and 

Plfeiderer, 1988).  In the words of Black (1986): “Noise makes financial markets possible, but also makes 

them imperfect.” Going the other way, an exogenous increase in informed trading that tends to bring more 

private information into prices at a faster rate, imposes adverse selection risk on liquidity providers, causing 

a deterioration in liquidity and potentially more noise in prices (e.g., Kyle, 1985; Glosten and Milgrom, 

1985). Therefore, the relation between information and noise in theory is symbiotic.  

Our empirical results support this positive, bi-directional relation between information and noise. In the 

main analysis, we report the variance components as shares that are normalized to sum to 100%. As such 

we are discussing the relative levels of the four components. In the Internet Appendix Section 3, we repeat 

the analysis in levels. As predicted by Collin-Dufresne and Fos (2016) we show there is a positive relation 

between the level of noise in returns and the amount of information in returns. 

 

1.2. Intuition for how the empirical decomposition of variance is performed  

Stock prices are driven by several sources of shocks—some sources are observable (e.g., trades, 

market movements) and some are unobservable, other than the effects they have on stock prices. Each shock 

can convey information and/or contribute noise, including under- or over-reaction to the information in the 

shocks. Empirically measuring what drives stock price movements involves (i) identifying the desired 

information partitions (as per the previous section) and corresponding empirical shock measures, (ii) 
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modelling how stock prices respond to the shocks, which we do with a VAR model, and (iii) separating the 

information conveyed by each shock from the noise created by the shock, which we do with Beveridge 

Nelson (1981) permanent-temporary decompositions.  

We work through an example to illustrate the intuition for how we use the Beveridge Nelson (1981) 

permanent-temporary decomposition approach to separate information and noise. Consider a simplified,5 

two-equation, one-lag VAR model in which a stock’s returns (𝑟𝑡) are driven by two types of shocks: (i) 

shocks coming from trading measured by 𝑥𝑡, which is buy-volume minus sell-volume (𝜀𝑥,𝑡 is the 

unexpected change in 𝑥𝑡), and (ii) shocks from all other sources, 𝜀𝑟,𝑡: 

 𝑟𝑡 = 0.5𝑟𝑡−1 + 0.9𝑥𝑡 − 0.7𝑥𝑡−1 + 𝜀𝑟,𝑡 

𝑥𝑡 = 0.1𝑥𝑡−1 + 𝜀𝑥,𝑡 
(2) 

While the coefficients are illustrative, they are chosen so that the VAR has properties seen in our sample.   

The standard impulse response functions for this VAR model are shown in Figure 1. Panel A shows 

the cumulative return to an unexpected unit shock to trading (𝜀𝑥,0 = 1).6 Prices initially overshoot and 

gradually revert to a stable level. The overshoot and subsequent reversion reflect a temporary component 

of returns (noise), whereas the price stabilizing above its initial level reflects a permanent component of the 

returns (information). The permanent component is the point at which the projected price stabilizes. In the 

figure, the price stabilizes by 𝑡 = 10, revealing that the permanent component is 0.45, which we denote as 

𝜃𝑥.7 In this example the units are arbitrary, but could be interpreted as percentage changes in the stock price. 

 

Insert Figure 1 About Here 

 
5 We have reduced the number of lags, omitted some variables, and assumed some zero coefficients to simplify the 

illustration, but the mechanics and intuition are the same for more complicated VAR models.  
6 The impulse response functions are calculated in the standard way: assume the system is in a steady state meaning 

that all past shocks are zero 𝜀𝑥,𝑡 = 𝜀𝑥,𝑡 = 0 ∀𝑡 < 0, then impose the relevant shock at time 𝑡 = 0 (i.e., either 𝜀𝑥,0 = 1, 

𝜀𝑟,0 = 1, or 𝜀𝑥,0 = 𝜀𝑟,0 = 1), and finally calculate the estimated values of 𝑟𝑡 and 𝑥𝑡 going forward from the shock 

using the estimated model coefficients.   
7 Formally, 𝜃𝑥 is the expected cumulative return (price) response to the unit shock as 𝑡 → ∞, but in practice this is 

approximated by the response at a finite 𝑡 that is sufficiently far forward from the shock that the response has stabilized 

(e.g., Beveridge and Nelson, 1981).  
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The economic interpretation of the permanent component is that it captures the information in the 

shock. The economic interpretation of the transient component is that it captures temporary deviations of 

prices from their long-run equilibrium levels, referred to as “noise.” Such deviations can arise from a variety 

of sources, such as overreaction to information, underreaction to information, imperfect liquidity, price 

impacts of noise trading, and microstructure frictions.  

The plots on the right-hand side of Figure 1 show how this approach decomposes returns into 

information and noise. Panel A shows how an overreaction to a buying shock at 𝑡 = 0 generates noise. The 

dashed line is the information content of the shock—a cumulative return of 𝜃𝑥 = 0.45%, which is the long-

run permanent response to the shock based on the impulse response function on the left. The dots show the 

price response to the shock.8 At 𝑡 = 0, the return is 𝑟0 = 0.90%, the estimated information component of 

the shock is 𝜃𝑥𝜀𝑥,0 = 0.45%, and therefore the transient component of 𝑟0 is 0.45% (𝑟0 − 𝜃𝑥𝜀𝑥,0).  At 𝑡 = 1, 

if there are no further shocks (𝜀𝑥,1 = 𝜀𝑟,1 = 0) the price begins to correct so we get a return of 𝑟1 =

−0.16%. As there is no new information the noise return at 𝑡 = 1 is −0.16% (𝑟1 − 𝜃𝑥𝜀𝑥,1). 

Figure 1 Panel B shows how underreaction to a positive news shock at 𝑡 = 0 generates noise. The 

shock (𝜀𝑟,0 = 1) may come from an after-hours company earnings announcement, for example. The 

cumulative impulse response function on the left of Panel B illustrates a slow reaction to the information 

in the shock—there is an immediate return response of 𝑟0 = 1% and then positive returns in the subsequent 

periods as the price converges to the long-run impact of 𝜃𝑟 = 2.00. Again, we can use this estimated long-

run impact 𝜃𝑟 = 2.00 to decompose actual returns around the shock into information and noise. The right 

side of Figure 1 Panel B shows that at 𝑡 = 0, the stock return is 𝑟0 = 1.00%, while the estimated 

information content of the shock is 𝜃𝑟𝜀𝑟,0 = 2.00%, and therefore the transient component is −1.00% 

(𝑟0 − 𝜃𝑟𝜀𝑟,0). The initial underreaction creates noise.  At 𝑡 = 1, if there are no further shocks (𝜀𝑥,1 = 𝜀𝑟,1 =

 
8 For illustration we assume the actual price changes are equal to those predicted by the impulse response function, 

but the decomposition proceeds in the same manner with any actual price changes. 
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0) the price begins to correct, we observe a return of 𝑟1 = 0.50%, but no new information, and therefore 

the noise return at 𝑡 = 1 is 0.50% (𝑟1 − 𝜃𝑟𝜀𝑟,1). 

So far, we have illustrated shocks that arrive one at a time. The model deals with concurrent shocks 

in much the same way, simply adding their effects. Figure 1 Panel C combines the two previous shocks: 

there is a positive shock to buying (𝜀𝑥,0 = 1) and a concurrent positive shock from other sources (𝜀𝑟,0 = 1). 

The impulse response function on the left side of Panel C is the sum of the two individual impulse response 

functions (Panels A and B). The overreaction to the trading shock offsets some of the underreaction to the 

shock from other sources, leading to a more efficient price reaction. The information of the combined shock 

is the sum of the information in the two shocks (𝜃𝑥 + 𝜃𝑟 = 2.45). The right side of Panel C shows that the 

initial return is only 𝑟0 = 1.90%, implying a noise component in the return equal to −0.55% (𝑟0 − 𝜃𝑥𝜀𝑥,0 −

𝜃𝑟𝜀𝑟,0). While in this example the noise from the two different shocks is offsetting, noise from different 

shocks can be reinforcing. For example, suppose the shock to trading was negative (selling) while the shock 

from other sources was positive, the two noise returns would both be negative.9  

While the variance decomposition that we apply is a more general and extended version of the 

examples above, the intuition and mechanics are the same. In the model we apply, the information driven 

return and noise return at each time are inferred from the actual estimated shocks (the residuals of the VAR 

model) rather than the illustrative hypothetical one-unit shocks.  Also, in the data there are new shocks in 

almost every period, rather than each shock being followed by a period of calm.  Thus, the efficient price, 

which is the cumulation of the information components, evolves dynamically through time.  The stock price 

fluctuates around the efficient price due to the many transient shocks that temporarily push prices away 

from their efficient levels. 

Figure 1 Panel D illustrates this more realistic scenario of many different shocks arriving 

sequentially, leading to a dynamic efficient price and an actual price that is continually approaching the 

 
9 For example, if we have 𝜀𝑥,0 = −1, 𝜀𝑟,0 = 1, and the actual return is as estimated 𝑟0 = 0.10%, the information 

component of the return is 𝜃𝑥𝜀𝑥,0 + 𝜃𝑟𝜀𝑟,0 = 0.45(−1) + 2(1) = 1.55% and the noise component in the return is 

−1.45% = 0.10% − 1.55%, which is much larger in magnitude than in the example in Panel C (−0.55). 
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efficient price.  Despite the multitude of shocks, the decomposition of information and noise at each point 

in time is the same: the shocks are identified from the VAR, the information content of those shocks is 

estimated as the long-run permanent effect of those shocks (the magnitude of the shock multiplied by the 

corresponding 𝜃), giving an estimated efficient price that is the cumulation of the information-driven 

returns. The pricing errors are the differences between the observed prices and the estimated efficient prices. 

The noise component of each period’s return is the change in the pricing error from one period to the next, 

which is equivalent to the observed return minus the estimated information-driven return.   

 

1.3. Baseline variance decomposition model 

Consider the log of the observed price at time 𝑡, 𝑝𝑡, as the sum of two components: 

 𝑝𝑡 = 𝑚𝑡 + 𝑠𝑡 , (3) 

where 𝑚𝑡  is the efficient price and 𝑠𝑡 is the pricing error. The pricing errors can have a temporary (short-

run) effect on the price, but they do not affect price in the long run (no permanent effect). 𝑚𝑡 follows a 

random walk with drift 𝜇, and innovations 𝑤𝑡:  

 𝑚𝑡 = 𝑚𝑡−1 + 𝜇 + 𝑤𝑡 . (4) 

The innovations reflect new information about the stock’s fundamentals and are thus unpredictable, 

E𝑡−1[𝑤𝑡] = 0. The drift is the discount rate on the stock over the next period (day). The stock return is: 

 𝑟𝑡 = 𝑝𝑡 − 𝑝𝑡−1 = 𝜇 + 𝑤𝑡 + ∆𝑠𝑡 . (5) 

We partition the information impounded into stock prices into three sources: market-wide 

information, private firm-specific information incorporated through trading, and public firm-specific 

information such as firm-specific news disseminated in company announcements and by the media. This 

partitioning is complete in that all information must fall into one of these mutually exclusive categories: 

information is either market-wide or it is firm-specific, firm-specific information is either publicly available 

or it is not in which case it is private. But this partitioning is not unique in that there are other ways of 

partitioning information. 
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The random-walk innovations, 𝑤𝑡, can then be decomposed into three parts:  

𝑤𝑡 = 𝜃𝑟𝑚𝜀𝑟𝑚,𝑡 + 𝜃𝑥𝜀𝑥,𝑡 + 𝜃𝑟𝜀𝑟,𝑡 ,  

and thus 

(6) 

𝑟𝑡 = 𝜇⏟ + 𝜃𝑟𝑚𝜀𝑟𝑚,𝑡⏟    + 𝜃𝑥𝜀𝑥,𝑡⏟  + 𝜃𝑟𝜀𝑟,𝑡⏟  + ∆𝑠𝑡⏟  , 

discount rate     market-wide info     private info     public info     noise 

(7) 

where 𝜀𝑟𝑚,𝑡 is the unexpected innovation in the market return and 𝜃𝑟𝑚𝜀𝑟𝑚,𝑡 is the market-wide information 

incorporated into stock prices, 𝜀𝑥,𝑡 is an unexpected innovation in signed dollar volume and 𝜃𝑥𝜀𝑥,𝑡 is the 

firm-specific information revealed through trading on private information, and 𝜃𝑟𝜀𝑟,𝑡 is the remaining part 

of firm-specific information that is not captured by trading on private information (𝜀𝑟,𝑡 is the innovation in 

the stock price). Changes in the pricing error, ∆𝑠𝑡, can be correlated with the innovations in the efficient 

price, 𝑤𝑡. The identifying assumption that our model inherits from Beveridge and Nelson (1981) is that 

both the permanent (information) and transient (noise) components are driven by the same shocks. This 

assumption explicitly allows for correlation between information and noise, consistent with theory. 

We estimate the components of Equation (7) using a structural VAR with five lags to allow a full 

week of serial correlation and lagged effects: 

 𝑟𝑚,𝑡 = ∑ 𝑎1,𝑙𝑟𝑚,𝑡−𝑙 + ∑ 𝑎2,𝑙𝑥𝑡−𝑙
5
𝑙=1 +∑ 𝑎3,𝑙𝑟𝑡−𝑙

5
𝑙=1

5
𝑙=1 + 𝜀𝑟𝑚 ,𝑡      

𝑥𝑡 = ∑ 𝑏1,𝑙𝑟𝑚,𝑡−𝑙 + ∑ 𝑏2,𝑙𝑥𝑡−𝑙
5
𝑙=1 +∑ 𝑏3,𝑙𝑟𝑡−𝑙

5
𝑙=1

5
𝑙=0 + 𝜀𝑥,𝑡     

𝑟𝑡 = ∑ 𝑐1,𝑙𝑟𝑚,𝑡−𝑙 + ∑ 𝑐2,𝑙𝑥𝑡−𝑙
5
𝑙=0 + ∑ 𝑐3,𝑙𝑟𝑡−𝑙

5
𝑙=1

5
𝑙=0 + 𝜀𝑟,𝑡 ,     

(8) 

where 𝑟𝑚,𝑡 is the market return, 𝑥𝑡 is the signed dollar volume of trading in the given stock (positive values 

for net buying and negative values for net selling), and 𝑟𝑡 is the stock return.  

We use the VAR model to identify the information components as follows. The permanent returns 

in response to market return shocks provide the estimated market-wide information. The permanent returns 

in response to signed dollar volume shocks provide the estimated firm-specific private information.  And 

the permanent returns in response to stock return shocks controlling for market returns and signed dollar 

volume provide the estimated firm-specific public information. Noise is the net transitory return from these 
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three sources of shocks or, equivalently, the return that is left after subtracting the information components. 

Therefore, the approach effectively starts with a stock return and first identifies market-wide information, 

leaving behind firm-specific information and noise. It then identifies the private firm-specific information 

associated with trading to leave behind public firm-specific information and noise. Finally, it identifies the 

public firm-specific information as the permanent returns that are not associated with market returns or 

trading, leaving behind the noise component of returns.  

Consequently, misspecification in the measure of market movements can cause misestimation of 

market-wide versus firm-specific information.10 Similarly, misspecification in the measure of trading can 

cause misestimation of public versus private firm-specific information. We choose to label information 

impounded into prices through trading as private information, consistent with empirical market 

microstructure models (e.g., Hasbrouck, 1991a, 1991b). However, in reality the distinction between public 

and private information can at times be blurred. For example, public information (e.g., a company 

announcement) can lead to trading due to private interpretations of the information—while public 

information was the trigger, the private interpretations also contribute to the price informativeness. Also, 

some changes to prices quoted by market makers may contain private information but without necessarily 

triggering trades. 

We use the product of price, volume, and the sign of the stock’s daily return as a proxy for the signed 

dollar volume, 𝑥𝑡, similar to Pastor and Stambaugh (2003). We use this proxy because it has minimal data 

requirements making it applicable in a long time series and across many markets.  It is also similar to “bulk 

volume classification” (see Easley, Lopez de Prado, and O’Hara, 2016), potentially making it more robust 

to capturing private information in different market types because informed traders can use limit orders 

(e.g., Kaniel and Liu, 2006). We test an alternative measure of order imbalance using the Lee and Ready 

 
10 There could be noise in market returns, although we expect less noise at the market level than in individual stock 

returns. For example, market returns may gradually reflect market-wide information due to delayed reactions of some 

stocks in the market index. If individual stocks react efficiently to market returns, they will factor in the market’s 

tendency to underreact and their responses could efficiently incorporate market-wide information despite noise in 

market returns. But if a stock does not efficiently react to the information in market returns, the decomposition will 

capture the stock’s underreaction or overreaction to market returns as noise. 
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(1991) algorithm to identify the trade initiator and then sum the buyer-initiated trade volume minus the 

seller-initiated trade volume. This alternative measure produces lower estimates of the amount of private 

firm-specific information in prices and higher estimates of the amount of public firm-specific information 

in prices, which we interpret as underestimation of private information.11   

The lags of stock returns in the VAR account for short-term momentum as well as reversals that can 

be driven by temporary price impacts from trading (e.g., Hendershott and Menkveld, 2014). The lags of 

signed dollar volume account for persistence in order flow (e.g., Hasbrouck, 1988). Finally, the lags of 

market returns account for first-order serial correlation in market returns due to non-synchronous trading 

(e.g., Scholes and Williams, 1977) as well as delayed stock price reactions to market-wide information 

(e.g., Hou and Moskowitz, 2005).  We choose five lags because for most stocks in most years (more than 

75% of the sample), the optimal number of lags according to the corrected Akaike Information Criterion 

(AIC) is five or less (see Section 4 of the Internet Appendix). There are, however, stocks that require a 

larger number of lags to fully capture the dynamics, consistent with the findings of Boguth, Carlson, Fisher, 

and Simutin (2016). We therefore re-estimate the variance decomposition using twice as many lags where 

it is suggested by the AIC and find that our main results are robust to this alternative specification (see 

Section 4 of the Internet Appendix).  

The structural VAR above embeds contemporaneous relations between the variables. First, market-

wide information can be reflected in stocks contemporaneously, but because each stock is a small part of 

the market index, individual stock returns and trades have a negligible contemporaneous impact on the 

market return. Second, trading activity in a stock can be contemporaneously caused by market returns and 

can contemporaneously cause changes in the stock price, but not vice versa. To the extent that returns can 

trigger trading activity contemporaneously (within the same day) or exogenous events such as company 

announcements can trigger both (trading and returns), the model will tend to overstate the extent to which 

trading activity drives returns. Therefore, in splitting firm-specific information into public and private 

 
11 See Section 5 of the Internet Appendix for more details and results from the alternative measure. 
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components, our structural assumptions tend to estimate the upper bound on private information and lower 

bound on public information. As a result of explicitly modelling the contemporaneous relations between 

variables, the structural VAR innovations {𝜀𝑟𝑚,𝑡 , 𝜀𝑥,𝑡 , 𝜀𝑟,𝑡} are contemporaneously uncorrelated. Appendix 

A has the details of how we estimate this structural VAR. 

The structural VAR innovations {𝜀𝑟𝑚,𝑡, 𝜀𝑥,𝑡, 𝜀𝑟,𝑡} are the shocks that contain information and noise. 

The information in each shock is the estimated long-run effect on the price, which is the permanent 

component in the Beveridge and Nelson (1981) decomposition. Therefore, the market-wide information at 

time 𝑡 is 𝜃𝑟𝑚𝜀𝑟𝑚,𝑡, where 𝜀𝑟𝑚,𝑡 is the innovation in the structural VAR (Equation (8)) and 𝜃𝑟𝑚 is the long-

run effect of a unit shock, inferred from the cumulative impulse response function of returns to a unit shock 

𝜀𝑟𝑚,𝑡 = 1.12 Similarly, the private firm-specific information revealed through trading and the public firm-

specific information revealed through other sources are estimated as 𝜃𝑥𝜀𝑥,𝑡 and 𝜃𝑟𝜀𝑟,𝑡, where 𝜀𝑥,𝑡 and 𝜀𝑟,𝑡 

are the innovations in the structural VAR (Equation (8)) and 𝜃𝑥 and 𝜃𝑟 are the long-run cumulative impulse 

responses of returns to a unit shock 𝜀𝑥,𝑡 = 1 and to a unit shock 𝜀𝑟,𝑡 = 1. 

The sum of the estimated information components gives the innovation in the efficient price, 𝑤𝑡 =

𝜃𝑟𝑚𝜀𝑟𝑚,𝑡 + 𝜃𝑥𝜀𝑥,𝑡 + 𝜃𝑟𝜀𝑟,𝑡. The change in the pricing error (noise return), is the realized return that is not 

attributable to information or discount rate (drift): ∆𝑠𝑡 = 𝑟𝑡 − 𝜇 − 𝑤𝑡 = 𝑟𝑡 − 𝑎0 − 𝜃𝑟𝑚𝜀𝑟𝑚,𝑡 − 𝜃𝑥𝜀𝑥,𝑡 −

𝜃𝑟𝜀𝑟,𝑡, and the noise variance, 𝜎𝑠
2, is estimated as the variance of the time-series of ∆𝑠𝑡.

13  

Taking the variance of the innovations in the efficient price we get 𝜎𝑤
2 = 𝜃𝑟𝑚

2 𝜎𝜀𝑟𝑚
2 + 𝜃𝑥

2𝜎𝜀𝑥
2 + 𝜃𝑟

2𝜎𝜀𝑟
2 . 

Recall, the structural model errors are contemporaneously uncorrelated by construction and therefore the 

covariance terms are all zero. The contribution to the efficient price variation from each of the information 

 
12 We estimate the long-run (permanent) effect as the cumulative return response at 𝑡 = 15, which is three times the 

number of lags in the VAR and allows enough time for the return to stabilize in response to a shock.   
13 Recall that the drift in the efficient price (𝜇) is a constant in this baseline model. It could be estimated by adding 

constants to the VAR and taking the estimated constant in the return equation (𝑎0). However, it is not required in the 

calculation of the noise variance because irrespective of whether it is included in calculating ∆𝑠𝑡, being a constant, it 

does not affect the variance, 𝜎𝑠
2.  
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components is 𝜃𝑟𝑚
2 𝜎𝜀𝑟𝑚

2  (market-wide information), 𝜃𝑥
2𝜎𝜀𝑥

2  (private firm-specific information), and 𝜃𝑟
2𝜎𝜀𝑟

2  

(public firm-specific information). The estimated components of variance are therefore: 

 𝑀𝑘𝑡𝐼𝑛𝑓𝑜 = 𝜃𝑟𝑚
2 𝜎𝜀𝑟𝑚

2  

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜 = 𝜃𝑥
2𝜎𝜀𝑥

2  

𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜 = 𝜃𝑟
2𝜎𝜀𝑟

2  

𝑁𝑜𝑖𝑠𝑒 = 𝜎𝑠
2. 

(9) 

Normalizing these variance components to sum to 100% gives variance shares: 

 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 = 𝜃𝑟𝑚
2 𝜎𝜀𝑟𝑚

2 /(𝜎𝑤
2 + 𝜎𝑠

2) 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 = 𝜃𝑥
2𝜎𝜀𝑥

2 /(𝜎𝑤
2 + 𝜎𝑠

2) 

𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 = 𝜃𝑟
2𝜎𝜀𝑟

2 /(𝜎𝑤
2 + 𝜎𝑠

2) 

𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒 = 𝜎𝑠
2/(𝜎𝑤

2 + 𝜎𝑠
2). 

(10) 

Accordingly, 𝑀𝑘𝑡𝐼𝑛𝑓𝑜, 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜, 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜, and 𝑁𝑜𝑖𝑠𝑒 are the variance contributions of 

market-wide information, trading on private firm-specific information, firm-specific information other than 

that revealed through trading, and noise, respectively. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒, 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒, and 

𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 are corresponding shares of variance from those various sources of stock price 

movements.14 Meanwhile, 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒 reflects the relative importance of pricing errors due to 

overreaction/underreaction to information, illiquidity, price pressures, or other microstructure frictions. 

This baseline variance decomposition is summarized in Figure 2. 

Estimating the variance components and shares given in (9) and (10) conveniently only requires two 

sets of inputs: (i) the variances of the structural VAR innovations (shocks), 𝜎𝜀𝑟𝑚
2 , 𝜎𝜀𝑥

2 , 𝜎𝜀𝑟
2  and (ii) the long-

run cumulative return responses to these shocks 𝜃𝑟𝑚, 𝜃𝑥, and 𝜃𝑟. We obtain both sets of these inputs from 

the VAR using the procedure in Appendix A.   

 
14 We use the sum of the efficient price innovations variance and the noise variance in the dominator (rather than the 

total variance) so that the normalized shares sum to 100%. In the Internet Appendix Section 9, we show that ignoring 

the covariance between the efficient price component and ∆𝑠 in normalizing the variance shares has a negligible effect 

on the overall estimates of variance shares. 
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Insert Figure 2 About Here 

  

2. Variance components through time and in the cross-section 

This section applies the variance decomposition model to the data. First, we describe the data (Section 

2.1) and report the coefficients of the reduced form VAR (Section 2.2), which is one of the first steps in 

performing the variance decomposition. Next, we report the estimated variance components in the full 

sample and compare the noise in daily returns to that of intraday returns (Section 2.3). We then characterize 

how the variance components change through time (Section 2.4) and in the cross-section (Section 2.5).  

 

2.1. Data 

Our sample consists of all common stocks listed on the NYSE, AMEX, and NASDAQ.15 Most of 

our analyses focus on the period from 1960 to 2015, but we also report a longer timeseries of the variance 

components starting in 1926. We use daily data on returns, prices, market capitalizations, volumes, and 

sectors from the Center for Research in Security Prices (CRSP). We obtain financial balance sheet data and 

year of incorporation from Compustat, analyst coverage from IBES, and institutional holdings from 13F 

filings. We remove duplicate stock-day observations and observations with missing return, missing volume, 

or missing price. We remove stock-years that have fewer than 20 valid daily observations to ensure the 

VAR (which is estimated separately each stock-year) has a sufficient number of observations and we 

remove stock-years in which any of the variance components are estimated to be zero. Other than these 

screens, we do not remove stocks based on other characteristics, but rather, to mitigate the effects of outliers 

and extremes, we winsorize the estimated variance components in Equation (9) at the 5% and 95% levels 

each year.  Our results are robust to lower levels of winsorization (e.g., 1% and 99% levels; see Internet 

 
15 Applying the filters shrcd (share code) = 10 or 11 and primexch (primary exchange) = “A”, “N”, or “Q”. We remove 

stock-years in which the stock changes primary exchange within the year.  
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Appendix Section 7).  After these filters, our main sample has an average of 4,362 stocks per year and a 

total of 22,025 stocks. Appendix B contains definitions of the key variables. 

 

2.2. VAR coefficients 

As each stock may have different dynamics, and the drivers of stock returns may change through 

time, we perform the variance decomposition on each stock in each year separately. Therefore, we estimate 

the VAR every stock-year using daily data. Using one-year periods also mitigates concerns about non-

stationarity and allows the relations between variables to change through time.  

Before proceeding to the variance decomposition, Table 1 reports reduced-form VAR coefficient 

estimates averaged across the individual VAR models.16 Below each average, in parentheses, the Table 

reports the percentage of negative statistically significant (at 5%) coefficients (first number in the 

parentheses) and the percentage of positive statistically significant (at 5%) coefficients (second number in 

the parentheses). The coefficients in the market return equation (Panel A) show a tendency for positive 

first-order serial correlation in market returns, consistent with the effects of non-synchronous trading 

(Scholes and Williams, 1977) and slow diffusion of market-wide information. In contrast, lags of other 

variables (trading in individual securities and individual stock returns) do not explain current market 

returns. The coefficients in the signed dollar volume equation (Panel B) show a tendency for buying to 

follow positive market returns. They also show positive serial correlation in daily signed dollar volume, 

consistent with persistence in order flow (e.g., Hasbrouck (1988) and many subsequent studies).  

The coefficients in the individual stock return equation (Panel C) show that stock returns tend to be 

positively related to lagged market returns consistent with the known slow diffusion of market-wide 

information (e.g., Hou and Moskowitz, 2005). They also show a tendency in some stock-years for trading 

(innovations in signed dollar volume) to impact returns not only contemporaneously but also with a lag, 

 
16 The variance decomposition is based on the structural VAR in Equation (8), but for practical reasons we follow the 

common practice of first estimating the reduced-form VAR and then using the coefficients and reduced form error 

covariances to compute the structural VAR impulse response functions and structural VMA. These structural VAR 

impulse response functions and structural VMA are then used for the variance decomposition.  
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suggesting that at times the information in trading takes more than one day to be fully reflected in prices. 

They also indicate the presence of negative serial correlation in stock returns at daily frequencies out to 

approximately four days, consistent with reversals of pricing errors due to price pressure (e.g., Hendershott 

and Menkveld, 2014). The VAR coefficient estimates support the use of five lags in the VAR because by 

the fifth lag very few coefficients are statistically different from zero (besides the 5% that would be expected 

by chance at the 95% confidence level). 

In addition to the average coefficients, which reveal the lead-lag relations between variables, Table 

1 also reports the average correlations of the reduced-form VAR residuals for pairs of variables. These 

correlations reveal the contemporaneous relations between innovations in the variables. Innovations in 

signed dollar volume are contemporaneously correlated with returns of individual stocks and with market 

returns. These correlations are consistent with buying pressure pushing prices up as well as positive returns 

inducing buying (and vice versa for negative returns). There is also a positive contemporaneous correlation 

between individual stock returns and market returns consistent with individual stocks contributing to the 

market return but also market returns reflecting market-wide information, which is impounded in individual 

stock prices.   

Insert Table 1 About Here 

 

2.3. Estimates of variance components 

Table 2 Panel A reports the estimated variance shares from the baseline model above for the main 

sample (all US stocks from 1960 to 2015). Recall the variance decomposition is performed separately for 

every stock-year. From the stock-year estimates we calculate variance-weighted averages of each 

component.17 The results show that market-wide information is the smallest component and accounts for 

around 9% of stock return variance, while firm-specific information accounts for 61% (summing 

 
17 We use variance-weighted averages in our baseline results for comparability with Morck et al. (2000, 2013). The 

motivation is that we are trying to understand the drivers of return variance and so want to emphasize stocks that have 

more variance. In the Internet Appendix (Section 2) we repeat the key tables and figures using equal-weighted means. 
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𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 and 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒). Most of the firm-specific information is impounded in prices 

through public information (37% of variance), while firm-specific private information that is impounded 

through trading accounts for around 24% of variance. Finally, noise accounts for a substantial 31% of 

overall daily stock return variance. Using equal-weighted averages, market-wide information is still the 

smallest component (13%), while firm-specific information accounts for the largest share of variance 

(63%), and noise is substantial, although slightly smaller (23%). The confidence intervals are formed from 

the stock-year observations and indicate little uncertainly about the market-wide averages of the variance 

shares.18  

Insert Table 2 About Here 

 

Before exploring the time-series and cross-sectional patterns in these variance shares, we consider 

how these estimates, in particular the noise in returns, compare to other estimates. The first comparison is 

with intraday returns (e.g., trade-to-trade), which is where similar permanent-transitory decompositions 

were first used to separate noise from information. Extrapolating from Hasbrouck (1991b, 1993), the 

implied noise share in intraday trade-to-trade returns is around 82% in US stocks in 1989.19 For direct 

comparison, in the year 1989, our model estimates that the noise share in daily returns is around 31%. 

Therefore, the estimates of the level of noise in daily returns are considerably smaller than estimates of the 

noise in intraday trade-to-trade returns. One of the reasons for why there is less noise in daily returns than 

in trade-to-trade returns is that some sources of noise, such as the bid-ask spread, do not scale up when the 

 
18 In many applications of the variance decomposition, standard errors can be measured in aggregate estimates (e.g., 

market-wide averages, averages for groups of stocks, or regressions) by treating each stock-year as an individual 

observation of the variance components, as is done in the analyses in this paper. If, however, one needs a standard 

error on a single stock-year estimate of the variance components then the suggested approach is to use a bootstrap 

procedure suitable for time-series models, such as the recursive bootstrap, the moving block bootstrap, or the stationary 

bootstrap (e.g., Li and Maddala, 1996). 
19 Hasbrouck (1991, 1993) does not report a noise share comparable to ours but we are able to calculate one from his 

results as follows. The estimated variance of pricing errors in Hasbrouck (1993) is 10.89×10-6, whereas the variance 

of random walk innovations in Hasbrouck (1991b) using the same sample is 4.7×10-6.  If we conservatively assume 

zero serial correlation in pricing errors (such an assumption will underestimate the noise variance in the following 

calculation), then the variance of changes in pricing errors is 2×10.89×10-6 (it is the variance of changes in pricing 

errors that adds noise to returns, not just variance of pricing errors). Now if we compute an implied noise share we get 

82.17%. 
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return horizon is increased, yet fundamental volatility (the variance attributable to information) does scale 

up with the return horizon (this intuition is exploited in the Corwin and Schultz (2012) effective spread 

estimator). For example, a one-minute return between two successive trades can contain a whole bid-ask 

spread (if one trade occurs at the bid and the other at the offer) and one minute of fundamental volatility, 

while a one-day return can also contain a whole bid-ask spread (if one close occurs at the bid and the other 

at the offer) but a much larger 24 hours of fundamental volatility. Note, however, that bid-ask bounce is 

only one of several sources of noise in prices. 

Another point of comparison is with the noise induced in daily returns by “price pressure,” that is, 

temporary deviations from efficient prices due to risk-averse liquidity providers being unwilling to provide 

unlimited liquidity. Recently, Hendershott and Menkveld (2014), using data on New York Stock Exchange 

(NYSE) intermediaries, estimate that at daily frequencies the distortions in midquote prices caused by price 

pressure (i.e., separate from the effect of bid-ask-bounce) are economically large (0.49% on average) and 

have a half-life of 0.92 days. The ratio of price pressure (in the midquote) to the variance of the efficient 

midquote price is 0.33 or 33% in their sample of 697 NYSE stocks during 1994–2005. This ratio of one 

source of noise to the estimated efficient price volatility is similar in magnitude to the estimated noise share 

of variance in our model.  

Similarly, but at monthly frequencies and using a different approach, Hendershott et al. (2011) 

estimate that one-quarter of monthly return variance in NYSE stocks is due to transitory price changes that 

are themselves partially explained by cumulative order imbalances and market-makers’ inventories (price 

pressure). Again, this is just one source of noise and in monthly returns, but it is also close in magnitude to 

our estimate. 

Finally, our finding that a considerable proportion of the variance in daily returns is noise is consistent 

with studies such as Jegadeesh (1990) and Lehmann (1990) who document significant predictability 

(reversals) in stock returns at one month and one-week horizons, respectively. Avramov, Chordia, and 

Goyal (2006) and Nagel (2012) show that the reversals reflect deviations from efficient prices. They find 

that non-informational demand generates price pressure that is reversed once liquidity suppliers react to 
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potential profit opportunities and the uninformed demand for liquidity abates. While it is difficult to express 

the reversals documented by these studies as a percentage of variance to directly compare them to our 

estimates of noise, Jegadeesh (1990), Lehmann (1990), Avramov et al. (2006), and Nagel (2012) show that 

the price distortions involved in reversals are economically meaningful, consistent with the economically 

meaningful noise share estimated by our model. Similarly, Asparouhova et al. (2013) show that noise at 

daily frequencies causes an economically meaningful bias in returns, equal to 50% or more of the corrected 

estimate. 

 

2.4. Variance components through time 

Figure 3 shows how the stock return variance components change through time. Panel A shows the 

extended sample period from 1926 to 2020 and Panel B zooms in on the period from 1960 to 2015, which 

is used in subsequent analyses that are limited by the availability of other datasets. There are several 

noteworthy long-term trends. First, the share of noise in prices has declined from around 40% of variance 

in the 1920s and 1930s to 30% of variance in the 1960s and down to around 20% of variance recently, 

although not monotonically. Noise rose through the 1990s, spiking in 1997, and has gradually declined 

since then. The high levels of noise in prices in the 1990s are at least partly driven by collusive behavior of 

dealers during that period, which involved effectively widening the tick size by avoiding odd-eighth quotes 

and thereby increasing bid-ask bounce (Christie and Schultz, 1994).  

Table 2 Panel B confirms that stock returns after 1997 tend to have a smaller proportion of noise and 

higher information content. The differences between the two sub-periods are statistically significant as well 

as economically meaningful. For example, the average noise share decreases from 35.42% in the period 

1960 to 1997 to only 25.78% after 1997.20  In the Internet Appendix (Table A.3) we show that the level of 

noise is also lower after 1997 (although the decrease in the level is not statistically significant) and the level 

 
20 The Internet Appendix (Section 6) reports results from difference-in-differences models that show that the dealer 

collusion substantially increased the amount and share of noise in prices. We provide more detailed analysis of the 

effects of tick size reductions in Section 3.1. 
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of variance associated with information is higher after 1997 indicating that the decline in the noise share is 

driven by both (i) a decrease in the level of noise and (ii) an increase in the level of information.  

 

Insert Figure 3 About Here 

  

Second, while noise has declined through time, firm-specific information has become an increasingly 

important component of stock return variance. Together, the two firm-specific information components 

have increased from around 50% of variance in the period up to the early 1960s to above 70% of stock 

return variance in recent years. Table 2 Panel B confirms that this increase in firm-specific information in 

recent decades is also statistically significant and in the Internet Appendix (Table A.3 and Figure A.4) we 

show that this result also holds for the levels of variance attributable to information, not just the shares. The 

general trend is consistent with increasing informational efficiency and informativeness of prices through 

time.  

Interestingly, while public and private firm-specific information contribute approximately equally to 

stock return variance in the early 1960s, these components diverge in more recent decades with publicly 

available firm-specific information emerging as the dominant component accounting for around 40% of 

stock return variance in recent years. The shift to public firm-specific information is consistent with the 

objectives of a variety of regulations such as the Sarbanes Oxley Act (2002) and Regulation Fair Disclosure 

(2000) to increase both the quality and quantity of public disclosure by companies. 

As a short aside, our estimates of the proportion of firm-specific information that is impounded in 

prices through trading (private information) compared to public information are similar to Hasbrouck’s 

estimates of the role of trading in impounding new information. Using intraday data, Hasbrouck (1991b) 

estimates that (in 1989) 34.3% of the information in prices gets impounded via individual trades. Despite 
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differences in model, sample, and frequency, using daily data we estimate the fraction in 1989 to be around 

40.8%.21 

Third, while market-wide information tends to spike during crises, at other times it is generally not 

a substantial driver of individual stock returns. Throughout the sample period, market-wide information 

typically accounts for around 5–15% of stock return variance.  We find similar trends to those described 

above when taking equal-weighted averages across stocks (Internet Appendix, Section 2).  

The broad trends illustrated in Figure 3 shed light on recent issues concerning the information content 

of prices. The results show declining noise levels and an increasing dominance of the informational 

components. These time trends contradict the conclusions from the usual interpretation of the (1 − 𝑅2) 

measure (e.g., Morck, Yeung, and Yu, 2000), highlighting its shortcomings. For instance, an increase in 𝑅2 

is generally interpreted as a decrease in the amount of firm-specific information in prices and therefore 

reduced market efficiency. Figure 4 shows that the 𝑅2 measure has increased sharply since the mid-1990s, 

which would imply that market efficiency has been on the decline during the past 20 years. Such a 

conclusion is at odds with much of the event study literature that suggests different market changes have 

generally improved market efficiency in recent years (e.g., Brogaard, Hendershott, and Riordan, 2014; 

Comerton-Forde and Putnins, 2015).  

Our variance decomposition explains why the 𝑅2 measure has increased sharply since the mid-1990s: 

noise in prices (which is largely idiosyncratic) has fallen sharply since the mid-1990s, leading to a rise in 

the 𝑅2, but not a deterioration in market efficiency. The flaw in the 𝑅2 measure is its assumption that all 

idiosyncratic variation must be firm-specific information. Not only is this assumption false in general, but 

because the level of noise varies substantially through time and across stocks, inference about market 

efficiency using the 𝑅2 measure can be severely distorted, as illustrate by Figure 4 (𝑅2) in comparison to 

Figure 3 (variance components accounting for noise).  

 
21 A further difference is that our estimate of 40.8% corresponds to the fraction of firm-specific information in prices 

that is impounded through trading, while the 34.3% corresponds to the fraction of all information impounded in prices. 
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Insert Figure 4 About Here 

  

2.5. Variance components in the cross-section of stocks 

We expect that the information and noise in stock returns will vary with stock characteristics.  Our 

first hypothesis is that large stocks will tend to have less noisy prices and therefore their returns will be 

more informative.  Table 2 Panel C reports means of the variance components in size quartiles. Consistent 

with our hypothesis, large stocks tend to have less noisy prices. Noise declines monotonically with size and 

the differences across stocks are large.22 For example, in small stocks, noise accounts for 35.56% of stock 

return variance, which is about twice that of big stocks at 16.92% of variance. The relatively low level of 

noise in large stocks is likely driven by a high level of liquidity, making their prices less susceptible to 

temporary deviations and price pressures.  

The results also show that the returns of large stocks are proportionally driven more by information 

(higher market-wide and private firm-specific information shares).  The differences are particularly large 

for market-wide information, which accounts for 21.09% of the variance in big stocks, but only 5.58% in 

small stocks.  Yet in levels, the total amount of variance attributable to new information is higher in smaller 

stocks, consistent with the notion that there is more information asymmetry and uncertainty about the 

valuation of smaller stocks (Internet Appendix Table A.3).  

Table 2 Panel D shows that there is considerably less variation across industry groups in what drives 

stock price movements than across size groups.  In variance levels, the HiTech industry stands out as having 

one of the highest noise variances but also the highest information variance. 

Given that the composition of stock return variance differs in the cross-section, particularly by size 

and to a lesser extent by industry, we examine whether the time-series patterns in variance components are 

due to market composition changes. The mix of industries in the market has changed through time and 

 
22 The same result holds in variance levels (Internet Appendix Table A.3). 
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listed stocks have tended to become larger through time. Therefore, in Figures 5 and 6 we repeat the exercise 

of plotting the time-series of variance components, but this time by size group and by industry group. We 

form the size groups with respect to thresholds ($100 million and $1 billion in 2010 dollars) that are inflation 

adjusted through time, rather than size quartiles to keep the size groups relatively comparable through time 

even as the market composition changes. Time-series trends in the variance components within size or 

industry groups are less susceptible to compositional changes than the pooled time-series. 

Figure 5 shows that all size groups have a similar trend with respect to market-wide information, 

including the peaks during crises. Large stock returns consistently reflect a higher share of market-wide 

information through time than smaller stocks. All size groups show quite similar trends in private firm-

specific information, except for a period of temporary divergence in the 1990s. The increase in public firm-

specific information through time is driven mainly by smaller stocks consistent with improvements in their 

corporate disclosure. Finally, noise is consistently higher for smaller stocks and smaller stocks are largely 

responsible for the decline in noise through time, particularly since the mid-1990s.  These general trends 

also hold for variance levels (Internet Appendix Figure A.4), which show stable levels of market-wide 

information variance through time, increasing levels of public and private firm-specific information, and a 

decline in noise since peaking in the late 1990s, although with spikes during crises (such as 2008–2009) 

and episodes such as the dot com period (1999–2001). 

 

Insert Figure 5 About Here 

  

Figure 6 shows that the variance components in different industry groups display remarkably similar 

time-series trends. Not only are the long-run trends in the types of information and noise similar across the 

industry groups, but so too are many of the year-to-year fluctuations. This result indicates that the time-

series trends are not driven by changing industry composition in the market. Furthermore, it indicates that 

much of the variation in the information and noise shares is systematic and not just an artifact of estimation 

error or random fluctuations. Recall that the variance decomposition is performed separately 
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(independently) for each stock in each year. The commonality in the variance component trends across 

groups of stocks (in this case industry groups) points to systematic drivers of the type of information and 

degree of noise in prices.  

Insert Figure 6 About Here 

 

3. Validation tests 

The preceding section provides some validation of the empirical variance decomposition, showing 

that the variance components have reasonable time-series and cross-sectional properties. This section tests 

hypotheses about how the variance components are expected to relate to several stock characteristics and 

validates the components by comparing them to estimates from other approaches (Section 3.1). We then 

present further validation tests exploiting exogenous variation in three settings: (i) exogenous shocks to tick 

sizes (Section 3.2), (ii) exogenous shocks to analyst coverage (Section 3.3), and (iii) exogenous shocks to 

mutual fund trading (Section 3.4). We also relate the variance components to other measures of noise and 

information (Section 3.5). 

 

3.1. Variance components and stocks characteristics 

We expect that the information and noise in stock returns will vary with stock characteristics. As a 

validation test, we develop hypotheses for a range of stock characteristics and test their relations to the 

variance components using panel regressions:  

 𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 =  𝛼 + 𝛾1𝐷𝑡
𝑃𝑂𝑆𝑇 + ∑ 𝛾𝑗𝐷𝑗,𝑖

𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌
𝑗 +∑ 𝛾𝑘𝑋𝑘,𝑖,𝑡𝑘 + ∑ 𝛾𝑚𝑍𝑚,𝑖,𝑡𝑚 + 𝜀𝑖,𝑡  , (11) 

where 𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is one of the variance component shares (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 , 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡,

𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 , 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡) for stock 𝑖 in year 𝑡. 𝐷𝑡
𝑃𝑂𝑆𝑇 is an indicator variable that takes the 

value of one after 1997 and zero before. 𝐷𝑗,𝑖
𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌 is a set of industry indicator variables (𝐷𝑖

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟, 

𝐷𝑖
𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒, 𝐷𝑖

𝐻𝑖𝑇𝑒𝑐ℎ, and 𝐷𝑖
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡

). 𝑋𝑘,𝑖,𝑡 is a set of stock characteristics.  In the baseline panel 

regressions, 𝑋𝑘,𝑖,𝑡 includes the log stock price (𝑙𝑛𝑃𝑖,𝑡) and the stock’s log market capitalization (𝑙𝑛𝑀𝐶𝑖,𝑡) 
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and in subsequent models we expand this set. Finally, 𝑍𝑚,𝑖,𝑡 is a set of informational efficiency measures 

from other approaches, including 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑖𝑜𝑖,𝑡 and 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡, which we discuss further below. To 

compare with the variance shares, we also estimate regression (11) using the (1 − 𝑅2) measure of firm-

specific information. 

Insert Table 3 About Here 

 

First, given the evidence in prior studies, we expect noise to have decreased through time, controlling 

for other factors, and we expect that large stocks will have less noisy prices. Table 3 Panel A reports results 

for the baseline panel regressions.  They confirm that stock returns in the 1997–2015 part of the sample 

tend to contain a significantly lower proportion of noise and more public firm-specific information, 

controlling for other factors. Therefore, the time-series changes in noise and in firm-specific information 

are not driven simply by firms becoming larger through time. The returns of large stocks and high-priced 

stocks are significantly more affected by market-wide information. Large stocks also tend to have less noisy 

prices and reflect relatively more firm-specific private information, controlling for other factors. Among 

the five industry groups, stocks in the Healthcare and HiTech sectors tend to have the highest private firm-

specific information shares and lowest noise shares.  

Next, we expand the panel regressions with an extended set of stock characteristics as determinants 

of the information and noise in prices.  First, we add institutional holdings, measured as the percentage of 

outstanding shares held by institutional investors. A common view in the literature is that institutional 

investors tend to be the informed traders in markets responsible for impounding information in prices. This 

view is supported by existing empirical evidence that finds institutional investors contribute to market 

efficiency through their trading (e.g., Boehmer and Kelley, 2009; Sias and Starks, 1997). We therefore 

hypothesize that the level of institutional holdings will be positively related to the amount of firm-specific 

private information in prices and negatively related to the amount of noise in prices. The results from the 

extended panel regressions in Table 3 Panel B support these hypotheses, showing that 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is 
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negatively related with the level of institutional holdings (𝐼𝑛𝑠𝑡𝑜𝐻𝑜𝑙𝑑𝑖,𝑡) and that 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is 

positively related with 𝐼𝑛𝑠𝑡𝑜𝐻𝑜𝑙𝑑𝑖,𝑡.  

Second, we add a proxy for hard to value stocks. Kumar (2009) shows that hard to value stocks tend 

to have higher idiosyncratic volatility, higher share trading turnover, and tend to be younger.  We combine 

these three measures used in Kumar (2009) by taking the first principal component (𝐻𝑎𝑟𝑑𝑇𝑜𝑉𝑎𝑙𝑢𝑒𝑖,𝑡). 

Kumar (2009) shows that individual investors’ biases are amplified when stocks are more difficult to value, 

which in turn attracts a high intensity of informed trading.  The informed traders exploit the behavioral 

biases and in doing so impound information into prices through trading. We therefore hypothesize that hard 

to value stocks will have a relatively high share of private firm-specific information incorporated through 

trading. It is unclear ex-ante whether noise will be higher or lower for such stocks as it depends on the 

relative strength of the increased behavioral biases vs the informed trading. The results in Table 3 Panel B 

show that consistent with Kumar (2009) and our hypothesis, the higher level of informed trading in hard to 

value stocks is associated with more private firm-specific information being revealed through trading.  

Noise tends to be lower in such stocks. 

   Next, we add two measures of trading costs and illiquidity to capture limits to arbitrage. The first 

is the stock’s average effective bid-ask spread (𝐵𝑖𝑑𝐴𝑠𝑘𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) and the second is Amihud’s (2002) 

illiquidity measure (𝐼𝐿𝐿𝐼𝑄𝑖,𝑡). Greater trading costs and less liquidity are impediments to arbitrage and 

discourage informed trade. We therefore hypothesize that the bid-ask spread and illiquidity measure will 

be negatively related to the amount of private firm-specific information in prices. We also expect these two 

measures to be positively related to the amount of noise not only because they impede arbitrage but also 

because they capture the level of microstructure noise from effects such as bid-ask bounce. The results 

support both hypotheses as trading costs / illiquidity have a significant negative relation with 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 and a significant positive relation with 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡. 

Finally, we add balance sheet leverage (𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖,𝑡) to the regressions. Jensen and Meckling (1976) 

argue that highly leveraged firms incur more monitoring costs, which they try to reduce by disclosing more 
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information to the market. More public firm-specific information can in turn crowd out some private 

information acquisition. We therefore hypothesize that leverage is positively related to the level of public 

firm-specific information and negatively related to the level of private firm-specific information. Both 

effects are supported by the regression results in Table 3 Panel B. 

We repeat the panel regressions using the variance components measured in levels.  The results (in 

the Internet Appendix Table A.4) are generally consistent with the overall relations described above.   

In contrast, the (1 − 𝑅2) measure that has been used in previous studies as a proxy for firm-specific 

information or market efficiency shows some unusual relations with stock characteristics in the panel 

regressions (Table 3). For example, the (1 − 𝑅2) measure suggests that the market is less informationally 

efficient in the more recent time period, that larger stocks have less informationally efficient prices, and 

that stocks with more institutional holdings have less efficient prices, controlling for other factors. These 

results are difficult to reconcile with the existing literature and instead support the notion that this measure 

captures a mix of firm-specific noise as well as firm-specific information.   

 

3.2. Exogenous shocks to tick sizes 

Chordia, Roll, and Subrahmanyam (2008) show that decreases in tick sizes increase liquidity, thereby 

stimulating arbitrage activity and informed trading, leading to “increased incorporation of private 

information into prices”.  We therefore use the reduction in tick sizes in the US markets from eighths of a 

dollar to sixteenths of a dollar on June 24, 1997, as a natural experiment to see whether our variance 

components detect the increase in the information content of prices.23 

 Theoretically, the clearest prediction is that with the decrease in tick size and increase in liquidity, 

there will be more informed trading and therefore a higher level of information-related variance in prices.  

In particular, we expect the level of private firm-specific information in prices to increase following the 

 
23 There was a further reduction in tick sizes from sixteenths to pennies on January 29, 2001. We focus on the first set 

of tick size reductions as existing evidence suggests the improvement in informational efficiency was larger around 

that event (Chordia, Roll, and Subrahmanyam, 2008). 



 

33 

 

tick size reductions.  The predictions for the level of noise are theoretically less clear.  On one hand, the 

reduction in tick sizes could reduce noise by mitigating the microstructure effects of bid-ask bounce, given 

spreads are narrower following the tick size reductions. However, by decreasing the costs of executing 

small trades, the tick size reductions could increase the activity of uninformed “noise” traders, thereby 

driving up the overall level of noise in prices. Therefore, we analyze the effects on private information in 

prices as a validation test and examine how noise was impacted to understand which of the possible 

opposing effects dominates.   

To eliminate confounding time-series effects, we exploit cross-sectional heterogeneity in the effects 

of the tick size reductions to effectively create a control group. Given the tick size reductions in dollars are 

the same for all stocks in the cross-section, lower priced stocks are disproportionately more impacted by 

the tick size reductions because for them the change in the relative tick size is larger. For example, the tick 

size reduction from eighths of a dollar to sixteenths is 1.25% of the price of a $5 stock, but only 0.125% of 

the price of a $50 stock.24  We therefore expect the strongest effects in low-priced stocks, with high-priced 

stocks serving as an implicit control group. 

To exploit this natural experiment, we take a subsample of one year on both sides of the tick size 

reduction from eighths of a dollar to sixteenths of a dollar (i.e., we take the years 1996 and 1998), and 

estimate difference-in-differences models that exploit the cross-sectional heterogeneity in the treatment. 

The highest priced quartile of stocks had the smallest change in relative tick size and therefore serves as a 

control group against which to measure the impact of the tick size reduction in other price quartiles:  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑡 = 𝛼 + 𝛽𝐷𝑡
𝑃𝑂𝑆𝑇 + 𝛾1𝐷𝑡

𝑃𝑂𝑆𝑇𝑄1𝑖  +  𝛾2𝐷𝑡
𝑃𝑂𝑆𝑇𝑄2𝑖 + 𝛾3𝐷𝑡

𝑃𝑂𝑆𝑇𝑄3𝑖 

+ 𝜌1𝑄1𝑖 + 𝜌2𝑄2𝑖 + 𝜌3𝑄3𝑖 + 𝜀𝑖𝑡 , 
(12) 

where 𝐷𝑡
𝑃𝑂𝑆𝑇 takes the value of one after the tick size reduction (1998) and zero otherwise. 𝑄1𝑖, 𝑄2𝑖, and 

𝑄3𝑖 are indicator variables that indicate the price quartile to which the firm belongs. The highest price 

quartile, 𝑄4𝑖, is the omitted category. We test three dependent variables corresponding to our hypotheses: 

 
24 Similarly, the tick-to-price, a measure of the pricing grid coarseness, decreases by a larger amount for lower priced 

stocks.  
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the amount of private firm-specific information in prices (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑖,𝑡), the level of noise in prices 

(𝑁𝑜𝑖𝑠𝑒𝑖,𝑡), and the share of noise in return variance (𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡). We also re-estimate the model in 

Equation (12) using the log price (𝑙𝑛𝑃𝑖,𝑡) instead of the price quartile indicators as a robustness test. 

 

Insert Table 4 About Here 

 

In Table 4, Models 1 and 2 show that, consistent with our hypothesis, the amount of private firm-

specific information in prices increases substantially in the stocks most impacted by the reductions in tick 

sizes. For example, the lowest priced quartile of stocks has an increase in private firm-specific information 

variance of 0.43 compared to the highest priced quartile of stocks, which is a large effect compared to the 

unconditional mean of this variance component (3.28). The increases are monotonic across the price 

quartiles, consistent with our hypothesis. 

Models 3 and 4 show that the level of noise in prices increases as a result of the tick size reductions, 

while Models 5 and 6 show that the share of noise decreases. Taken together, these results suggest that the 

increase in noise is smaller than the increase in variance that is due to information leading to a lower 

proportion of noise in prices. The results are consistent with the notion that the decrease in execution costs 

as a result of tick size reductions increases informed trading / arbitrage and noise trading, with the effects 

of the informed traders dominating. Therefore, prices become more informative both in an absolute sense 

(levels) and a relative (shares) sense.       

 

3.3. Exogenous shocks to analyst coverage 

Exogenous shocks to analyst coverage provide another natural experiment that changes the 

information environment for individual stocks. Given that analysts produce information about individual 

companies and disseminate this information to a variety of market participants, a reduction in analyst 

coverage is likely to reduce the amount of public firm-specific information in prices. As the information in 
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prices declines, the relative level of noise is likely to increase. Analyst coverage is expected to have little 

effect on market-wide information. The effect of analyst coverage on private firm-specific information is 

ambiguous: analyst-generated information that is made available to only some market participants might 

be impounded in prices through the course of those participants trading on the information (an increase in 

private information), but it might also crowd-out private information acquisition (a decrease in private 

information). 

To test the impact of analyst coverage on the information and noise in prices, we use brokerage 

mergers/closures as a source of exogenous variations in analyst coverage. Broker mergers and closures are 

plausibly exogenous shocks because the termination of coverage is not driven by the characteristics or 

behavior of the firm (see Hong and Kacperczyk 2010; Kelly and Ljungqvist 2012; Brogaard et al., 2018). 

We obtain a list of broker mergers and closures that combines the lists from Hong and Kacperczyk (2010), 

spanning 1984 to 2005, and Kelly and Ljungqvist (2012), spanning 2000 to 2008. Combining these lists, 

merging with CRSP and IBES (Institutional Brokers’ Estimate System) data, and imposing the requirement 

that both the acquirer and target brokers must provide overlapping coverage for at least one firm before the 

broker merger (as per Kelly and Ljungqvist, 2012) we have 41 mergers/closures of brokers that occur during 

the period 1989–2009. Using the mergers/closures data, we calculate the number of exogenous analyst 

disappearances per stock-year. These mergers and closures result in exogenous coverage shocks to 4,546 

firm-year observations. 

Using the exogenous analyst coverage shocks, we estimate the following difference-in-differences 

model:  

 𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 = 𝛾𝑖 + 𝛿𝑡 + 𝛽1𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 + 𝜀𝑖,𝑡, (13) 

where 𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is one of the variance component shares (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 , 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡,

𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 , 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡) for stock 𝑖 in year 𝑡, 𝛾𝑖 and 𝛿𝑡 are stock and time fixed effects, 

respectively, and 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 is the number of analyst disappearances due to mergers and closures 
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of brokerage houses during the past two years.25 We estimate the model above using the period from 1987 

to 2011 given that the brokerage mergers and closures occur between 1989 and 2009 and we need to observe 

a two-year trend before and after the analyst disappearances.   

The results in Table 5 show that exogenous decreases in analyst coverage are associated with a 

decline in public firm-specific information and an increase in the noise share of variance. These results are 

consistent with the notion that analysts produce firm-specific information that is made public and becomes 

reflected in prices. It also suggests that the public firm-specific information component of variance from 

our variance decomposition model can detect this change in the information environment. The coefficient 

estimates indicate that the exogenous disappearance of each analyst is associated with a decline in public 

firm-specific information equal to around 1.47% of variance (for comparison, the pooled sample mean of 

public firm-specific information is around 36.67% of variance).  

Shocks to analyst coverage have no significant effect on the amount of market-wide information in 

prices as expected. Neither do they have a significant impact on the amount of private firm-specific 

information in prices.  

Insert Table 5 About Here 

 

3.4. Exogenous shocks to mutual fund trading 

Exogenous shocks to trading of individual stocks by mutual funds in response to investor redemptions 

provide another natural experiment.  The general idea, which has been exploited in many studies (e.g., 

Edmans, Goldstein, and Jiang, 2012), is that investors’ decisions to accumulate or divest units in mutual 

funds are unlikely to be directly related to the market characteristics of individual stocks, yet the subsequent 

trading by the mutual fund directly affects individual stocks, including the information and noise in prices.   

 
25 In contrast to standard difference-in-differences models, here the “treatment” can have different magnitudes 

depending on how many analysts cease their coverage of a given stock. If the number of analyst disappearances is 

different in year 𝑡 − 1 and year 𝑡 − 2, we take the maximum of these two values. 
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Huang, Ringgenberg, and Zhang (2019) show that when mutual funds receive large exogenous 

redemptions by investors, they do not scale back their positions uniformly, but rather, they 

disproportionately sell a subset of low-quality stocks that subsequently underperform.  Therefore, mutual 

fund trading in response to flow shocks has an informational component (the disproportional or 

“discretionary” selling) and a non-informational component (the pro-rata or “expected” selling).  Huang et 

al. (2019) develop a method to decompose mutual fund trading into these two components26 and they show 

that discretionary sales are associated with significant, persistent price changes in the underlying stocks 

consistent with informed trading, while expected sales have significantly smaller effects that are not 

statistically different from zero.  On this basis, we conjecture that an increase in discretionary trading by 

mutual funds in response to exogenous flow shocks will be associated with an increase in the private firm-

specific information share and a corresponding decrease in the noise share, while a shock to expected 

trading by mutual funds should have little or no effect on the variance components. 

We test this conjecture by estimating the following difference-in-differences model:  

𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 = 𝛾𝑖 + 𝛿𝑡 + 𝛽1𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 + 𝛽2𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 + 𝜀𝑖,𝑡, (14) 

where 𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is one of the variance component shares, 𝛾𝑖 and 𝛿𝑡 are stock and time fixed effects, 

respectively, 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 takes the value of one for stock-quarters that experience strong 

discretionary buying or selling by mutual funds in response to a redemption shock (defined as the bottom 

and top deciles of mutual fund discretionary trading), and similarly 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 takes the 

value of one for stock-quarters that experience strong non-discretionary fire sales by mutual funds due to 

fund redemptions (defined as the bottom decile of mutual fund non-discretionary trading).27 

The results in Table 6 support our conjecture.  A shock to discretionary trading by mutual funds is 

associated with a significant increase in the private firm-specific information share and market information 

 
26 They decompose the trades of fund managers into (i) expected trading, which is what would occur if the fund 

manager simply prorated flow shocks across each asset in her portfolio and (ii) discretionary trading, which is the 

actual minus expected trading.  The expected and discretionary trading in each stock is summed across all funds with 

extreme flows. 
27 We are grateful to Huang, Ringgenberg, and Zhang for sharing the code to calculate these components of mutual 

fund trading shocks. 
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share and a corresponding decrease in the noise share.  Price informativeness improves in response to more 

discretionary, informed trading by mutual funds.  Also consistent with our conjecture and the findings of 

Huang et al. (2019), expected trading by mutual funds has little effect on stock prices—the impact on firm-

specific information and noise is statistically indistinguishable from zero.  Therefore, the evidence from 

mutual fund trading supports the notion that the variance decomposition detects changes in the 

informational properties of stock returns, in particular the amount of firm-specific private information and 

noise.  

Insert Table 6 About Here 

 

3.5. Relation between variance components and other measures of information and noise 

In the final set of validation tests, we examine the relation between the variance components and two 

other measures of information in prices.  The first is the Hou and Moskowitz (2005) delay metric, defined 

in Appendix B.  The 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 metric measures the incremental contribution of lagged market returns in 

explaining a stock’s current returns and therefore captures inefficiency (delay) in how market-wide 

information is reflected in stock prices. We therefore expect that higher values of 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 should be 

associated with less market-wide information in prices (lower 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡) and less efficient, noisier 

prices (higher 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡). 

Table 3 reports results from panel regressions that test this hypothesis, controlling for a range of other 

stock characteristics.  The results in both panels show that 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 has a strong, negative 

association with 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 consistent with the hypothesis. An increase in 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 from zero (full efficiency) 

to 0.5 (halfway to the maximum inefficiency) is associated with a reduction of 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 by 10.62% 

of variance (a large effect, considering the pooled sample mean of 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is 8.62%). The results 

therefore indicate that 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 reflects the efficiency with which market-wide information is 

reflected in prices. 



 

39 

 

The results also indicate that stocks that are inefficient in reflecting market-wide information (higher 

values of 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡) also tend to have noisier prices (statistically significantly higher 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡).  These 

results contrast with the (1 − 𝑅2) measure that has been used in the past as a proxy for informational 

efficiency.  The regressions show that the (1 − 𝑅2) measure is positively related to the delay or inefficiency 

in reflecting market-wide information, which is opposite to what would be expected if the (1 − 𝑅2) measure 

captured informational efficiency. 

The second existing measure that we test is the variance ratio measure used by French and Roll 

(1986) and Chordia et al. (2011), among others.  This measure (defined in Appendix B) is the variance of 

returns during trading hours divided by the variance of overnight returns and is therefore intended to capture 

the amount of information that gets impounded into prices through the course of trading.  French and Roll 

(1986) and Chordia et al. (2011) use the ratio as a measure of informational efficiency.  We therefore expect 

that this measure will be positively associated with private and public firm-specific information and 

negatively associated with the relative amount of noise in prices.  

The panel regression results in Table 3, controlling for a range of other stock characteristics, support 

these hypotheses. In both panels, the variance ratio measure is positively related to 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 

and 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 and negatively related to 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡. This result supports the interpretation of 

the intraday/overnight variance ratio as an efficiency measure as well as the ability of our variance 

decomposition to separate information from noise.  The (1 − 𝑅2) measure is also positively associated with 

the intraday/overnight variance ratio, although with smaller absolute 𝑡-statistics than for 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 and 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡. 

 

4. Conclusion 

This study decomposes stock return variance to better understand the roles of different types of 

information and noise in driving stock price movements. We find that a substantial proportion of return 

variance, 31%, is noise. Firm-specific information accounts for the majority (61%) of stock return variance, 
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with market-wide information accounting for the remaining 8% of variance. We further partition firm-

specific information and find that in the full sample, public firm-specific information plays a larger role 

than private firm-specific information that is impounded into prices through trading.  

There is substantial time-series variation in the components of variance, with some key trends 

standing out. First, noise increases from the 1970s to the mid-1990s, particularly around a period of 

collusion by dealers to widen bid-ask spreads, and has substantially declined since then. The decline in 

noise is partly attributable to narrower tick sizes, which reduces bid-ask bounce, and a general improvement 

in liquidity and increase in turnover. We show that the recent decrease in noise due to improved liquidity 

is largely responsible for the increasing 𝑅2 of a market model over the past two decades. An important 

implication is that a lower 𝑅2  is not necessarily associated with more informationally efficient prices, in 

contrast to the interpretation of 𝑅2  in prior studies. 

Second, the role of firm-specific information has increased through time, driven largely by increases 

in the amount of public firm-specific information that is reflected in prices. This trend is consistent with 

increasing informational efficiency through time. The increasing importance of public firm-specific 

information in stock prices is also consistent with a variety of regulatory reforms such as the Regulation 

Fair Disclosure (2000) and the Sarbanes Oxley Act (2002) aimed at improving both the quality and quantity 

of corporate disclosure.  

Third, while market-wide information tends to spike during crises, at other times it is generally not 

a substantial driver of individual stock returns and typically accounts for around 5–15% of stock return 

variance. 

While the broad trends in the components of stock return variance may shed light on recent issues 

concerning the information content of prices, including the impacts of algorithmic trading and passive 

investing, this paper’s contribution is largely methodological. The framework for variance decomposition 

developed in this paper can be applied to analyzing these issues and others, due to (i) its ability to isolate 

noise from information, which is crucial for correctly characterizing the information in prices, and (ii) the 

ability to obtain higher frequency estimates of variance components, which is important in analyzing effects 
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that vary through time and understanding recent phenomena that require high resolution estimates of the 

information/noise components of variance. The framework can be easily extended to even more granular 

partitions of variance, for example, further splitting market-wide information into public and private 

components, splitting public firm-specific information into official corporate disclosures vs news/media 

and other sources, or partitioning any of the information components into cash flow and discount rate related 

parts.  
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Appendix A: Estimation of the structural VAR 

 For the variance decomposition (to construct the variance components and variance shares in 

Equations (9) and (10)), we need two key inputs from the structural VAR in Equation (8): the variance of 

the innovations (shocks) in each of the variables, 𝜎𝜀𝑟𝑚
2 , 𝜎𝜀𝑥

2 , 𝜎𝜀𝑟
2 , and the long-run cumulative return 

responses to these shocks (𝜃𝑟𝑚, 𝜃𝑥, 𝜃𝑟). We obtain these elements using the common practice of first 

estimating the reduced-form VAR and using the reduced form error covariances to recover the structural 

VAR parameters of interest.  

We estimate the reduced-form version of the VAR: 

 𝑟𝑚,𝑡 = 𝑎0
∗ + ∑ 𝑎1,𝑙

∗ 𝑟𝑚,𝑡−𝑙 + ∑ 𝑎2,𝑙
∗ 𝑥𝑡−𝑙

5
𝑙=1 + ∑ 𝑎3,𝑙

∗ 𝑟𝑡−𝑙
5
𝑙=1

5
𝑙=1 + 𝑒𝑟𝑚,𝑡

       

𝑥𝑡 = 𝑏0
∗ +∑ 𝑏1,𝑙

∗ 𝑟𝑚,𝑡−𝑙 + ∑ 𝑏2,𝑙
∗ 𝑥𝑡−𝑙

5
𝑙=1 + ∑ 𝑏3,𝑙

∗ 𝑟𝑡−𝑙
5
𝑙=1

5
𝑙=1 + 𝑒𝑥,𝑡

      

𝑟𝑡 = 𝑐0
∗ + ∑ 𝑐1,𝑙

∗ 𝑟𝑚,𝑡−𝑙 + ∑ 𝑐2,𝑙
∗ 𝑥𝑡−𝑙

5
𝑙=1 + ∑ 𝑐3,𝑙

∗ 𝑟𝑡−𝑙
5
𝑙=1

5
𝑙=1 + 𝑒𝑟,𝑡

      

(A.1) 

saving the residuals (𝑒𝑟𝑚,𝑡
 , 𝑒𝑥,𝑡

 , and 𝑒𝑟,𝑡
 ) and the variances/covariances of the residuals.  Notice that the 

only difference in the reduced form VAR compared to the structural VAR is that the contemporaneous 

relations between the variables are not captured by coefficients (𝑏1,0, 𝑐1,0, and 𝑐2,0) so they will instead 

cause contemporaneous correlations in the reduced form residuals. Through successive substitution28, it is 

possible to rewrite the reduced form residuals as linear functions of the structural model residuals: 

 𝑒𝑟𝑚,𝑡
 = 𝜀𝑟𝑚,𝑡  

𝑒𝑥,𝑡
 = 𝜀𝑥,𝑡 + 𝑏1,0𝜀𝑟𝑚,𝑡 = 𝑏1,0𝑒𝑟𝑚,𝑡

 + 𝜀𝑥,𝑡 

𝑒𝑟,𝑡
 = 𝜀𝑟,𝑡 + (𝑐1,0 + 𝑐2,0𝑏1,0)𝜀𝑟𝑚,𝑡 + 𝑐2,0𝜀𝑥,𝑡 = 𝑐1,0𝑒𝑟𝑚,𝑡

 + 𝑐2,0𝑒𝑥,𝑡
 + 𝜀𝑟,𝑡.  

(A.2) 

While the structural model residuals are contemporaneously uncorrelated by construction, Equation (A.2) 

shows that the reduced form model residuals are contemporaneously correlated, and the contemporaneous 

correlation can be used to infer the structural model residuals. Specifically, we estimate 𝑏1,0 by regressing 

 
28 For example, see Lutkepohl (2005).  
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the reduced form innovation 𝑒𝑥,𝑡
  on 𝑒𝑟𝑚,𝑡

  (as per the second equation in (A.2)) and we estimate 𝑐1,0 and 

𝑐2,0 by regressing the reduced form innovation 𝑒𝑟,𝑡
  on 𝑒𝑟𝑚,𝑡

  and 𝑒𝑥,𝑡
  (as per the third equation in (A.2)).29   

From the estimated parameters 𝑏1,0, 𝑐1,0, and 𝑐2,0 and the estimated variances of the reduced form 

residuals (𝜎𝑒𝑟𝑚
2 , 𝜎𝑒𝑥

2 , and 𝜎𝑒𝑟
2 ), we obtain estimates of the variances of the structural model shocks by taking 

the variance of (A.2) and rearranging30: 

  𝜎𝜀𝑟𝑚
2 = 𝜎𝑒𝑟𝑚

2  

𝜎𝜀𝑥
2 = 𝜎𝑒𝑥

2 − 𝑏1,0
2 𝜎𝑒𝑟𝑚

2   

𝜎𝜀𝑟
2 = 𝜎𝑒𝑟

2 − (𝑐1,0
2 + 2𝑐1,0𝑐2,0𝑏1,0)𝜎𝑒𝑟𝑚

2 − 𝑐2,0
2 𝜎𝑒𝑥

2 . 

(A.3) 

We estimate the long-run cumulative impulse response functions of the structural model by 

computing the equivalent reduced form shocks (using Equation (A.2)) and feeding them through the 

reduced form model: 

(i) A structural shock to market returns [𝜀𝑟𝑚,𝑡 , 𝜀𝑥,𝑡 , 𝜀𝑟,𝑡]′ = [1,0,0]′ has a reduced form 

equivalent [𝑒𝑟𝑚,𝑡 , 𝑒𝑥,𝑡 , 𝑒𝑟,𝑡]′ = [1, 𝑏1,0, (𝑐1,0 + 𝑐2,0𝑏1,0)]′. 

(ii) A structural shock to trading [𝜀𝑟𝑚,𝑡, 𝜀𝑥,𝑡, 𝜀𝑟,𝑡]′ = [0,1,0]′ has a reduced form equivalent 

[𝑒𝑟𝑚,𝑡 , 𝑒𝑥,𝑡 , 𝑒𝑟,𝑡]′ = [0,1, 𝑐2,0]′. 

(iii) A structural shock to the stock returns [𝜀𝑟𝑚,𝑡, 𝜀𝑥,𝑡, 𝜀𝑟,𝑡]′ = [0,0,1]′ has a reduced form 

equivalent [𝑒𝑟𝑚,𝑡 , 𝑒𝑥,𝑡 , 𝑒𝑟,𝑡]′ = [0,0,1]′.          (A.4) 

The cumulative return response to each of these shocks at 𝑡 = 15 (point at which the responses are generally 

stable31) gives estimates of 𝜃𝑟𝑚, 𝜃𝑥, and 𝜃𝑟, respectively. 

 
29 From the estimated parameters 𝑏1,0, 𝑐1,0, and 𝑐2,0 it is possible to recover the structural model innovations using: 

𝜀𝑟𝑚,𝑡 = 𝑒𝑟𝑚,𝑡
 ,  𝜀𝑥,𝑡 = 𝑒𝑥,𝑡

 − 𝑏1,0𝑒𝑟𝑚,𝑡
 , and 𝜀𝑟,𝑡 = 𝑒𝑟,𝑡

 − 𝑐1,0𝑒𝑟𝑚,𝑡
 − 𝑐2,0𝑒𝑥,𝑡

 . However, it is not necessary to do so as the 

variance decomposition can be computed from the long-run impulse response estimates and the variances of the shocks 

as per the steps in this appendix. 
30 Recall the structural model innovations are uncorrelated by construction. 
31 If the VAR is extended to have a larger number of lags or in a setting in which it takes longer than 𝑡 = 15 for the 

response to stabilize then simply increase the time at which the response is measured.  
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 The final step is to combine the estimated 𝜃𝑟𝑚, 𝜃𝑥, and 𝜃𝑟 with the estimated 𝜎𝜀𝑟𝑚
2 , 𝜎𝜀𝑥

2 , 𝜎𝜀𝑟
2  from 

Equation (A.3) to get the variance components and component shares using Equations (8) and (9). 

 

Summary of the five-step procedure: 

(i) Estimate the reduced form VAR in Equation (A.1), saving the residuals and 

variance/covariance matrix of residuals; 

(ii) Estimate the parameters 𝑏1,0, 𝑐1,0, and 𝑐2,0 from regressions of the reduced form residuals 

(second and third equations in (A.2)); 

(iii) Estimate the variances of the structural innovations using Equation (A.3); 

(iv) Estimate the long-run (permanent) cumulative return responses to unit shocks of the 

structural model innovations, 𝜃𝑟𝑚, 𝜃𝑥, and 𝜃𝑟, using reduced form model impulse response 

functions with the shocks given in Equations (A.4); and 

(v) Combine the estimated variances of the structural innovations from step (iii) with the long-

run return responses from step (iv) to get the variance components and variance shares 

following Equations (9) and (10) in the paper. 
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Appendix B: Variable definitions 

The table below provides descriptions and notation for the components of stock return variance and 

other efficiency measures. Each variable is estimated for each stock in each year using daily observations. 

When aggregating across stocks, we take variance-weighted averages (as per Morck, Yeung, and Yu, 2000, 

2013). 

Variable Notation Description 

Stock return co-movement 𝑅2 𝑅2 is estimated by regressing individual daily stock 

returns on daily market return.   
Noise share  𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒  The share of stock return variance attributable to noise.   

Market-wide information 

share 
𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒  The share of stock return variance attributable to market-

wide information.   
Private firm-specific 

information share 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 
 

The share of stock return variance attributable to trading 

on private firm-specific information.  

 

Public firm-specific 

information share 

𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒  The share of stock return variance attributable to public 

firm-specific information.   
Firm-specific information 

share 

𝐹𝑖𝑟𝑚𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 The share of stock return variance attributable to firm-

specific information (sum of 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 and 

𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒). 

 

Delay in impounding 

market-wide information 

(Hou and Moskowitz, 

2005) 

𝐷𝑒𝑙𝑎𝑦  Calculated as 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 =  1 −
𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
2

𝑅𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
2  where 

𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
2  is the 𝑅2 in a regression of daily stock 

returns on contemporaneous market returns and 

𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
2  is the 𝑅2 in a regression of daily stock 

returns on ten lags of market returns. 

 

Variance ratio (French and 

Roll, 1986; Chordia et al., 

2011) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑖𝑜 Variance of returns during trading hours (variance of 

open-to-close returns, 1 𝑛⁄ ∑ 𝑟𝑖𝑛𝑡𝑟𝑎𝑑𝑎𝑦,𝑖,𝑑
2𝑛

1 ) divided by the 

variance of overnight returns (variance of close-to-open 

returns, 1 𝑛⁄ ∑ 𝑟𝑜𝑣𝑒𝑟𝑛𝑖𝑔ℎ𝑡,𝑖,𝑑
2𝑛

1 ). 
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Panel A: Cumulative impulse response of returns to a shock to trading (𝜺𝒙,𝟎 = 𝟏) showing over-reaction 

 
Panel B: Cumulative impulse response of returns to a shock from non-trade sources (𝜺𝒓,𝟎 = 𝟏) showing under-reaction 

 
Panel C: Cumulative impulse response of returns to a shock to both trade and non-trade sources (𝜺𝒙,𝟎 = 𝜺𝒓,𝟎 = 𝟏) 

 
(continued next page) 
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Panel D: Evolution of the estimated efficient price and actual prices for a series of shocks 

 
Figure 1. Example of separating information and noise in a Beveridge-Nelson decomposition.  

The figure plots the cumulative impulse response functions of a simple illustrative VAR model given by Equations (2) in the paper.  

The vertical axis measures the estimated cumulative change in the log price of the stock as a result of the shock at time 𝑡 = 0 with 

time on the horizontal axis. Panel A illustrates a unit shock to trading (𝜀𝑥,0 = 1). Panel B illustrates a unit shock from non-trade 

sources (𝜀𝑟,0 = 1).  Panel C combines the two shocks (𝜀𝑥,0 = 𝜀𝑟,0 = 1). The plots on the left-hand side are standard impulse 

response functions, while the plots on the right-hand side show how a realised return is broken up into information and noise 

components for the same shocks. Dots are prices (expressed as a cumulative percentage change from the price before the shock at 

𝑡 = 0), while the dashed line is the estimated efficient price corresponding to the cumulative information-driven returns.  Finally, 

Panel D illustrates the estimated efficient price (dashed line) and actual prices (dots) for a hypothetical series of shocks: 𝜀𝑥,𝑡 shocks 

are (–2,1,2,1,2,0,–2,2,0,–1,0) and 𝜀𝑟,𝑡 shocks are (1,0,–1,0,0,–1,0,0,0,1,0). 
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Figure 2. Stock return components in the baseline model.  

In the baseline model stock returns are decomposed into temporary innovations (noise), three types of information 

(permanent innovations), and a constant (discount rate). The first four of these are the variance components in the 

baseline model, while the fifth (the discount rate) does not contribute to variance in the baseline model. 
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Panel A: Extended time period 1926-2020 

 
Panel B: Subperiod 1960-2015 

 
 

Figure 3. Stock return variance components for US stocks through time.   

This figure shows the time-series trends in the percentage of stock return variance that is attributable to noise 

(𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒), market-wide information (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒), trading on private firm-specific information 

(𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒), and public firm-specific information (𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒). The variance shares are 

calculated separately for each stock in each year based on a VAR model. For each of the variance shares in each 

year we then take a variance-weighted average across stocks. Light gray lines provide 99% confidence intervals. 

The sample consists of stocks listed on NYSE, AMEX, and NASDAQ. 
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                   R-squared (%) 

 
Figure 4. 𝑹𝟐 through time.  

This figure shows the time-series trend in 𝑅2 from 1960 to 2015. 𝑅2 is calculated separately for each stock and 

each year by regressing individual daily stock returns on daily market returns, and then averaging across stocks. 

The sample consists of stocks listed on NYSE, AMEX, and NASDAQ. 
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      Panel A: Market information share 

 

      Panel B: Private information share 

 
     Panel C: Public information share 

 

      Panel D: Noise share 

 

 
 

Figure 5. Variance components in size groups through time.  

This figure shows the time-series trends in the percentage of stock return variance that is attributable to market-wide information (Panel A), private firm-specific 

information (Panel B), public firm-specific information (Panel C), and noise (Panel D) in three market capitalization groups: stocks with market capitalization less 

than $100 million, market capitalization between $100 million and $1 billion, and market capitalization greater than $1 billion. These breakpoints are in 2010 

dollars and are adjusted for inflation forward and backward in time using the GDP price deflator. Each year stocks are assigned to one of the three groups based 

on their market capitalization at the start of the year. The variance component shares are calculated separately for each stock in each year and then averaged for 

each size group in each year. The sample consists of stocks listed on NYSE, AMEX, and NASDAQ from 1960 to 2015 (average of 4,362 stocks per year with a 

total of 22,025 stocks). 
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Panel A: Market information share 

 

Panel B: Private information share 

 
     Panel C: Public information share 

 

      Panel D: Noise share 

 

 
Figure 6. Variance components in major industry groups through time.   

This figure shows the time-series trends in the percentage of stock return variance that is attributable to market-wide information (Panel A), private firm-specific 

information (Panel B), public firm-specific information (Panel C), and noise (Panel D) in five major industry groups. The Consumer group comprises the industries 

Consumer Durables, NonDurables, Wholesale, Retail, and some Services (Laundries, Repair Shops); the Healthcare group comprises the industries Healthcare, 

Medical Equipment, and Drugs; the Manufact group comprises the industries Manufacturing, Energy, and Utilities; the HiTech group comprises the industries 

Business Equipment, Telephone and Television Transmission; and the Other group comprises all other industries. The variance component shares are calculated 

separately for each stock in each year then averaged for each industry group in each year. The sample consists of stocks listed on NYSE, AMEX, and NASDAQ 

from 1960 to 2015 (average of 4,362 stocks per year with a total of 22,025 stocks). 
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Table 1. VAR coefficient estimates. 

This table reports the mean coefficient estimates and the mean correlation between residuals for the baseline VAR model used to perform the variance 

decomposition. The VAR model is estimated separately for each stock in each year using daily observations. For the purpose of this table, each of the model 

coefficients is then averaged across stocks and years and reported in the table. Below each coefficient average, in parentheses, we report the percentage of 

negative statistically significant (at 5%) coefficients (first number in the parentheses) and the percentage of positive statistically significant (at 5%) 

coefficients (second number in the parentheses). The correlations column is computed similarly, but rather than reporting coefficients it reports the 

correlations of the residuals for pairs of variables in the VAR. The variables used in the VAR are: daily market returns in basis points (𝑟𝑚,𝑡), daily signed 

dollar volume in $ thousands (𝑥𝑡), and daily stock returns in basis points (𝑟𝑡). The columns 𝑙 = 1 to 𝑙 = 5 correspond to lags of the independent variables. 

The sample consists of stocks listed on NYSE, AMEX, and NASDAQ from 1960 to 2015 (average of 4,362 stocks per year with a total of 22,025 stocks). 

 

Dependent 

variable 

Independent 

variable 
𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4 𝑙 = 5 Correlation 

Panel A: Market return equation 

𝑟𝑚,𝑡  𝑟𝑚,𝑡−𝑙   0.104 

(2.06%, 37.93%) 

–0.032 

(8.13%, 0.34%) 

0.018 

(1.69%, 3.48%) 

–0.005 

(5.05%, 1.81%) 

–0.010 

(2.14%, 3.09%)   
𝑥𝑡−𝑙  0.069 

(2.36%, 2.83%) 

0.024 

(2.51%, 2.54%) 

0.033 

(2.41%, 2.48%) 

0.081 

(2.42%, 2.63%) 

–0.034 

(2.40%, 2.44%) 

0.134 

(0.57%, 42.81%)  
𝑟𝑡−𝑙  –0.002 

(3.76%, 3.07%) 

–0.0001 

(3.26%, 3.19%) 

0.0006 

(3.04%, 3.14%) 

0.0003 

(2.90%, 3.15%) 

–0.001 

(3.22%, 2.83%) 

0.229 

(0.39%, 61.85%) 

Panel B: Signed dollar volume equation 

𝑥𝑡  𝑟𝑚,𝑡−𝑙   –0.650 

(2.27%, 10.18%) 

0.013 

(2.42%, 2.91%) 

0.612 

(1.75%, 3.50%) 

–0.529 

(2.05%, 2.85%) 

–0.785 

(1.97%, 2.93%) 

0.134 

(0.57%, 42.81%)  
𝑥𝑡−𝑙  0.025 

(8.69%, 14.74%) 

–0.016 

(9.21%, 5.75%) 

0.003 

(5.45%, 6.14%) 

–0.008 

(5.76%, 4.52%) 

0.004 

(4.26%, 5.15%)   
𝑟𝑡−𝑙  1.736 

(9.55%, 8.45%) 

0.631 

(4.66%, 4.83%) 

0.196 

(3.60%, 3.82%) 

–0.002 

(3.01%, 3.50%) 

0.404 

(2.79%, 3.19%) 

0.615 

(0.05%, 99.42%) 

Panel C: Stock return equation 

𝑟𝑡  𝑟𝑚,𝑡−𝑙   0.247 

(2.10%, 21.77%) 

0.045 

(2.93%, 4.78%) 

0.089 

(1.71%, 6.02%) 

0.052 

(2.46%, 4.37%) 

0.050 

(2.36%, 4.56%) 

0.229 

(0.39%, 61.85%)  
𝑥𝑡−𝑙  0.972 

(2.56%, 11.37%) 

–0.077 

(3.06%, 3.97%) 

–0.059 

(2.68%, 3.10%) 

–0.150 

(2.80%, 2.66%) 

–0.037 

(2.65%, 2.51%) 

0.615 

(0.05%, 99.42%)  
𝑟𝑡−𝑙  –0.112 

(31.77%, 5.47%) 

–0.060 

(16.40%, 2.61%) 

–0.030 

(8.88%, 2.68%) 

–0.022 

(6.27%, 2.58%) 

–0.007 

(4.27%, 3.07%)  
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Table 2. Stock return variance components in the baseline model.  

This table reports the mean variance shares (expressed as percentages of variance) for the period from 1960 to 2015. Stock 

return variance is decomposed into market-wide information (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒), private firm-specific information 

(𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒), public firm-specific information (𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒), and noise (𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒). Panel A reports full 

sample averages. Panel B splits the sample into two sub-periods from 1960 to 1996, and from 1997 to 2015. Panel C groups 

stocks into quartiles by size (market capitalization) with quartiles formed separately each year. Panel D groups stocks into 

major industry groups: the Consumer group comprises the industries Consumer Durables, NonDurables, Wholesale, Retail, 

and some Services (Laundries, Repair Shops); the Healthcare group comprises the industries Healthcare, Medical 

Equipment, and Drugs; the Manufact group comprises the industries Manufacturing, Energy, and Utilities; the HiTech 

group comprises the industries Business Equipment, Telephone and Television Transmission; and the Other group 

comprises all other industries. The variance component shares are calculated separately for each stock in each year then 

averaged across stocks within the corresponding quartile or group, using the variance-weighted mean. The 99% confidence 

intervals are in square brackets. We also report the differences in means for the post-1997 period minus the pre-1997 period 

(Panel B) and quartile 1 minus quartile 4 (Panel C) and corresponding 𝑡-statistics in parentheses. ***, **, and * indicate 

statistically significant differences at the 1%, 5%, and 10% levels using standard errors clustered by stock and by year. The 

sample consists of stocks listed on NYSE, AMEX, and NASDAQ (average of 4,362 stocks per year with a total of 22,025 

stocks). 

  𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 (%) 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 (%) 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒 (%) 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒 (%) 

Panel A: Full sample     
 8.62 24.00 36.67 30.71 

 [8.56–8.67] [23.92–24.08] [36.59–36.76] [30.61–30.81] 

Panel B: Sub-periods    

1960–1996 7.11 22.61 34.86 35.42 

 [7.04–7.19] [22.50–22.72] [34.75–34.97] [35.28–35.56] 

1997–2015 10.19 25.46 38.58 25.78 

 [10.10–10.28] [25.33–25.58] [38.45–38.71] [25.65–25.91] 

Difference (Post-Pre 1997) 
3.07 

(1.84)* 

2.85 

(1.83)* 

3.72 

(3.74)*** 

–9.64 

(–4.85)*** 

Panel C: Quartiles by size (market capitalization)   

Q1=low 5.58 21.85 37.01 35.56 

 [5.51–5.66] [21.70–22.00] [36.85–37.16] [35.37–35.76] 

Q2 8.84 25.04 37.43 28.69 

 [8.73–8.95] [24.87–25.21] [37.24–37.62] [28.48–28.90] 

Q3 14.21 27.90 36.80 21.08 

 [14.07–14.36] [27.72–28.08] [36.62–36.99] [20.91–21.25] 

Q4=high 21.09 30.33 31.67 16.92 

 [20.92–21.26] [30.14–30.51] [31.507–31.84] [16.79–17.04] 

Difference (Q1–Q4) 
–15.51  

(–14.82)*** 

–8.48  

(–6.15)*** 

5.34 

 (5.79)*** 

18.64 

 (11.08)*** 

Panel D: Industry groups    

Consumer 7.98 23.72 36.37 31.93 

 [7.85–8.10] [23.53–23.90] [36.18–36.56] [31.71–32.16] 

Healthcare 7.67 27.01 38.01 27.30 

 [7.49–7.85] [26.71–27.31] [37.70–38.33] [27.00–27.64] 

HiTech 9.50 25.26 37.12 28.13 

 [9.36–9.63] [25.07–25.44] [36.92–37.31] [27.90–28.35] 

Manufact 10.03 24.28 35.29 30.40 

 [9.89–10.17] [24.11–24.45] [35.12–35.47] [30.18–30.61] 

Other 7.75 21.89 36.80 33.56 

 [7.65–7.86] [21.74–22.04] [36.65–36.96] [33.37–33.75] 
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Table 3. Determinants of stock return variance shares.  

This table reports the results from panel regressions of stock-year observations in which the dependent variables are the shares 

of stock return variance attributable to market-wide information (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), private firm-specific information 

(𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), public firm-specific information (𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), and noise (𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡). For comparison, 

we also include regressions in which the dependent variable is the (1 − 𝑅2) measure of firm-specific information. The 

explanatory variables in Panel A are as follows. 𝐷𝑡
𝑃𝑂𝑆𝑇  is a dummy variable that takes the value of one after 1997 and zero before. 

𝑙𝑛𝑃𝑖,𝑡  is the log price and 𝑙𝑛𝑀𝐶𝑖,𝑡 is the log market capitalization. 𝐷𝑖
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 , 𝐷𝑖

𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒, 𝐷𝑖
𝐻𝑖𝑇𝑒𝑐ℎ , and 𝐷𝑖

𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡
 are dummy 

variables that indicate the firm’s industry group (the Other Industry grouping is the omitted category). 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑖𝑜𝑖,𝑡 is a 

measure of the amount of information impounded in prices during the trading session (volatility of open-to-close returns divided 

by the volatility of overnight close-to-open returns). 𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 is a measure of the delay with which a stock’s prices respond to 

market-wide information. In Panel B we add an extended set of stock characteristics including the following. 𝐼𝑛𝑠𝑡𝑜𝐻𝑜𝑙𝑑𝑖,𝑡 is the 

percentage of outstanding shares held by institutional investors. 𝐻𝑎𝑟𝑑𝑇𝑜𝑉𝑎𝑙𝑢𝑒𝑖,𝑡 is a proxy for hard to value stocks, estimated 

as the first principal component of share turnover, idiosyncratic volatility, and firm age (following Kumar, 2009). 𝐼𝐿𝐿𝐼𝑄𝑖,𝑡 is the 

Amihud (2002) measure of illiquidity. 𝐵𝑖𝑑𝐴𝑠𝑘𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is the average effective bid-ask spread. 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖,𝑡 is (long-term debt 

+ current liabilities)/(long-term debt + current liabilities + shareholder’s equity). The sample includes stocks listed on NYSE, 

AMEX, and NASDAQ from 1960 to 2015. 𝑡-statistics are in parentheses using standard errors clustered by stock and year. ***, 

**, and * indicate statistical significance at the 1%, 5%, and 10% levels.  

 

Panel A: Basic stock characteristics as determinants 

Variable 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 (1 − 𝑅2) 

Intercept 19.38  

(7.03)*** 

12.51 

 (6.49)*** 

31.66  

(18.80)*** 

36.45  

(16.17)*** 

78.59  

(34.12)*** 

𝐷𝑡
𝑃𝑂𝑆𝑇  0.97 

 (1.03) 

–1.37  

(–1.34) 

4.29 

 (5.60)*** 

–3.88 

 (–4.01)*** 

–2.30 

 (–3.34)*** 

𝑙𝑛𝑃𝑖,𝑡 0.01 

 (0.02) 

–1.02  

(–1.95)* 

0.21 

 (0.68) 

0.80 

 (2.06)** 

0.57 

 (1.97)** 

𝑙𝑛𝑀𝐶𝑖,𝑡 0.60 

 (2.01)** 

2.52 

 (8.92)*** 

–1.02  

(–4.78)*** 

–2.09  

(–7.35)*** 

–1.38 

 (–6.15)*** 

𝐷𝑖
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟  –0.47 

 (–1.63) 

4.40 

 (12.70)*** 

0.21 

 (0.53) 

–4.13  

(–9.10)*** 

1.36 

 (5.82)*** 

𝐷𝑖
𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒  –1.07 

 (–2.15)** 

6.64 

 (14.73)*** 

0.72 

 (1.39) 

–6.29 

 (–13.43)*** 

2.99  

(6.25)*** 

𝐷𝑖
𝐻𝑖𝑇𝑒𝑐ℎ  0.58 

 (0.91) 

4.77 

 (7.42)*** 

–0.07 

 (–0.16) 

–5.27 

 (–10.58)*** 

1.80 

 (4.58)*** 

𝐷𝑖
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡

 0.99  

(1.59) 

2.75  

(7.43)*** 

–0.16 

 (–0.31) 

–3.58 

 (–7.93)*** 

–0.29 

 (–0.72) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑖𝑜𝑖,𝑡 –0.05 

 (–0.42) 

0.59 

 (3.72)*** 

0.84  

(7.17)*** 

–1.39  

(–5.91)*** 

0.44  

(2.54)** 

𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 –21.24  

(–8.97)*** 

2.46 

 (1.45) 

6.91 

 (5.93)*** 

11.87  

(8.58)*** 

29.43  

(10.56)*** 

 
          

Observations 137,903 137,903 137,903 137,903 137,903 

𝑅2 41.1% 9.8% 5.1% 31.3% 64.8% 
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Panel B: Extended set of stock characteristics as determinants  

Variable 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 (1 − 𝑅2) 

Intercept 17.32 

(5.97)*** 

13.92 

(5.28)*** 

36.25 

(17.51)*** 

32.52 

(12.46)*** 

80.17 

(27.47)*** 

𝐷𝑡
𝑃𝑂𝑆𝑇  1.78 

(2.63)*** 

–2.59 

(–2.36)** 

3.26 

(5.17)*** 

–2.44 

(–2.18)** 

–3.07 

(–4.60)*** 

𝑙𝑛𝑃𝑖,𝑡 –0.73 

(–1.32) 

–1.39 

(–2.15)** 

0.033 

(0.11) 

2.09 

(6.28)*** 

0.71 

(1.95)* 

𝑙𝑛𝑀𝐶𝑖,𝑡 1.07 

(5.91)*** 

2.27 

(8.95)*** 

–1.39 

(–10.16)*** 

–1.95 

(–8.69)*** 

–1.49 

(–6.68)*** 

𝐷𝑖
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟  –1.10 

(–2.88)*** 

4.97 

(11.85)*** 

–0.10 

(–0.23) 

–3.77 

(–7.34)*** 

2.36 

(7.05)*** 

𝐷𝑖
𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒  –1.62 

(–2.51)** 

6.82 

(14.02)*** 

0.64 

(1.08) 

–5.83 

(–10.54)*** 

3.78 

(6.31)*** 

𝐷𝑖
𝐻𝑖𝑇𝑒𝑐ℎ  0.29 

(0.38) 

5.23 

(7.14)*** 

–0.43 

(–0.83) 

–5.08 

(–9.09)*** 

2.37 

(4.60)*** 

𝐷𝑖
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡

 0.75 

(1.23) 

3.19 

(7.41)*** 

–0.26 

(–0.51) 

–3.67 

(–6.67)*** 

0.19 

(0.39) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑅𝑎𝑡𝑖𝑜𝑖,𝑡 –0.094 

(–0.68) 

0.52 

(3.17)*** 

0.84 

(7.00)*** 

–1.26 

(–6.14)*** 

0.52 

(2.46)** 

𝐷𝑒𝑙𝑎𝑦𝑖,𝑡 –21.28 

(–8.60)*** 

5.61 

(2.78)*** 

8.60 

(7.14)*** 

7.07 

(4.22)*** 

31.28 

(9.99)*** 

𝐼𝑛𝑠𝑡𝑜𝐻𝑜𝑙𝑑𝑖,𝑡 0.014 

(0.96) 

0.040 

(2.32)** 

–0.013 

(–1.37) 

–0.041 

(–4.78)*** 

–0.04 

(–2.56)** 

𝐻𝑎𝑟𝑑𝑇𝑜𝑉𝑎𝑙𝑢𝑒𝑖,𝑡 –0.30 

(–1.03) 

1.88 

(5.36)*** 

0.55 

(2.38)** 

–2.13 

(–6.83)*** 

1.27 

(4.58)*** 

𝐼𝐿𝐿𝐼𝑄𝑖,𝑡 0.003 

(1.88)* 

–0.014 

(–2.84)*** 

–0.015 

(–2.24)** 

0.026 

(2.56)** 

–0.012 

(–2.67)*** 

𝐵𝑖𝑑𝐴𝑠𝑘𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.013 

(1.81)* 

–0.068 

(–3.45)*** 

–0.052 

(–2.84)*** 

0.110 

(3.19)*** 

–0.032 

(–2.89)*** 

𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑖,𝑡 0.012 

(0.67) 

–0.083 

(–2.32)** 

0.094 

(2.89)*** 

–0.022 

(–0.64) 

–0.013 

(–0.72)  
     

Observations 82,116 82,116 82,116 82,116 82,116 

𝑅2 42.21% 11.74% 8.37% 34.15% 66.24% 
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Table 4. Effects of the tick size changes on noise and information.  

This table reports the results from panel regressions of stock-year observations in which the dependent variable is given 

in the column heading: 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑖,𝑡 is the amount of stock return variance attributed to private firm-specific 

information, 𝑁𝑜𝑖𝑠𝑒𝑖,𝑡 is the amount of stock return variance attributed to noise, and 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 is the share 

(percentage) of variance attributed to noise. The models examine the effects of tick size reductions from eighths of a 

dollar to sixteens of a dollar on June 24, 1997 using two years of data around the change (1996, 1998). 𝐷𝑡
𝑃𝑂𝑆𝑇 is a dummy 

variable that takes the value of one after 1997 and zero before. 𝑄1𝑖, 𝑄2𝑖, and 𝑄3𝑖 are dummy variables that indicate the 

price quartile to which the firm belongs (the highest price quartile, 𝑄4𝑖, is the omitted category). 𝑙𝑛𝑃𝑖,𝑡  is the log price. 𝑡-

statistics are in parentheses using standard errors clustered by stock. ***, **, and * indicate statistical significance at the 

1%, 5%, and 10% levels. The sample includes all stocks listed on NYSE, AMEX, and NASDAQ. 

 

Variable 
Model 1 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑖,𝑡 
Model 2 

𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑖,𝑡 
Model 3 

𝑁𝑜𝑖𝑠𝑒𝑖,𝑡 

Model 4 

𝑁𝑜𝑖𝑠𝑒𝑖,𝑡 
Model 5 

𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 
Model 6 

𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 

Intercept 1.39  

(64.83)*** 

3.32  

(85.95)*** 

1.02  

(66.15)*** 

4.74  

(98.32)*** 

19.87 

 (53.31)*** 

48.66 

 (77.12)*** 

𝐷𝑡
𝑃𝑂𝑆𝑇  0.15  

(5.86)*** 

0.58  

(11.12)*** 

0.25  

(12.86)*** 

0.29 

 (5.31)*** 

–0.76 

(–1.98)** 

–11.63 

 (–17.01)*** 

𝐷𝑡
𝑃𝑂𝑆𝑇 × 𝑄1𝑖  0.43 

 (8.83)*** 

  0.28 

 (5.58)*** 

  –5.55  

(–8.36)*** 

  

𝐷𝑡
𝑃𝑂𝑆𝑇 × 𝑄2𝑖  0.16  

(3.54)*** 

  0.07 

 (1.93)* 

  –5.87 

 (–8.80)*** 

  

𝐷𝑡
𝑃𝑂𝑆𝑇 × 𝑄3𝑖  0.08 

 (1.72)* 

  0.04  

(1.20) 

  –3.56 

(–5.14)*** 

  

𝑄1𝑖  1.26  

(36.53)*** 

  2.48  

(64.38)*** 

  18.87 

 (31.69)*** 

  

𝑄2𝑖  0.57  

(17.03)*** 

  0.92 

 (31.80)*** 

  10.38 

 (16.55)*** 

  

𝑄3𝑖  0.21  

(6.58)*** 

  0.38  

(15.64)*** 

  7.23  

(11.49)*** 

  

𝐷𝑡
𝑃𝑂𝑆𝑇 × 𝑙𝑛𝑃𝑖,𝑡     –0.11 

 (–6.04)*** 

  0.02 

 (0.80) 

  2.77 

 (11.80)*** 

𝑙𝑛𝑃𝑖,𝑡    –0.56 

 (–40.45)*** 

  –1.09  

(–63.33)*** 

  –7.77 

 (–34.67)*** 

       

Observations 15,440 15,440 15,440 15,440 15,440 15,440 

𝑅2  20.3% 22.3% 45.8% 49.3% 11.0% 11.7% 



  

62 

 

Table 5. Effect of analyst coverage on variance components. 

This table reports the results from difference-in-differences regressions in which we examine the causal effect of an 

exogenous drop in analyst coverage (due to brokerage mergers and closures) on variance components. The dependent 

variables are shares of stock return variance attributable to market-wide information (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), private firm-

specific information (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), public firm-specific information (𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), and noise 

(𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡). The independent variable of interest is 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 which is the number of broker disappearances 

due to mergers and closures of brokerage houses during the past two years (max of the 𝑡 − 1 and 𝑡 − 2 values). The 

regressions include stock and time (year) fixed effects. 𝑡-statistics are in parentheses using standard errors clustered by 

stock and year. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. The sample includes stocks 

listed on NYSE, AMEX, and NASDAQ from 1987 to 2011 (the period containing the analyst coverage shock events). 

 

Variable 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 

Intercept 7.52 

(112.75)*** 

–3.89 

(–66.40)*** 

–4.71 

(–102.49)*** 

1.08 

(34.07)*** 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡    0.31 

(0.43) 

0.45 

(0.70) 

–1.47 

(–2.96)*** 

0.71 

(2.09)** 

     

Observations 116,879 116,879 116,879 116,879 

𝑅2  23.0% 7.6% 2.5% 5.4% 

Fixed Effects Stock, Time Stock, Time Stock, Time Stock, Time 
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Table 6. Effect of mutual fund fire sales and discretionary trade shocks on variance components. 

This table reports the results from difference-in-differences regressions of stock-quarter observations in which we 

examine the causal effect of an exogenous shock to mutual fund trading of an underlying stock, driven by investor 

redemptions or inflows. The dependent variables are shares of stock return variance attributable to market-wide 

information (𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), private firm-specific information (𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), public firm-specific 

information (𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡), and noise (𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡). 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡  takes the value of one for 

stock-quarters that experience strong discretionary buying or selling by mutual funds in response to a redemption shock 

(a proxy for informed mutual fund trading, defined as the bottom and top deciles of mutual fund discretionary trading).  

Similarly, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 takes the value of one for stock-quarters that experience strong non-discretionary 

fire sales by mutual funds due to fund redemptions (a proxy for uninformed mutual fund trading, defined as the bottom 

decile of mutual fund non-discretionary trading). The regressions include stock and time (year-quarter) fixed effects. 𝑡-
statistics are in parentheses using standard errors clustered by stock and year-quarter. ***, **, and * indicate statistical 

significance at the 1%, 5%, and 10% levels. The sample includes stocks listed on NYSE, AMEX, and NASDAQ from 

1980 to 2015 (the period containing the mutual fund trading shock events). 

 

Variable 𝑀𝑘𝑡𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑃𝑢𝑏𝑙𝑖𝑐𝐼𝑛𝑓𝑜𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 𝑁𝑜𝑖𝑠𝑒𝑆ℎ𝑎𝑟𝑒𝑖,𝑡 

Intercept –0.50 

(–7.49)*** 

1.93 

(12.08)*** 

0.40 

(2.85)*** 

–1.83 

(–23.20)*** 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡 0.33 

(3.44)*** 

0.50 

(4.71)*** 

0.16 

(1.59) 

–0.98 

(–12.13)*** 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑎𝑑𝑒𝑆ℎ𝑜𝑐𝑘𝑖,𝑡    –0.23 

(–1.68)* 

0.19 

(1.39) 

0.07 

(0.54) 

–0.03 

(–0.32) 

     

Observations 470,307 470,307 470,307 470,307 

𝑅2  27.1% 10.0% 5.8% 7.1% 

Fixed Effects Stock, Time Stock, Time Stock, Time Stock, Time 

 

  



  

64 

 

 


