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Abstract: This paper presents an approach for the topological design of multi-material compliant
mechanisms with global stress constraints. The element stacking method and the separable stress
interpolation scheme are applied to calculate the element stiffness and element stress of multi-material
structures. The output displacement of multi-material compliant mechanisms is maximized under
the constraints of the maximum stress and the structural volume of each material. The modified
P-norm method is applied to aggregate the local von Mises stress constraints for all the finite elements
to a global stress constraint. The sensitivities are calculated by the adjoint method, and the method of
moving asymptotes is utilized to update the optimization problem. Several numerical examples are
presented to demonstrate the effectiveness of the proposed method. The appearance of the de facto
hinges in the optimal mechanisms can be suppressed effectively by using the topology optimization
model with global stress constraints, and the stress constraints for each material can be met.

Keywords: compliant mechanisms; multiple materials; topology optimization; global stress constraints;
separable stress interpolation scheme

1. Introduction

Compliant mechanisms often refer to a family of mechanisms that gain their mobility
through the flexibility of some or all of its members due to the elastic body deformation [1].
Compared with the conventional rigid-body mechanisms, compliant mechanisms are
featured with some unique benefits, such as easiness in fabrication, less wear and less
backlash, requiring no lubrication and a built-in restoring force [2,3]. Due to these advan-
tages and advances in advanced fabrication techniques, compliant mechanisms are already
widely used in the field of precision engineering, bionic robots, intelligent structures and
Micro-Electro-Mechanical Systems (MEMS) [4,5].

The methods of designing compliant mechanisms generally include two types. The
first is the pseudo-rigid-body model-based method [6], which has been successfully
adopted to design lumped compliant mechanisms with flexure hinges. The second is
the topology optimization approach [7], which is mainly applied to design fully compliant
mechanisms. Topology optimization of compliant mechanisms is a numerical process
to obtain the best material distribution under a given amount of materials so that the
prescribed mechanical performance can be achieved.

Ananthasuresh et al. [8] firstly introduced the homogenization method into the topo-
logical design of compliant mechanisms, which provided a new idea for designing compli-
ant mechanisms. Thereafter, various topology optimization methods such as ground struc-
ture method [9], solid isotropic material with penalization [10,11], level set method [12,13],
evolutionary structural optimization [14,15] and moving morphable components-based
framework [16] were developed to design compliant mechanisms. Great progress has
been gained in the topological design of compliant mechanisms. However, the topological
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design of compliant mechanisms is performed by using a single material in most studies. In
practice, it is not always possible to use only one single material to design compliant mech-
anisms for achieving desired general performance. The advantages of different materials
can be exploited fully to achieve comprehensive performance when multiple materials are
adopted to design compliant mechanisms. It can give designers more freedom in designing
advanced compliant mechanisms.

Therefore, the topological design of compliant mechanisms with multiple materials
has attracted much attention. Yin et al. [17] applied a peak function material interpola-
tion method to design multiple materials compliant mechanisms. Sigmund et al. [18]
performed topological design of electrothermally driven actuators with multiple materials.
Saxena et al. [19] proposed a method for the topological design of large-displacement and
multi-material compliant mechanisms with multiple output ports. Wang et al. [20] used a
color-level set method to design multi-material compliant mechanisms. Alonso et al. [21]
used a sequential element rejection and admission method to perform topological design
of multiple materials compliant mechanisms. Gaynor et al. [22] used a robust topology
optimization method to design multi-material compliant mechanism. Zuo et al. [23] pro-
posed an order multi-material isotropic material with penalization interpolation model
for topological design of compliant mechanism without introducing any new variables.
Wang et al. [24] applied a bi-level hierarchical optimization approach to perform topologi-
cal design of compliant mechanisms with multiple materials.

Topology optimization of compliant mechanisms using no matter single material
or multiple materials may be subject to de facto hinges, which usually results in stress
concentration and poor fatigue performance. Great efforts have been made by many re-
searchers to obtain hinge-free compliant mechanisms. Sigmund et al. [25] developed a class
of morphology-based restriction methods to impose minimum length-scale constraints in
order to eliminate the de facto hinges in the obtained compliant mechanisms. Poulsen [26]
put forward a method for topological design of hinge-free compliant mechanisms by using
a minimum length scale control. Yin et al. [27] used relative rotation constraints to suppress
the appearance of the de facto hinges in topological design of compliant mechanisms.
Zhou [28] used a hybrid discretization method to design compliant mechanisms, which can
obtain hinge-free compliant mechanisms. For avoiding undesirable hinges, Luo et al. [29]
developed a quadratic energy functional to control the geometric width of structural
components. Wang et al. [30] put forward a method for topological design of hinge-free
compliant mechanisms by using the intrinsic characteristic stiffness model. Zhu et al. [31]
proposed a two-step elastic modeling method for designing compliant mechanisms, which
can avoid de facto hinges.

More recently, De Leon et al. [32] adopted the stress-based topology optimization to
design compliant mechanisms aiming at avoiding the appearance of the de facto hinges.
Lopes et al. [33] performed topological design of compliant mechanisms with local von
Mises stress constraints using the topological derivative concept, and the undesirable
flexible hinges can be avoided. However, there are few studies about topology optimization
of multi-material compliant mechanisms under stress constraints. Chu et al. [34] applied
the stress penalty method for topology optimization design of multi-material compliant
mechanism. The stress penalty term in the optimization objective is developed to control
local stress constraints. Jeong et al. [35] used a separable stress interpolation scheme to
solve the problem for topological design of continuum structure with multiple homogenous
materials and stress constraints. Using local stress constraints, it gives rise to a topology
optimization problem of multi-material compliant mechanisms with a large number of
constraints. Consequently, a large computing time is required to solve the optimization
problem. A large number of stress constraints can be aggregated into a global constraint by
using a global stress constraints approach, and the computational efficiency can be greatly
improved. However, no work has been conducted to study topological design of multiple
materials compliant mechanisms using global stress constraints.
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The aim of this paper is to develop a new approach for topology optimization of com-
pliant mechanisms with multiple materials under global stress constraints. The element
stacking method and the separable stress interpolation scheme are applied to calculate
the element stiffness and element stress of multi-material structures, respectively. The
output displacement of multi-material compliant mechanisms is maximized under the
constraints of the maximum stress and the structural volume of each material. The mod-
ified P-norm method is applied to aggregate the local von Mises stress constraints for
all the finite elements to a global stress constraint. The sensitivities are calculated by the
adjoint method, and the method of moving asymptotes is utilized to update the topology
optimization problem.

The remainder of this paper is organized as follows. In Section 2, a new optimiza-
tion model for topological design of multi-material compliant mechanisms with global
stress constraints is proposed. In Section 3, the sensitivity analysis of the objective and
constraints are described. In Section 4, several numerical examples are used to showcase
the effectiveness of the proposed method. Conclusions are given in Section 5.

2. Optimization Problem
2.1. Material Interpolation Method

Within the existing multi-material interpolation methods such as extended solid
isotropic material with penalization (SIMP) [9], the Young’s modulus of the optional mate-
rials with respect to design variables are generally interpolated and assigned to a single
finite element. However, only one stress value per element can be evaluated in this ap-
proach. The standard SIMP-based multi-material interpolation methods may experience
difficulty in solving the problem for topological design of multi-material compliant mecha-
nisms with stress constraints. In addition, it may be difficult to directly use the standard
multi-material topology optimization approaches when multiple different materials with
different Poisson’s ratios are applied to design compliant mechanisms. Unlike the standard
SIMP method, more than one element is juxtaposed on the same pixel, and a finite element
is selected among elements having different material properties in the element stacking
method [35]. Multiple stress values per element for each material can be calculated us-
ing the separable stress interpolation scheme based on the element stacking method [36].
Therefore, the element stacking method and the separable stress interpolation scheme are
used to calculate the element stiffness and element stress for multi-material compliant
mechanisms, respectively.

For finite element structural analysis of multi-material topology optimization prob-
lems, the element stacking method is applied to calculate the element stiffness as

ke(ρ) =
NM
A

i=1

ρ
p1
e,i

NM

∏
j = 1
j 6= i

[
1−

(
ρe,j
)p2kn

e,i

]
 (1)

Here, ke is the element stiffness matrix, ρ denotes the element density, namely, the design
variables. ρe,i and ρe,j represent the design variables that the ith base material and the jth
base material are assigned to the eth element, respectively. kn

e,i is nominal stiffness matrix
of the eth element for ith base material, NM is the number of the base materials, p1 and

p2 are the penalty exponents, which are set to 3 in this work,
NM
A

i=1
denotes the pixel-level

assembly operator of the element stiffness matrices.
Multiple stress values per element for each material can be calculated by the separable

stress interpolation model
~
σe,i = ρ

p3
e,i σe,i = ρ

p3
e,i D

n
i Bue (2)
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where σe,i is the stress vector of the eth element for ith base material,
~
σe,i is the relaxed stress

vector and p3 is the stress penalization factor. The motivation for introducing the relaxation
method is to avoid the singularity phenomena, and it can make the optimization problem
more tractable by generating a smooth feasible design space. There are various stress
relaxation methods [37,38]. In this work, p3 is set to be 0.5 as suggested in reference [38]
and it works well. Dn

i is the constitutive matrix of ith material, B is the strain-displacement
matrix and ue is the element displacement vector.

For the plane stress problem, the constitutive matrix of the ith base material is
defined as

Dn
i =

Ei
1− υi

2

 1 υi 0
υi 1 0
0 0 (1− υi)/2

 (3)

where Ei and υi are the elastic modulus and the Poisson’s ratio for ith base material, respectively.

2.2. Global Stress Constraints

The von Mises stress of the eth element for ith material can be computed as

σvm
e,i =

√
(σ11

e,i )
2
+ (σ22

e,i )
2
+ 3(σ12

e,i )
2 − σ11

e,i σ22
e,i =

[
(σe,i)

TVσe,i

]1/2
(4)

Here, σ11
e,i and σ22

e,i are the stress components of the eth element for ith base material in the
x and y direction, respectively. σ12

e,i is the element shear stress. V is the auxiliary matrix
given by

V =

 1 −1/2 0
−1/2 1 0

0 0 3

 (5)

Similarly, the von Mises stress of the eth element for ith base material is penalized for
intermediate design variable value

σ̃vm
e,i = ρ

p3
e,i σ

vm
e,i (6)

where σvm
e,i is the nominal von Mises stress.

The design domain of compliant mechanisms is discretized into NE finite elements,
and each element has NM local stress constraints. It means that the total number of local
stress constraints NE× NM is too large and the computational demand is intensive. To
improve the computational efficiency, the modified P-norm method [38,39] is applied to
aggregate the local von Mises stress constraints for all the finite elements to a global stress
constraint. The element volume is applied as an elemental scale factor that has the positive
effect on convergence of the stress-constrained topology optimization problems [38]. Simi-
larly, the element densities are used as a built-in scaling in this work. The P-norm stress
measure of ith base material σPN,i can be expressed as

σPN,i =

(
NE

∑
e=1

ρe,i
(
σ̃vm

e,i
)p
) 1

p

(7)

Here, p is the P-norm factor. When p approaches infinity, the P-norm stress measure is
approximately equal to the maximum element stress. However, the higher value of p will
increase the nonlinearity of the optimization problem. In accordance with our experience,
when the factor p is set to 8, the method works well.

As the value of p cannot be too large, there is a large difference between the maximum
stress and the P-norm stress measure. The adaptive constraint scaling factor [40] is applied
to modify the P-norm stress measure in order to remedy the difference.

σmax,i = σ̃PN,i ≈ CiσPN,i (8)
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where σmax,i is the maximum stress value for ith base material and σ̃PN,i is the modified
P-norm stress measure. Ci is the scaling coefficient and can be defined as

C
(k)

i = αi
(k) σ

(k−1)
max,i

(σPN,i)
(k−1)

+
(

1− αi
(k)
)

C
(k−1)

i (9)

Here, (σPN,i)
(k−1) and σ

(k−1)
max,i are the P-norm stress and the maximum stress value for ith

base material at the k-1st iteration step, respectively. The parameter αi
(k) is taken as 0.5,

and C
(0)

i is set to 1.

2.3. The Topology Optimization Formulation

In this study, the maximization of the output displacement of multi-material compli-
ant mechanisms is defined as the objective function. The maximum element stress and
structural volume for each solid phase of materials are applied as the constraints. The
model for the topology optimization of multi-material compliant mechanisms using global
stress constraints can be expressed as

max Uout = LTU
s.t. σmax,i ≈ CiσPN,i ≤ σi

∗(i = 1, 2, · · · , NM)

Vi =
NE
∑

e=1
ρe,iv0 ≤ fi

∗V0(i = 1, 2, · · · , NM, e = 1, 2, · · · , NE)

F = KU

ρ =

 ρ1,1 · · · ρNE,1
...

...
...

ρ1,NM · · · ρNE,NM


(10)

where Uout represents the output displacement, U is the nodal displacement vector. L
is a vector with value 1 at the desired output degree of freedom and with zeros at other
all degrees of freedom. σmax,i is the maximum element stress for ith material, σi

∗ is the
allowable stress value for ith material, v0 is the volume of the solid element, Vi is the
volume of the ith base material, fi

∗ is the allowable volume fraction for ith base material,
V0 is the total volume of design domain, K is the global stiffness matrix and F is the input
load vector.

3. Sensitivity Analysis

The gradient-based optimization algorithm is used to solve the optimization problem
with multiple constraints. The adjoint method is utilized to perform the sensitivities of the
objective and constraints.

The objective Uout can be written as

Uout = LTU + ηT(F−KU) (11)

where η is the Lagrange multipliers.
The chain rule is applied to compute the sensitivity of the output displacement

∂Uout

∂ρe,i
=

[
(LT − ηTK)

∂U
∂ρe,i

− λT ∂K
∂ρe,i

U
]

(12)

Let L = Kη. Then, we have

∂Uout

∂ρe,i
= −ηT ∂K

∂ρe,i
U (13)
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The sensitivity of the volume constraint for ith material can be easily obtained as

∂Vf

∂ρe,i
= v0 (14)

The sensitivity of the maximum stress for ith material can be expressed as

∂σmax,i

∂ρe,i
≈ Ci

∂σPN,i

∂ρe,i
= Ci

∂σPN,i

∂σ̃vm
e,i

∂σ̃vm
e,i

∂ρe,i
(15)

By taking the derivation of Equation (7), the term ∂σPN,i/∂σ̃vm
e,i can be obtained by

∂σPN,i

∂σ̃vm
e,i

=

(
N

∑
e=1

ρe,i
(
σ̃vm

e,i
)p
) 1

p−1

ρe,i
(
σ̃vm

e,i
)p−1 (16)

By taking the derivation of Equation (6), the term ∂σ̃vm
e,i /∂ρe,i in Equation (15) can be

obtained by
∂σ̃vm

e,i

∂ρe,i
= p3ρ

(p3−1)
e,i σvm

e,i + ρ
p3
e,i

(
∂σvm

e,i

∂σe,i

)T
∂σe,i

∂ρe,i
(17)

The term ∂σvm
e,i /∂σe,i in Equation (17) can be expressed as

∂σvm
e,i

∂σe,i
=


∂σvm

e,i
∂σ11

e,i

∂σvm
e,i

∂σ22
e,i

∂σvm
e,i

∂σ12
e,i

 =


1

2σvm
e,i

(
2σ11

e,i − σ22
e,i

)
1

2σvm
e,i

(
2σ11

e,i − σ22
e,i

)
3

σvm
e,i

σ12
e,i

 (18)

By substituting Equations (4) and (5) into Equation (18), the term ∂σvm
e,i /∂σe,i can be

simplified as
∂σvm

e,i

∂σe,i
=

Vσe,i

σvm
e,i

(19)

By taking the derivation of Equation (2), the term ∂σe,i/∂ρe,i can be expressed as

∂σe,i

∂ρe,i
= Dn

i B
∂ue

∂ρe,i
(20)

By taking the derivation of the equation F = KU, the following equation can be
obtained while the loads are constant.

∂K
∂ρe,i

U + K
∂U

∂ρe,i
= 0 (21)

The term ∂ue/∂ρe,i in Equation (20) can be further written as

∂ue

∂ρe,i
=

∂ue

∂U
∂U

∂ρe,i
= −∂ue

∂U
K−1 ∂K

∂ρe,i
U (22)

where ∂ue/∂U represents a transformation from local degrees of freedom to the global
degrees of freedom.

By substituting Equation (22) into Equation (20), the term ∂σe,i/∂ρe,i can be further
written as

∂σe,i

∂ρe,i
= −Dn

i B
∂ue

∂U
K−1 ∂K

∂ρe,i
U (23)
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By substituting Equation (19) into Equation (17), Equation (17) can be further written as

∂σ̃vm
e,i

∂ρe,i
= p3ρ

(p3−1)
e,i σvm

e,i + ρ
p3
e,i

(
Vσe,i

σvm
e,i

)T
∂σe,i

∂ρe,i
(24)

The term ∂σ̃vm
e,i /∂ρe,i in Equation (15) can be obtained by substituting Equation (23)

into Equation (24)

∂σ̃vm
e,i

∂ρe,i
= p3ρ

(p3−1)
e,i σvm

e,i − ρ
p3
e,i

σT
e,iV

σvm
e,i

Dn
i B

∂ue

∂U
K−1 ∂K

∂ρe,i
U (25)

Let η = Ci

(
N
∑

e=1
ρe,i

(
σ̃vm

e,i

)p
) 1

p−1

ρe,i

(
σ̃vm

e,i

)p−1
. Then, Equation (15) can be simplified as

∂σmax,i

∂ρe,i
= ηp3ρ

(p3−1)
e,i σvm

e,i − ηρ
p3
e,i

σT
e,iV

σvm
e,i

Dn
i B

∂ue

∂U
K−1 ∂K

∂ρe,i
U (26)

The adjoint vector λ is obtained by the following equation.

Kλ =
ηρ

p3
e,i (

∂ue
∂U )

T
BTDn

i Vσe,i

σvm
e,i

(27)

By substituting Equation (27) into Equation (26), we have

∂σmax,i

∂ρe,i
= (ηp3ρ

(p3−1)
e,i σvm

e,i − λT ∂K
∂ρe,i

U) (28)

By taking the derivation of Equation (1), the term ∂K/∂ρ̃e,i in Equation (28) can be
obtained by

∂K
∂ρe,i

=
∂K
∂ke

∂ke

∂ρe,i
=

∂K
∂ke

NM
A

i=1

p1ρ(p1−1)
e,i

NM

∏
j = 1
j 6= i

[
1−

(
ρe,j

)p2
kn

e,i

]
 (29)

The mechanisms obtained by SIMP-based topology optimization method also experi-
ence the checker-board and the mesh-dependence phenomena. To resolve these numerical
instability issues, the filtering technique [41] is applied to modify the sensitivities. The
method of moving asymptotes (MMA) [42] is used to solve the topology optimization
problem of multiple materials compliant mechanisms with a global stress constraint. The
problem for stress-based topology optimization has a highly nonlinear behavior, which
may easily lead to non-convergence in the iteration optimization. Therefore, an external
move-limit of 0.1 is added to the MMA algorithm so that the maximum absolute difference
between an asymptotic and the design variable is limited.

4. Numerical Examples

In this section, several numerical examples are presented to demonstrate the effec-
tiveness of the proposed method. Both topological design of multi-material compliant
mechanism with stress constraints and those without stress constraints will be performed to
make comparison studies. In all the examples, the two base material properties are defined
as follows: Young’s modulus of base material 1 and base material 2 are E1 = 70 GPa and
E2 = 100 GPa, respectively, and the Poisson’s ratio of two base materials are µ1 = µ2 = 0.3.
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The sensitivity filter radius rmin is set to 2.5, and all design variable ρe,i(e = 1, 2, . . . NE,
i = 1, 2) are initialized to 0.5.

4.1. Displacement Inverter

For the first numerical example, the compliant inverter is to be designed, and the
design domain with a square of 300 µm × 300 µm and a thickness of 10 µm is defined as
Figure 1. The output port of compliant inverter is expected to generate an opposite output
movement compared to the input port. The upper left edge and the lower left edge are
fixed. The force loaded at the midpoint of the left side is 65 mN.
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Figure 1. Design domain of compliant inverter.

The input spring stiffness and the output spring stiffness are kin = 2 × 103 N/m and
kout = 1.6 × 103 N/m, respectively. Note that, the input and output springs are artificial
and they are used to model the interaction between the actuator and the mechanism or the
workpiece and the mechanism, the detailed description can be found in the literature [43].
The allowable volume fraction of base material 1 and base material 2 are f1

∗ = 0.15 and
f1
∗ = 0.125, respectively. Considering the symmetry, only the upper half of the design

domain is considered and discretized to 100 × 50 bilinear quadrilateral elements.
To verify the proposed method, topological design of two materials compliant mecha-

nisms without stress constraints is performed firstly. In the topology optimization problem
without stress constraints, the objective is developed as maximizing output displacement
subject to volume constraints. The optimal layout of two-material compliant inverter
obtained by the optimization model without stress constraints is shown in Figure 2. The
red regions represent weak material and the blue regions denote strong material in the
obtained inverter layout. As shown, one can find that de facto hinges obviously occur in the
obtained compliant inverter, which cause stress concentrations. The maximum von Mises
stresses are 329.432 MPa in weak material and 706.668 MPa in strong material, respectively.
The output displacement of the obtained compliant inverter is 14.930 µm.
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Topological design of two-material compliant inverter with global stress constraints
is performed. The allowable stresses are σ1

∗ = 275 MPa for the weak material and
σ2
∗ = 350 MPa for the strong material, respectively. The optimal layout of the compli-

ant inverter is obtained in Figure 3. Figure 4 shows the convergence histories of the output
displacement, stress constraints, volume constraints and scaling coefficient for topological
design of compliant inverter with global stress constraints. The optimization for this exam-
ple converges after 1000 iterations. There will generally be relatively large oscillations in the
initial stage because the volume of each material is reduced to meet the volume constraints.
In addition, this is a multi-constraint optimization problem (two volume constraints and
two stress constraints), in order to satisfy multiple constraints at the same time, oscillations
may occur in the middle stage of optimization. The maximum von Mises stresses are
273.506 MPa in weak material and 349.561 MPa in strong material, respectively. One can
notice that de facto hinges is effectively eliminated in the obtained compliant inverter
and stress constraints for two materials can be met. By comparing stress distribution in
Figures 2b and 3b, one can see that the stress in the compliant inverter obtained by the
proposed method is more uniformly distributed. It is demonstrated that the proposed
method is effective for topological design of two materials inverter with global stress
constraints. The output displacement of the obtained compliant inverter is 14.769 µm. The
output displacement of the compliant inverter obtained by stress-based topology optimiza-
tion is smaller than that of the inverter obtained by topology optimization without stress
constraints. This is because the stress constraints limit the maximization of the output
displacement to a certain degree.
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Figure 3. The results for topological design of multi-material compliant inverter with stress
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(c) deformed configuration.

In order to investigate the effects of different stress constraints on the performance of
optimal design, topological design of two-material compliant inverter is performed under
different constraint limits for two materials. Comparison of optimal results obtained by
topological design of multi-material compliant inverter with global stress constraints is
given in Figure 5 and Table 1. From Table 1, one can find that the stress constraints for the
weak and strong materials can be satisfied in all the case. It is observed that the optimal
topologies of compliant inverter are different under different constraint limits in Figure 5.
The hinge-free compliant inverters without de facto hinges can be obtained by using multi-
material topology optimization model with global stress constraints. One can observe that
as the stress constraint limits for two materials decreases, the output displacement of the
obtained compliant inverters also lowers, and the stress is more uniformly distributed.
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Topological design of two-material compliant gripper without stress constraints 
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shown in Figure 7. One can see that de facto hinges obviously occurs in the compliant 
gripper, causing stress concentrations. The maximum von Mises stresses are 227.924 

Figure 5. The results for topological design of multi-material compliant inverter under different stress constraint limits.
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σ∗2 = 300 MPa.
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Table 1. Optimal results for compliant inverter under different stress constraint limits.

Stress Constraints Output
Displacement

(µm)

Maximum Stress (MPa)

σ*
1 (MPa) σ*

2 (MPa) Weak Material Strong Material

150 225 13.361 149.538 224.976
175 250 13.941 172.011 243.847
200 275 14.376 200.065 275.011
225 300 14.587 224.986 299.837

4.2. Compliant Gripper

In this example, the compliant gripper is to be designed, and the design domain with
a square of 240 µm × 240 µm and a thickness of 10 µm is defined as Figure 6. The upper
left edge and the lower left edge are fixed. The force loaded at the midpoint of the left side
is 65 mN. The input spring stiffness and the output spring stiffness are kin = 3 × 103 N/m
and kout = 3 × 103 N/m, respectively. The allowable volume fraction of weak material and
strong material are f1

∗ = 0.120 and f1
∗ = 0.150, respectively. Considering the symmetry,

only the upper half of the design domain is discretized by 80 × 40 bilinear quadrilateral
elements for finite element analysis.
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Topological design of two-material compliant gripper without stress constraints and
with stress constraints are performed. The optimal layout of two materials compliant
gripper obtained by the optimization model without stress constraints is shown in Figure 7.
One can see that de facto hinges obviously occurs in the compliant gripper, causing stress
concentrations. The maximum von Mises stresses are 227.924 MPa in weak material and
1001.756 MPa in strong material, respectively. The output displacement of the optimal
gripper obtained by topology optimization without stress constraints is 7.341 µm.
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The allowable stresses are σ1
∗ = 180 MPa for the weak material and σ2

∗ = 280 MPa for
the strong material, respectively. Figure 8 shows the optimal topology of multi-material
compliant gripper obtained by the optimization model with global stress constraints. The
maximum von Mises stresses in weak material and in strong material are 180.234 MPa
and 279.946 MPa, respectively. Figure 9 shows the convergence histories of the output dis-
placement, stress constraints and volume constraints for topological design of gripper with
global stress constraints. The optimization for this example converges after 1000 iterations.
There will generally be relatively large oscillations in the initial stage because the volume
of each material is reduced to meet the volume constraints. In addition, this is a multi-
constraint optimization problem, in order to satisfy multiple constraints at the same time,
oscillations may occur in the middle stage of optimization. One can notice that the de
facto hinges are effectively avoided in the compliant gripper and stress constraints for
both weak material and strong material are met. By comparing the maximum stress in
Figures 7b and 8b, one can see that the stress in the compliant gripper obtained by the
proposed method is more uniformly distributed. It is demonstrated that the proposed
method is effective for topological design of two-material compliant gripper with global
stress constraints. The output displacement of the obtained gripper is 6.526 µm. The output
displacement of the gripper obtained by stress-based topology optimization is smaller
than that of the gripper obtained by topology optimization without stress constraints. This
is because the stress constraints limit the maximization of the output displacement to a
certain degree.

Micromachines 2021, 12, x  13 of 16 
 

 

0

50

100

150

200

250

ΜPa

( )a ( )b  
Figure 8. The convergence history for topological design of multi-material compliant gripper with 
global stress constraints ( *

1σ  = 180 MPa, *
2σ  = 280 MPa). (a) Optimal topology; (b) stress 

distribution. 

(b) (c)

0 200 400 600 800 1000
-8

-6

-4

-2

0

2

Iterations

O
u

tp
u

t 
d

is
p

la
ce

m
en

t

(a)

0 200 400 600 800 1000
100

200

300

400

500

600

700

S
tr

es
s 

co
n

st
ra

in
ts

Iterations
0 200 400 600 800 1000

200

400

600

800

1000

1200

1400

Iterations

Weak material
Strong material

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

V
o

lu
m

e 
co

n
st

ra
in

ts

Iterations
0 200 400 600 800 1000

Iterations

Weak material
Strong material

 
Figure 9. The convergence history for topological design of multi-material compliant gripper with global stress 
constraints ( *

1σ  = 180 MPa, *
2σ  = 280 MPa). (a) Output displacement; (b) stress constraints; (c) volume constraints. 

0

50

100

150

200

250

50

100

150

200

250

300

0

ΜPa ΜPa

ΜPa ΜPa

( )a ( )b

( )c ( )d

0

50

100

150

200

250

0

50

100

150

200

250
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Figure 8. The convergence history for topological design of multi-material compliant gripper with
global stress constraints (σ∗1 = 180 MPa, σ∗2 = 280 MPa). (a) Optimal topology; (b) stress distribution.
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Figure 9. The convergence history for topological design of multi-material compliant gripper with global stress constraints
(σ∗1 = 180 MPa, σ∗2 = 280 MPa). (a) Output displacement; (b) stress constraints; (c) volume constraints.

Topological design of two-material compliant gripper is performed under different
constraint limits for two materials. Comparison of optimal results obtained by topologi-
cal design of multi-material compliant gripper with global stress constraints is given in
Figure 10 and Table 2. The optimal topologies of compliant grippers obtained by topology
optimization under different constraint limits are different, and the stress constraints for
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each material are met in all the cases. It is observed that the hinge-free compliant grippers
can be obtained by multi-material topology optimization model with global stress con-
straints. One can observe that as the stress constraint limits for two materials decreases,
the output displacement of the obtained compliant grippers also lowers, and the stress is
more uniformly distributed.
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Figure 10. The results for topological design of multi-material compliant gripper under different stress constraint limits.
(a) σ∗1 = 150 MPa, σ∗2 = 250 MPa; (b) σ∗1 = 170 MPa, σ∗2 = 270 MPa; (c) σ∗1 = 190 MPa, σ∗2 = 290 MPa; (d) σ∗1 = 210 MPa,
σ∗2 = 310 MPa.

Table 2. Optimal results for compliant gripper under different stress constraint limits.

Stress Constraints Output
Displacement

(µm)

Maximum Stress (MPa)

σ*
1 (MPa) σ*

2 (MPa) Weak Material Strong Material

150 250 5.199 151.192 250.275
170 270 5.914 169.814 269.678
190 290 7.055 191.839 290.063
210 310 7.125 202.027 310.068

In order to investigate the effects of different output spring stiffness on the perfor-
mance of optimized design, stress-based topology optimization of two materials compliant
gripper is performed with different output spring stiffness. The allowable stresses are
σ1
∗ = 180 MPa, σ2

∗ = 280 MPa for the weak material and the strong material, respectively.
The optimal topologies and stress distribution of the obtained compliant grippers are
shown in Figure 11. The optimal topologies of compliant grippers obtained by topology
optimization under different output spring stiffness are different, and the stress constraints
for each material are met in all the cases. It is observed that the output spring stiffness
decreases, and the output displacement of the obtained compliant grippers increases, as
shown in Table 3.
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Figure 11. The results for topological design of multi-material compliant gripper under different output spring stiffness.
(a) kout = 1 × 103 N/m; (b) kout = 2 × 103 N/m; (c) kout = 3 × 103 N/m; (d) kout = 4 × 103 N/m.

Table 3. Optimal results for compliant gripper under different output spring stiffness.

Output Spring
Stiffness

kout (N/m)

Output
Displacement

(µm)

Maximum Stress (MPa)

Weak Material Strong Material

1 × 103 9.168 180.064 280.571
2 × 103 7.579 179.894 279.709
3 × 103 6.526 180.234 279.946
4 × 103 5.239 177.928 280.065

5. Conclusions

A method for topology optimization of multi-material compliant mechanisms with
global stress constraints was put forward. The output displacement of multi-material
compliant mechanisms is maximized under the constraints of the maximum stress and the
structural volume of each material. The modified P-norm method is applied to aggregate
the local von Mises stress constraints for all the finite elements to a global stress constraint.
The method of moving asymptotes is utilized to update the topology optimization problem

Several numerical examples are presented to demonstrate the effectiveness of the
proposed method. Comparing the results obtained by the model without stress constraints,
the appearance of undesirable de facto hinges in the optimal mechanisms can be suppressed
effectively by using the topology optimization model with global stress constraints, and the
stress constraints for multiple materials are all met in all the cases. The optimal topologies
of compliant mechanisms obtained by topology optimization with different constraint
limits are different. As the stress constraint limits for two materials decreases, the output
displacement of the obtained compliant mechanisms also lowers, and the stress is more
uniformly distributed. The topologies of compliant mechanisms obtained by topological
design under different output spring stiffness are also different. As the output spring
stiffness decreases, the output displacement of the compliant mechanisms increases.

Compliant mechanisms may undergo large deformation during actual operation.
Multi-material topology optimization of large-displacement compliant mechanisms with
global stress constraints will be investigated in the near future.
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