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We present a numerical method for modelling noise in Stimulated Brillouin Scattering (SBS). The model
applies to dynamic cases such as optical pulses, and accounts for both thermal noise and phase noise from
the input lasers. Using this model, we compute the statistical properties of the optical and acoustic power
in the pulsed spontaneous and stimulated Brillouin cases, and investigate the effects of gain and pulse
width on noise levels. We find that thermal noise plays an important role in the statistical properties of
the fields, and that laser phase noise impacts the SBS interaction when the laser coherence time is close to
the time-scale of the optical pulses. This algorithm is applicable to arbitrary waveguide geometries and
material properties, and thus presents a versatile way of performing noise-based SBS numerical simula-
tions, which are important in signal processing, sensing, microwave photonics and opto-acoustic memory
storage. © 2021 Optical Society of America
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1. INTRODUCTION

Stimulated Brillouin Scattering (SBS) is an opto-acoustic pro-
cess that results from the interaction between two counter-
propagating optical fields, the pump and the Stokes, as well
as an acoustic wave inside a dielectric medium [1–5]. This in-
teraction has been used for applications including narrow-band
radio-frequency (RF) and optical signal filtering [6, 7], phase con-
jugation and precision spectroscopy [1], novel laser sources [8, 9],
and in recent experiments in opto-acoustic memory storage [10].
One of the key challenges of simulating the SBS interaction is
modelling of thermal noise, which is present in all real systems
and which can significantly affect performance [11–13]. Sim-
ulating noise in the SBS equations is complicated because of
the nonlinear coupling between the envelope fields: beyond
the undepleted pump regime the noise is multiplicative and
can only be understood in the context of statistical moments
using multiple independent realizations [14]. Thermal noise in
SBS has been simulated numerically in earlier studies [11, 12],
with these investigations concentrating on the noise properties
of the Stokes signal that arises spontaneously in response to
a strong, continuous-wave (CW) pump. More recent simula-
tions [15] have incorporated both thermal and laser noise in
the SBS interaction, but have focused on single-mode structures
such as micro-ring resonators in steady-state laser conditions. A
numerical method for solving the transient SBS equations with

laser and thermal noise is needed for accurately predicting and
characterizing the noise in modern integrated SBS waveguide
experiments [2, 10, 16].

In this paper, we present a numerical method by which the
transient SBS equations with thermal noise can be solved for
pulses of arbitrary shape and size, in arbitrary waveguide ge-
ometries. The method allows for the inclusion of input laser
noise in the form of stochastic boundary conditions. We apply
this method to the case of a short chalcogenide waveguide and
use the model to compute the statistics of the output envelope
fields. We examine the dynamics of the noise when the Stokes
arises spontaneously from the thermal field, and for the case
when it is seeded with an input pulse at the far end of the waveg-
uide. We demonstrate the transition from the low-gain, short
pulse case, in which noise is amplified by the pump, to the high
gain, long pulse regime in which coherent amplification occurs.
In this latter situation, we show that while the output pulses re-
main smooth, significant fluctuations in the peak powers arising
from the thermal field can persist. We also show that, within the
framework of this model, phase noise from the pump only has
a significant impact on Stokes noise when the laser coherence
time matches the time scales of the pulses involved in the inter-
action. Finally, we investigate the convergence of this numerical
method, and find that it yields linear convergence in both the
average power and variance of the power for three fields in the
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SBS interaction, which is in agreement with the Euler-Mayurama
scheme for solving stochastic ordinary differential equations.

2. METHOD

A. The SBS equations
We consider backward SBS interactions in a waveguide of finite
length L along the z-axis, in which a pump pulse with angular
frequency ω1 is injected into the waveguide at z = 0 and propa-
gates in the positive z-direction, while a signal pulse is injected
at z = L and propagates in the negative z-direction, as shown in
Fig. 1. The spectrum of the signal pulse is centered around the
Brillouin Stokes frequency ω2 = ω1 −Ω, which is down-shifted
from the pump by the Brillouin shift Ω, and its spectral extent
lies entirely within the Brillouin linewidth ∆νB. When these
two pulses interact, energy is transferred from the pump to the
signal via the acoustic field, resulting in coherent amplification
of the signal around the Brillouin frequency. At the same time,
as the pump moves through the waveguide, it interacts with
the thermal phonon field and generates an incoherent contribu-
tion to the Stokes field which also propagates in the negative
z-direction. This noisy Stokes field combines with the coherent
signal to form a noisy amplified output field centered around
the Stokes frequency. The interaction can be modelled using
three envelope fields for the pump (a1(z, t)), Stokes (a2(z, t)) and
acoustic field (b(z, t)), according to the equations [14]

∂a1
∂z

+
1
v

∂a1
∂t

+
1
2

αa1 = iω1Q1a2b∗, (1a)

∂a2
∂z
− 1

v
∂a2
∂t
− 1

2
αa2 = iω2Q2a1b, (1b)

∂b
∂z

+
1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1 a2 +
√

σR(z, t). (1c)

Here α and αac are the optical and acoustic loss coefficients
respectively (in units of m−1), along with optical group velocity
v > 0 and acoustic group velocity va > 0. The envelope fields
a1,2 and b have units of W1/2. The coefficients Q1,2,a represent
the coupling strength of the SBS interaction, which depend on
the optical and acoustic modes of the waveguide [17]; from local
conservation of energy, we have Q2 = Q∗1 and Qa = Q1 [18].
Here we focus on the single acoustic-mode case, which we can
choose by tuning the laser frequencies and relying on the large
free spectral range of the acoustic modes. This model can further
be extended by including additional acoustic fields with their
own opto-acoustic coupling constants and potentially different
noise properties [18].

The boundary conditions for the pump and signal fields
are applied by specifying the input values a1(0, t) and a2(L, t)
respectively. These boundary conditions depend on the laser
properties, such as the linewidth, and may contain noise. Ther-
mal noise in the waveguide is introduced through the complex-
valued space-time white noise function R(z, t), which has mean
〈R(z, t)〉 = 0 and auto-correlation function 〈R(z, t)R∗(z′, t′)〉 =
δ(z− z′)δ(t− t′). The noise strength is derived by analytically
solving Eq. (1c) in the absence of any optical fields [14], and is
σ = kBTαac where kB is the Boltzmann constant and T is the
temperature of the waveguide.

We begin with the observation that the propagation distance
of the acoustic wave over the time-scale of the interaction is very
small [11]. We therefore apply the limit ∂zb → 0 in Eq. (1c),
which simplifies to

1
va

∂b
∂t

+
1
2

αacb = iΩQaa∗1 a2 +
√

σR(z, t). (2)

x

y
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Fig. 1. Illustration of the SBS interaction, showing the pump,
Stokes and acoustic powers on a photonic chip waveguide. In
(a), the pump and Stokes pulses are injected into opposite ends
of the waveguide, and the acoustic field is made up of random
thermal fluctuations. In (b), the optical fields have interacted
inside the waveguide, the Stokes depletes the pump to gain
some energy, and the rest of the energy goes to the acoustic
field.

This has the formal solution

b(z, t) = ivaΩQa

∫ t

−∞
e−

Γ
2 (t−s)a∗1(z, s)a2(z, s)ds + D(z, t), (3)

where Γ = vaαac is decay rate of the acoustic field, namely Γ =
1/τa, and is related to the Brillouin linewidth via Γ = 2π∆νB.
The thermal noise enters through the function

D(z, t) = va
√

σ
∫ t

−∞
e−

Γ
2 (t−s)R(z, s)ds. (4)

This function D is a stochastic integral with zero mean
〈D(z, t)〉 = 0 since the function R(z, s) is itself a zero-mean
stochastic process. The auto-correlation function of D at two
times and two points in space is found by following the deriva-
tion in [14], which uses the stochastic Fubini theorem [19] to
obtain the expression:〈

D(z, t)D∗(z′, t′)
〉
=

vaσ

αac
δ(z− z′) exp

{
−Γ

2

∣∣t− t′
∣∣} . (5)

Upon substitution of Eq. (3) into Eq. (1a) and Eq. (1b), and as-
suming that the fields a1,2 are everywhere zero for t < 0, we
obtain the pair of equations

∂a1
∂z

+
1
v

∂a1
∂t

+
1
2

αa1 = iω1Q1a2(z, t)D∗(z, t)

− 1
4

g1Γa2(z, t)
∫ t

0
e−

Γ
2 (t−s)a1(z, s)a∗2(z, s)ds, (6)
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∂a2
∂z
− 1

v
∂a2
∂t
− 1

2
αa2 = iω2Q2a1(z, t)D(z, t)

− 1
4

g2Γa1(z, t)
∫ t

0
e−

Γ
2 (t−s)a∗1(z, s)a2(z, s)ds, (7)

where g1 = g0ω1/ω2, g2 = g0, and the SBS gain parameter
g0 = 4vaω2Ω|Q2|2/Γ (with units of m−1W−1) [14].

The approach of the numerical method is to solve Eq. (6)
and Eq. (7) in a stepwise manner to find the optical fields; the
optical fields at each time step are then substituted into Eq. (3)
to obtain the acoustic envelope field, and the process is repeated.
At each time step the solution requires calculation of the thermal
noise function D(z, t) which behaves as a random walk in time
while remaining white in space. The optical equations are solved
with the input boundary conditions a(0, t) = ap(t) and a(L, t) =
as(t); in general, these boundary conditions may be stochastic
to account for noise in the input lasers. In the following we
first describe the approach taken to compute the thermal noise
function, then discuss the inclusion of noise into the boundary
conditions, before describing the iterative algorithm itself.

It should be noted that it is also possible to
solve Eq. (1a), Eq. (1b) and Eq. (1c) directly without inte-
grating the acoustic envelope field in time first (as in Eq. (3)),
and this procedure would yield the same results. However,
since the thermal background field is assumed to be in an
equilibrium state by t = 0, this alternative method would
require simulating the acoustic envelope field for a very long
time t < 0. This is computationally less efficient and poses no
advantages over the present method.

B. Computing the thermal noise function
The function D(z, t) contains all the thermal noise information
about the system. To model D(z, t) numerically, we note that
its evolution in time corresponds to an Ornstein-Uhlenbeck pro-
cess [20]. Equation (4) can be written in Itô differential form [21]
as

dD(zj, t) = −1
2

ΓD(zj, t)dt + va
√

σR(zj, t)dt, (8)

where the z axis is discretized on the equally spaced grid zj with
spacing ∆z. We know that R(zj, tn)dt = 1√

∆z
dWj(tn) where

dWj(tn) is the standard complex-valued Wiener increment in
time, and the scaling factor arises from the Dirac-delta nature of
the continuous-space auto-correlation function of D(z, t). The
complex increment dWj(t) is a linear combination of two inde-
pendent real Wiener processes

dWj(t) =
1√
2

[
dW(1)

j (t) + idW(2)
j (t)

]
, (9)

where
〈

dW(p)
j (t)dW(q)

j (t)
〉
= δpqdt, where δpq is the Kronecker

delta. Integrating Eq. (8) from 0 to t yields the analytic solution

D(zj, t) = e−
1
2 ΓtD0(zj) + va

√
σ

∆z

∫ t

0
e−

Γ
2 (t−s)dWj(s), (10)

where D0(zj) is the cumulative random walk from t = −∞ up
to t = 0. This quantity is calculated using

D0(zj) =
1√
2

[
N (1)

zj

(
0,

vaσ

αac∆z

)
+ iN (2)

zj

(
0,

vaσ

αac∆z

)]
, (11)

where N (1,2)
zj (0, vaσ/αac∆z) are normal random variables with

zero mean and variance vaσ/(αac∆z), independently sampled at

each zj. Numerically, we can compute the integral in Eq. (10) fol-
lowing the procedure in Appendix A. Thus, we simulate Eq. (10)
as a random walk using discrete increments ∆t

D(zj, tn+1) = e−
1
2 Γ∆tD(zj, tn)

+ γ(∆t)
[
N (1)

zj ,tn
(0, 1) + iN (2)

zj ,tn
(0, 1)

]
, (12)

where

γ(∆t) = va

√
σ
(
1− e−Γ∆t

)
2∆zΓ

, (13)

and setting the initial value as D(zj, t0) = D0(zj). The random

numbers N (1,2)
zj ,tn

(0, 1) are independently sampled at each point
(zj, tn). Figure 2 shows multiple realizations of D(zj, t) at an
arbitrary point zj and its ensemble average.
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Fig. 2. Multiple independent realizations (dashed grey) of
the modulus squared of the thermal function |D(zj, t)|2 at an
arbitrary position zj, the numerical ensemble average over 20
realizations (red) and the analytic ensemble average (blue). We
use a temperature of T = 300 K, va = 2500 m/s, τa = 5.3 ns,
∆z = 0.79 mm and ∆t = 6.43 ps.

C. Noisy boundary conditions
Input laser noise can be an important feature in SBS experiments.
In the context of the SBS envelope equations, it enters in the form
of random phase fluctuations at the inputs of the waveguide,
namely z = 0 for the pump field and z = L for the Stokes
field. We simulate this laser phase noise in the input fields by
modeling the boundary conditions as

a1(0, tn) = ap(tn) =
√

Pin
1 (tn)eiφ1(tn), (14)

a2(L, tn) = as(tn) =
√

Pin
2 (tn)eiφ2(tn), (15)

where Pin
1 (t) and Pin

2 (t) are deterministic envelope shape func-
tions for the pump and Stokes fields respectively represent-
ing input power from the lasers. The variables φ1(t) and
φ2(t) are stochastic phase functions modeled as zero-mean
independent Brownian motions. The variation in the phase
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φ(t) is related to the laser’s intrinsic linewidth ∆νL, or con-
versely the coherence time τcoh = 1/(π∆νL), via the expression〈
[φ(t + τ)− φ(t)]2

〉
= 2π∆νL|τ|, where τ = t′ − t for the two

times t′ and t [22–24]. Following a similar numerical procedure
to [25], we compute φj(t) as

φj(t) =
√

2π∆νL

∫ t

0
dWj(s), (16)

where dW(s) is a real-valued Wiener process increment in time.
To generate the random walk numerically, we cast this integral
as an Itô differential equation dφj(t) =

√
2π∆νLdWj(t), which

is discretized using an Euler-Mayurama [26] scheme as

φj(tn+1) = φj(tn) +
√

2π∆νL
√

∆t Ntn (0, 1), (17)

whereNtn (0, 1) is a standard normally distributed random num-
ber sampled at each tn. A simulation of a single realization of
the noisy boundary conditions is shown in Figure 3.

(a) (b)

(c) (d)

Fig. 3. Single realization of the noisy boundary conditions.
The plots show (a) pump power, (b) pump phase, (c) Stokes
power and (d) Stokes phase. Both pulses are Gaussian with
FWHM of 2 ns. The laser linewidth used here is ∆νL = 100
MHz.

D. The numerical algorithm
We now present the main numerical algorithm of this paper.
The algorithm consists of two consecutive steps: first, we
solve Eqs. (1a) and (1b) in the absence of optical loss or non-
linear interactions. In other words, we solve the following pair
of advection equations

∂a1
∂z

+
1
v

∂a1
∂t

= 0, (18)

∂a2
∂z
− 1

v
∂a2
∂t

= 0. (19)

With the boundary conditions a1(0, t) = ap(t) and a2(L, t) =
as(t), these have the elementary solutions

a1(z, t) = ap

(
t− z

v

)
, (20)

a2(z, t) = as

(
t− L− z

v

)
. (21)

Setting the numerical grid parameter ∆z = v∆t further simpli-
fies Eq. (20) and 21 to

a1(zj, tn) ← a1(zj−1, tn−1), (22)

a2(zj, tn) ← a2(zj+1, tn−1), (23)

such that the optical fields are shifted in space by exactly ∆z
during each time iteration. The envelope field b(z, t) is assumed
to remain stationary in space during each time step, as is typical
in the context of SBS experiments involving pulses [14]. After
the fields are shifted across the waveguide, we solve the time
evolution equations at each point zj independently; i.e. we solve

1
v

∂a1(zj, t)
∂t

= −1
2

αa1(zj, t)− 1
4

g1Γa2(zj, t)I∗1,2(zj, t)

+ iω1Q1a2(zj, t)D∗(zj, t), (24)

1
v

∂a2(zj, t)
∂t

= −1
2

αa2(zj, t) +
1
4

g2Γa1(zj, t)I1,2(zj, t)

− iω2Q2a1(zj, t)D(zj, t), (25)

where the interaction integral I1,2(zj, t) is computed as

I1,2(zj, tn) =
∆t
2

e−
Γ
2 n∆t

[
I1,2(zj, tn−1)

+ a∗1(zj, tn−1)a2(zj, tn−1)e
Γ
2 (n−1)∆t

+ a∗1(zj, tn)a2(zj, tn)e
Γ
2 n∆t

]
. (26)

To integrate the envelope fields a1 and a2 in time, we use an
Euler-Mayurama scheme [27], which yields the following finite-
difference equations

a1(zj, tn+1) =

[
1− vα∆t

2

]
a1(zj, tn)

− v∆t

[
g1ΓI∗1,2(zj, tn)

4
− iω1Q1D∗(zj, tn)

]
a2(zj, tn), (27)

a2(zj, tn+1) =

[
1− vα∆t

2

]
a2(zj, tn)

+ v∆t

[
g2ΓI1,2(zj, tn)

4
− iω2Q2D(zj, tn)

]
a1(zj, tn). (28)

The acoustic field is computed at each zj and tn+1 after comput-
ing a1,2, via the equation

b(zj, tn+1) = ivaΩQa I12(zj, tn+1) +
√

∆zD(zj, tn+1). (29)

The
√

∆z factor in front of D(zj, tn+1) ensures that the variance
of b is independent of the numerical grid resolution.

Once all the fields are computed at tn+1, we repeat the drift
steps in Eq. (22) and Eq. (23) and the entire process is iterated
until the optical fields have propagated across the waveguide.
The steps of this numerical method are given in Algorithm 1.
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Algorithm 1. Numerical algorithm

1: Compute D(zj, tn) for all tn
2: Compute φ1,2(tn) for all tn
3: Set a1,2 = 0 inside z ∈ [0, L]
4: for n = 1 to Nt − 1 do . Nt = size of time grid
5: Insert noisy boundary conditions in a1,2 at tn
6: Shift optical fields a1,2 in space by ∆z
7: Compute interaction integral I1,2(zj, tn)
8: Compute a1,2(zj, tn+1) from a1,2(zj, tn)
9: Compute b(zj, tn+1)

end for

E. Statistical properties of the fields
The iterative scheme in Algorithm 1 computes a single realiza-
tion of the SBS interaction given a specific set of input parame-
ters. We must repeat this process M times with the same input
parameters to build an ensemble of M independent simulations,
from which statistical properties may be calculated. For instance,
the true average of the power for all three fields (P1,2 for the op-
tical fields and Pa for the acoustic field) may be calculated as

〈
P1,2(zj, tn)

〉
=

〈∣∣∣a1,2(zj, tn)
∣∣∣2〉 ≈ 1

M

M

∑
m=1

∣∣∣a(m)
1,2 (zj, tn)

∣∣∣2 ,

(30)〈
Pa(zj, tn)

〉
=

〈∣∣∣b(zj, tn)
∣∣∣2〉 ≈ 1

M

M

∑
m=1

∣∣∣b(m)(zj, tn)
∣∣∣2 , (31)

where m refers to a specific realization of each process. Similarly,
we compute the standard deviation in the power at each point
(zj, tn) as

std
[

P1,2(zj, tn)
]
=

√〈[
P1,2(zj, tn)

]2
〉
−
〈

P1,2(zj, tn)
〉2

, (32)

std
[

Pa(zj, tn)
]
=

√〈[
Pa(zj, tn)

]2
〉
−
〈

Pa(zj, tn)
〉2

. (33)

The standard deviation is useful when comparing with exper-
iments, since it gives a quantitative measure of the size of the
power fluctuations in the measured optical fields.

3. RESULTS AND DISCUSSION

We demonstrate the numerical method by simulating the SBS
interaction of the three fields with both thermal noise (T = 300
K, ∆νB = 30 MHz) and laser noise (∆νL = 100 kHz), using a
chalcogenide waveguide of length 50 cm, with the properties in
Table 1. Although our formalism includes optical loss through
the factor α, we have chosen α = 0 in the simulations to focus on
the effect of net SBS gain and pulse properties on the noise. Here
we study the noisy SBS interaction in two different cases: spon-
taneous scattering and stimulated scattering, and investigate the
effects of pump width and SBS gain on the noise properties of
the Stokes field.

A. The spontaneous Brillouin scattering case
We first consider the situation in which there is no input Stokes
field from an external laser source, and the Stokes arises purely
from the interaction between the pump and the thermal field
— this situation is customarily referred to as spontaneous or
spontaneously-seeded Brillouin scattering. We specify a Gaus-
sian pump pulse of varying widths and constant peak power,

Parameter Value

Waveguide length L 50 cm

Waveguide temperature T 300 K

Refractive index n 2.44

Acoustic velocity va 2500 m/s

Brillouin linewidth ∆νB 30 MHz

Brillouin shift Ω/2π 7.7 GHz

Brillouin gain parameter g0 423 m−1W−1

Optical wavelength λ 1550 nm

Laser linewidth ∆νL 100 kHz

Peak pump power 1 W

Peak Stokes power 0−1 mW

Simulation time t f up to 80 ns

Pump pulse FWHM 0.5−5 ns

Stokes pulse FWHM 1 ns

Grid size (space) Nz 1001

Grid size (time) Nt 2601

Step-size ∆t 4.07 ps

Table 1. Simulation parameters using a chalcogenide waveg-
uide of the type shown in [28].

with input phase noise (∆νL = 100 kHz). Setting the waveg-
uide temperature at 300 K and the pump FWHM of 2 ns, in
Fig. 4(a)−(c) we see that the thermal acoustic field interacts with
the pump to generate an output Stokes signal. At the same time,
the Stokes field depletes some of the pump and amplifies the
acoustic field, which leads to more Stokes energy being gener-
ated. The noisy character of the Stokes field in Fig. 4(b) is due to
the incoherent thermal acoustic background, which generates
multiple random Stokes frequencies. In this short-pump regime,
the SBS amplification is small, and the generated Stokes field
remains incoherent.
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z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

max P1 = 1 W(a) (d) max std [P1] = 7.3 µW

max P2 = 10 µW(b) (e) max std [P2] = 4.8 µW

max Pa = 19 fW(c) (f) max std [Pa] = 6 fW

Fig. 4. Waterfall plots for a single numerical realization of
(a) pump power, (b) Stokes power and (c) acoustic power in
the spontaneous scattering case, using a Gaussian pump of
FWHM 2 ns and peak power of 1 W. Plots (d)−(f) show the
standard deviation of the field powers at each point (z, t), cal-
culated from 100 independent realizations of the SBS interac-
tion.

As we increase the width of the pump to 5 ns, the net SBS gain
in the waveguide also increases. In this long-pump regime, the
(spontaneously-generated) Stokes field is amplified coherently,
as shown in Fig. 5(b). However, it should be noted that, although
the Stokes output becomes smooth, there is significant variation
in the peak Stokes power from one independent realization to
the next, as illustrated in Fig. 6(a) and (b). The standard devia-
tion of the Stokes power over multiple independent realizations
increases with longer pump pulses, as shown in Fig. 5(e).

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)

t (ns)

z (cm)
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Fig. 5. Waterfall plots for a single numerical realization of
(a) pump power, (b) Stokes power and (c) acoustic power in
the spontaneous scattering case, using a Gaussian pump of
FWHM 5 ns and peak power of 1 W. Plots (d)−(f) show the
standard deviation of the field powers at each point (z, t), cal-
culated from 100 independent realizations of the SBS interac-
tion.

τp = 2 ns τp = 5 ns
(a) (b)

Fig. 6. Multiple independent realizations of the spontaneously
generated Stokes power across the waveguide for (a) 2 ns
wide pump and (b) 5 ns wide pump. These snapshots are
taken at the time when the peak of the pump pulse reaches
z = 50 cm.

As the pump becomes very long we approach the CW regime,
in which the pump power ramps up quickly at z = 0 and is kept
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at a constant value. If the waveguide is sufficiently long, the
spontaneously generated Stokes field is amplified coherently
until pump depletion begins to take effect, initially at z = 0
and then throughout the length of the waveguide, until both
Stokes and pump fields relax into the steady-state configura-
tion in which the pump decreases exponentially, as shown in
Fig. 7(a)−(b). When such a steady state is reached, the deple-
tion induced by the spontaneously-seeded Stokes may inhibit
Brillouin scattering from an input Stokes pulse injected at z = L.
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z (m)

t (ns)

z (m)

Pump power (max. 1 W) Stokes power (max. 1.05 W)(a) (b)

Fig. 7. Waterfall plots for a single numerical realization of
(a) pump power and (b) Stokes power in the spontaneous
scattering case, using a CW pump with 1 W peak power.

Returning to the pulsed case, we investigate the effect of in-
creasing the peak pump power, and therefore the overall SBS
gain, on the amplification of the spontaneous Stokes field. Fig-
ure 8 shows how the Stokes spectral linewidth increases for
input pump powers between 0.1−2 W for a Gaussian pump
pulse with fixed FWHM of 5 ns. The increase in linewidth
occurs due to the transition from linear to nonlinear SBS ampli-
fication: in the linear amplification regime, the spontaneously
generated Stokes field retains a constant temporal width while
its peak power increases with input pump power. In the nonlin-
ear amplification regime, the Stokes field undergoes temporal
compression as a result of the central peak of the pulse being
amplified faster than the tails. Beyond 2 W of peak pump power,
the spectral linewidth of the Stokes field narrows as pump deple-
tion becomes significant, because the Stokes field is prevented
from uniformly experiencing exponential gain throughout the
waveguide, an effect which is also observed in the CW pump
case [29].

B. The effect of laser phase noise
Our previous simulations included laser phase noise correspond-
ing to a laser linewidth of 100 kHz in the pump. This is equiv-
alent to a coherence time of τcoh = 3.2 µs, which is at least 100
times larger than the characteristic time of the SBS interaction
in Fig. 4−7. For this reason it is understandable that no con-
tribution from the laser phase noise to the optical or acoustic
fields was observed. The contribution of laser phase noise can
however be observed if the linewidth of the pump is suffiently
broad. We therefore consider the CW-pump regime with zero
Stokes input power, with a laser linewidth of 100 MHz, which
corresponds to a coherence time of 3.2 ns (Fig. 9). We see a sig-
nificant contribution from the laser phase noise in the form of
amplitude fluctuations, which are completely absent in the 100
kHz linewidth case (Fig. 7). From this we infer that when the
laser coherence time τcoh is comparable to the pulse widths τp,s,
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Fig. 8. Computations of the spontaneously generated Stokes
field at z = 0 over 500 independent realizations, using a 5 ns
Gaussian pump pulse, with varying input peak pump power.
Plot (a) shows the output ensemble averaged Stokes power
at z = 0, normalized by the maximum power at each input
pump, (b) shows the FWHM of the Stokes in time domain.
Plot (c) shows the normalized power spectral density (PSD)
of the Stokes field, and (d) is the FWHM of the Stokes in fre-
quency domain.

the fluctuations in the phase are fast enough to be transferred to
the envelope of the pulse. However, when τcoh � τp,s, the noisy
character of the envelope fields will vanish. This has important
implications for the case of pulsed SBS: phase noise can only
play a significant role in the interaction if τcoh ≤ τp,s. For lasers
with a relatively small linewidth, such as in the kHz range, phase
noise will only become a significant effect when operating in the
long-pulse or CW regime.

C. The stimulated Brillouin scattering case
We now examine the case of seeded Brillouin scattering, in which
a Stokes signal is injected at z = L. We first consider a 1 mW
peak power Stokes pulse of FWHM 1 ns in the same chalco-
genide waveguide as before. The pump is a Gaussian pulse of
constant peak power of 1 W, with a width of 2 ns. As can be
seen in Fig. 10, the Stokes pulse remains smooth throughout the
interaction, and although the standard deviation over 100 inde-
pendent realizations is approximately 1.4% of the peak value,
there are no visible fluctuations in the power across space or time
in Fig. 10(b). A closer look at multiple individual realizations
in Fig. 11(a) reveals that there is a measurable level of variation
in the Stokes power, although each individual realization of the
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Fig. 9. Waterfall plots for a single numerical realization of
(a) pump power and (b) Stokes power in the spontaneous
scattering case, using a CW pump with 1 W peak power and a
laser linewidth of 100 MHz.

Stokes field is smooth. By increasing the pump width to 5 ns
as shown in Fig. 11(b), we also increase the standard deviation
in the Stokes, however each independent realization appears
smoother compared to Fig. 11(a). This further demonstrates how
in the longer pump, high SBS gain regime, the amplification of
the Stokes is sufficient to cancel random phase differences in the
Stokes field, as we observed in the spontaneous scattering case
in Fig. 5.

D. Convergence of the method
We now study the convergence of the numerical method by look-
ing at the statistical properties of the power in each field at fixed
points on (z, t). We use a default minimum step-size in time
∆tmin = 40.7 fs against which we compare the results for larger
step-sizes ∆t. We compute the relative error in the power and
variance of the power, taken over 1,000 independent realizations.
These results correspond to what is known as weak convergence
in stochastic differential equations [26], where the mean value of
a random quantity, in our case the power, converges at a specific
rate with respect to the step-size used.

The results for the convergence computations are shown in
Fig. 12. As expected from the Euler-Mayurama scheme [26],
the convergence rate is at most linear for the mean power of all
three fields. A similar rate of convergence is recorded for the
variance in each power, showing a one-to-one error reduction
with step-size. Although some higher order methods exist which
implement higher order Taylor expansions and Runge-Kutta
schemes [26, 30–32], these methods only work with ordinary
stochastic differential equations; numerical methods for partial
stochastic differential equations are an active area of research in
applied mathematics [33].

4. CONCLUSION

We have presented a numerical method by which the fully-
dynamic coupled SBS equations in both CW and pulsed sce-
narios with thermal and laser noise can be solved. The method
offers linear convergence in both the average power and vari-
ance of the power of the optical and acoustic fields, with vari-
ances that do not depend on step-size. From our simulations,
we find that the noise properties of the fields rely on the length
of the optical pulses involved as well as on the net SBS gain in
the waveguide. For short-pump, low gain regimes, the sponta-
neous Stokes field is incoherently amplified and exhibits large
spatial and temporal fluctuations, whereas for the long-pump,
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max Pa = 41 pW(c) (f) max std [Pa] = 0.6 pW

Fig. 10. Waterfall plots for a single numerical realization of
(a) pump power, (b) Stokes power and (c) acoustic power in
the stimulated scattering case, using a Gaussian pump pulse
of width 2 ns and peak power 1 W. The input Stokes pulse
has width 1 ns and peak power 1 mW. Plots (d)−(f) show the
standard deviation in the fields at each point (z, t) for 100 inde-
pendent realizations of the SBS interaction.

high gain regime the field is amplified coherently, resulting in a
smooth field but with large variations in peak power between
independent realizations. Similar observations are made for the
stimulated scattering case using a Stokes signal. We also find
that laser phase noise does not play a significant role in the SBS
interaction unless the laser coherence time is comparable to the
characteristic time-scales of the SBS interaction.

A. APPENDIX A

The integral term in Eq. (10) can be evaluated using the proper-
ties of Itô integrals. Firstly, since the integrand is a deterministic
function of time, and dWj(s) is a normally distributed stochastic
process, the integral is also a normally distributed stochastic
process. Secondly, dWj(s) is a complex-valued process, so the in-
tegral can be split into two statistically independent real-valued
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Fig. 11. Multiple independent realizations of the Stokes power
across the waveguide for (a) 2 ns wide pump and (b) 5 ns
wide pump. These snapshots are taken at the time in which
the peaks of the pump and Stokes meet in the middle of the
waveguide.

integrals

∫ t

0
e−

Γ
2 (t−s)dWj(s) =

1√
2

∫ t

0
e−

Γ
2 (t−s)dW(1)

j (s)

+ i
1√
2

∫ t

0
e−

Γ
2 (t−s)dW(2)

j (s), (34)

each of these real integrals will have the same statistical proper-
ties, namely 〈∫ t

0
e−

Γ
2 (t−s)dW(q)

j (s)
〉

= 0. (35)

The variance is derived using the Itô isometry property for a
stochastic process X(t) [34]〈(∫ t

0
X(s)dW(s)

)2
〉

=

〈∫ t

0
X2(s)ds

〉
. (36)

Using this property, we write〈(∫ t

0
e−

Γ
2 (t−s)dW(q)

j (s)
)2
〉

=
1
Γ

(
1− e−Γt

)
, (37)

which leads to the result for the variance

Var
[∫ t

0
e−

Γ
2 (t−s)dW(q)

j (s)
]
=

1
Γ

(
1− e−Γt

)
. (38)

This means the integral can be computed as a normal random
variable as∫ t

0
e−

Γ
2 (t−s)dWj(s) ∼

√
1− e−Γt

2Γ

[
N (1)

zj ,t (0, 1) + iN(1)
zj ,t (0, 1)

]
,

(39)
which leads to Eq. (12).
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Fig. 12. Convergence plots showing the relative error in the
ensemble averaged powers (a)−(c) and in the variance of the
powers (d)−(f), as a function of the step-size ∆t used in the
numerical grid. The reference step-size used is ∆tmin = 40.7
fs. The calculations are based on a sample size of 1,000 inde-
pendent simulations of the fields. The test problem consists
of two optical Gaussian pulses for the pump and Stokes of
width 1 ns, with peak powers pump 100 mW (pump) and
10 µW (Stokes). The statistical properties of P1, P2 and Pa are
calculated from P1(L, tmax), P2(0, tmax) and Pa(L/2, tmax) re-
spectively, where tmax is the time at which the peaks of the
optical pulses reach the opposite ends of the waveguide. The
computations include thermal noise in the waveguide at tem-
perature 300 K, and input laser phase noise with linewidth 100
kHz. The waveguide properties are given in Table 1.
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