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Abstract

In this paper, we propose a new algorithm for partitioning human posture
represented by 3D point clouds sampled from the surface of human body.
The algorithm is formed as a constrained extension of the recently developed
segmentation method, spectral clustering (SC). Two folds of merits are of-
fered by the algorithm: 1) as a nonlinear method, it is able to deal with the
situation that data (point cloud) are sampled from a manifold (the surface
of human body) rather than the embedded entire (3D) space; 2) by using
constraints, it facilitates the integration of multiple similarities for human
posture partitioning, and it also helps to reduce the limitations of spectral
clustering. We show that the constrained spectral clustering (CSC) still can
be solved by generalized eigen-decomposition. Experimental results confirm
the effectiveness of the proposed algorithm.

Keywords: Constrained Spectral Clustering, 3D Human Posture
Segmentation.

1. Introduction

3D human point cloud data, recent years, along with emergence of kinds
of human body scanners, is becoming usable, so it is being popular used
in various applications(Werghi and Xiao, 2002; K.H., 2002). Human behav-
ior analysis is an important task in various applications (Chen et al., 2006;
Weik et al., 2001) like human behavior recognition, real-time tracking sys-
tem, human interaction system, human-machine control system, and so on.
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Considering significance of human behavior analysis and novelty of 3D hu-
man point cloud data, employing 3D point cloud data into human behavior
analysis is an inevitable trend.

A fundamental and important issue in 3D point cloud based human be-
havior analysis is posture partitioning, i.e., partition the human body into
semantic parts, such as, torso and limbs. The partitioning of human pos-
ture is valuable to motion estimation and recognition(Song et al., 2003; Mori
et al., 2004). By using the obtained clusters, which represent different parts
of the human body, we can give a more compact and robust description of
motion than using the raw data. Moreover, it also serves as a preprocessing
and benefits the high-level tasks afterward, e.g., recognition and tracking of
human behavior(Yilmaz et al., 2006). The partitioning of human posture
into a small number of semantic parts helps reducing the complexity of the
dynamic system of tracking, which is valuable to both improve the accuracy
and reduce computation cost.

However,there are several difficulties in partitioning human posture rep-
resented by 3D point cloud. First, data from the point cloud are scattered on
a 2D manifold of human surface embedded in the 3D space. Due to the uti-
lization of Euclidean distance, classical sum of squared distance method, i.e.,
k-means(Kanungo et al., 2002), or probability density based method, Gaus-
sian mixture models (GMM)(hsuan Yang and Ahuja, 1999), are unable to
find suitable clusters on manifold. Thus, nonlinear approach should be used
to integrate geodesic distance between points into the partitioning process
so that the manifold structure can be properly addressed. Second, to obtain
a partitioning result with reasonably semantic meanings, it is necessary to
exploit multiple similarities between the data point on the manifold (human
surface), e.g., distance similarity and surface normal similarity. However,
the integration of multiple similarities into the partitioning of data point
scattered on a manifold is more challenging.

In this paper, we propose a new algorithm, called constrained spectral
clustering (CSC), for partitioning the point cloud data of human posture
into semantic parts. CSC duly addresses all aforementioned difficulties. On
one hand, CSC belongs to the graph-based partitioning algorithm, which
only utilizes local similarities between data points, and thus is able to deal
with the manifold structure of human surface. On the other hand, CSC
formulates extra similarities (could be more than one although we use only
one extra similarity in this paper) as constraints for optimization so as to
obtain a partitioning results consistent with multiple similarities. We prove
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that, like spectral clustering (SC), CSC can also be effectively solved by using
eigen-decomposition. Sufficient experiments are performed to evaluate the
effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 gives a brief review
of related works on human posture partitioning and clustering algorithms.
Section 3 presents the multiple similarities, i.e., distance similarity and sur-
face normal similarity, used in this paper for human posture partitioning.
In Section 4, we derive the proposed algorithm, constrained spectral cluster-
ing (CSC). We report experimental results in Section 5. Finally, Section 6
concludes this paper and gives discussions on future works.

2. Related Works

In the past recent years, extensive researches have been done on 3D point
cloud data and technology of segmenting human posture formed by 3D point
cloud into semantic parts is one of them(Werghi and Xiao, 2002; K.H., 2002;
Nurre, 1997; Jagannathan, 2005). But automatic segmentation of human
body is a challenging problem which is determined by several reasons. First,
the body shape is both articulated and deformable. Second, the point cloud
is unorganized.

The pioneer investigated in this area is Nurre (Nurre, 1997). He means
to segment the human body into six segments, corresponding to a stick tem-
plate consisted of head, two arms, two legs, torso, which represents the body
structure. He combines a global shape description of moments analysis and
local criteria of proximity which are derived from a priori knowledge of the
relative positions of the body parts in the standard posture to achieve his
task. The data is organized into slices of data points and the data points are
assigned to the different body parts according to the slice’s topology and its
position in the body. Under the framework of Nurre’s, several more works are
done to improve his results. Ju et al.’s work (Ju et al., 2000)introduces cur-
vature analysis of profiles to allow further decomposition of body limbs into
their articulated segments. Dekker and Douros’work (Dekker et al., 1999)
improves the localization of the key landmarks of Nurre’s work.

Certainly, these works illustrate a considerable progress towards the au-
tomatic decomposition of the human body data. However these approaches
are only effective in strict standard posture. Besides, there have no evidence
of robustness with respect to noise, gaps in the data, and variation in the
shape and the posture of the human body. Aiming at these demerits, Xiao et
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al. devote themselves to extract global topological features by using discrete
reeb graph theory to represent the body shape(Xiao et al., 2003). As their
method doesn’t involve local feature analysis, as long as the whole structure
of the human body does not change, their approach is robust against noise,
posture variation. However, all above methods, being based on topological
analysis, are intrinsically not qualified to handle postures where limbs are
joined together. Wang et al. propose a approach from another perspective
that develops within a Fuzzy logic framework(C.C.L et al., 2003). However,
the overall performance of this approach remains identical to that of Nurre’s.

A novel method for 3D human body point cloud segmentation is proposed
in our paper. We achieve our segmentation mission using clustering method.
As the 3D data points scatter on a human body manifold, we choose a
nonlinear clustering method to obtain considerable results.

3. Multiple Similarities

In this section, we present the distance similarity and the surface normal
similarity that are used in our partitioning algorithm.

3.1. Distant Similarity

Without prior knowledge, distance similarity between points is the main
information that we can obtain from the 3D point cloud for partitioning.
Denoting the collection of all the N points from the point cloud as V , then
for any xi and xj ∈ V , the Euclidean distance between them is given by

dist(i, j) = ∥xi − xj∥2 (1)

The Euclidean distance defined above is unsuitable to be directly used for
partitioning, because the points in V are scattered on a manifold. Within a
local area, the Euclidean distance can approach the geodesic distance on the
manifold. Thus, we can use the exponential function to emphasize the local
Euclidean distance

W (i, j) = exp{−dist(i, j)

σ2
} (2)

where σ is a scale parameter to control the size of the local area. And,
we call W (i, j) the distance similarity between xi and xj. Note that the
N by N matrix W is just the affinity matrix used in SC if we construct
a fully connected graph on V and define the weight of each edge by using
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(2). Figure. 1(a) gives an illustration of the distance similarity. Five points
appearing as dark red centers are taken as examples. Different colored rings
where points having the same distance similarity locate on around the center
explan different distance similarity. Points on rings that is farthest from
center have smallest distance similarity with point on center. And the points
who are not on rings have zero degree distance similarity with these centers.

As aforementioned, the distance similarity will be used as the main in-
formation in our algorithm CSC for posture portioning. However, if only
using the distance similarity distance, we cannot obtain a satisfied partition,
because the localized distance similarity does not guarantee to recover glob-
ally semantic parts of the human body. This is reflected by the fact that
SC tends to partition a large area, which is a single cluster in the seman-
tic meaning, into several small clusters(Kannan et al., 2000). To address
this problem, as discussed in the next subsection, we will introduce another
similarity, which is used as constraints in our algorithm CSC, to reduce the
possibility of partitioning one semantic part into small ones.

3.2. Surface Normal Similarity

Another feature can be used to characterize the similarity between points
on a manifold is surface normal. Especially in our study, the points located
in the center of semantic parts of human body are likely to have similar
surface normal, while the points from different semantic parts generally do
not have similar surface normal due to the human body structure and the
angles between body parts caused by motions. Figure. 1(b) shows some
examples for the surface normal similarity. Upper legs, lower legs and lower
arms are not crossing the joints, as their original appearance, they have strip-
like surface normal similarities respectively. And as torso is a large flat area,
it has square-like surface normal similarities.

Although we want to calculate the surface normal of a point on human
body, we do not really fit a surface to the local area around that point since
the fitting is generally computationally consuming. Instead, we use a simple
way to roughly approximate the surface normal. Given point x from V , we
first find its k nearest neighbors X = [x1, x2, ..., xk]. Further, principal com-
ponent analysis (PCA) is used to calculate the minimum variance direction.
Specifically, by singular value decomposition, we have

X̄ =
3∑

i=1

λiξiζ
T
i , λ1 ≥ λ2 ≥ λ3 (3)
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where X̄ is centralized X by subtracting the mean vector. Then, we use
ξ3 as the approximate surface normal π of point x.

To further reduce computation cost, we only calculate the surface normal
on a randomly sampled small portion Ṽ of all the points in V . Given any xi

and xj ∈ V , we say they have similar surface normal, i.e.,

S(i, j) = 1 (4)

If they are k nearest neighbor of each other and the angles between their
surface normal πi and πj is smaller than a threshold, i.e.,(πi, πj) < δ. It is
worth emphasizing that the ”hard” setting of similarity in (4) rather than
the ”soft” one in (2). That’s because we only use surface normal similarity
to formulate constraints but not to use it as the main information for parti-
tioning. Besides, since the surface normal on a large portion of the points in
V are not calculated, we cannot do partitioning by using the surface normal
similarity.

4. Constrained Spectral Clustering

The proposed CSC is a constrained extension of SC. In this section, we
first review SC briefly. Then, we propose CSC by utilizing the multiple
similarities discussed previously, and derived an optimization algorithm for
CSC based on eigen-decomposition.

4.1. Spectral Clustering (SC)

SC has been one of the modern clustering algorithms that are well stud-
ied in recent years(Shi and Jitendra, 1997; von Luxburg, 2006; Zelnik-Manor
and Perona, 2004; Ng et al., 2001; Luxburg et al., 2004; Maila and Shi,
2001). By constructing an undirected weighted graph on the data, SC uti-
lizes the spectrum of the graph Laplacian(Grone and Merris, 1994) to obtain
a low dimensional representation of the data and then does clustering by
using classical methods, such as k-means. Suppose the constructed graph is
G(V,E, W ), where V denotes the set of vertices, E is the set of edges, and
W is the associated affinity matrix, i.e., the weights on the edges. The degree
matrix D of graph G is a diagonal matrix, with entry Dii =

∑N
j=1 Wij. Then

the graph Laplacian of G is defined(Grone and Merris, 1994) by

L = D −W (5)
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Further, in practice, one usually uses the so called normalized graph Lapla-
cian(Luxburg et al., 2004) given by

L̃ = D−1/2LD−1/2 = I −D−1/2WD−1/2 (6)

The following theorem reveals a fundamental property of L̃, which also ex-
plains why L̃ can be used for performing clustering.

Theorem 1. If graph G is an undirected with non-negative weights, then the
multiplicity k of the eigenvalue 0 of L̃ equals to the number of connected com-
ponents (subgraphs), G1, ,Gk of G. Further, the eigenspace of 0 is spanned
by the indicator vectors of the connected components multiplied by the square
root of the degree matrix of G, i.e., D1/21(Gi).

According to Theorem 1, the connected components of G can be revealed
by the optimization problem below,

min
H∈RN×k

tr(HTLH)

s.t. HTDH = I
(7)

Because the columns of the optimal solution H∗ just span the eigenspace
of L̃ associated with eigenvalue 0. In practice, however, when we want to
do k-partitioning of the data, the graph G constructed from the data does
not necessarily have k connected components. Thus, we cannot directly find
clusters from H∗. To this end, SC further conducts k-means clustering on
H∗ so as to obtain a clustering result.

4.2. Constrained Spectral Clustering (CSC)

To deal with multiple similarities, i.e., the distance similarity and the
surface normal similarity, we extend SC to CSC by introducing constraints.
According to the definition of surface normal similarity (4), if S(i, j) = 1 ,
then xi and xj are close to each other and have similar surface normal. So
xi and xj must belong to the same cluster. From SC, each hm from H is an
indicator vector, namely, hi,m and hj,m, corresponding to xi and xj, have the
same value. This simply encodes the surface normal similarity into algorithm
SC. And the equation

∥hi,m − hj,m∥ = 0, m = 1, ..., k (8)

is established. Equivalently,

∥hi,m − hj,m∥2 = 0, m = 1, ..., k (9)
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Equation (9) is in the quadratic form. Let Qij is a N×N symmetrical matrix
and its entries are the coefficient of the quadratic form (9). So, the entries
[Qij

ii Qij
jj Qij

ij Qij
ji] are [1 1 − 1 − 1] while the remaining entries are filled

with 0. Then, (9) can be rewritten as

hT
mQ

ijhm = 0, m = 1, ..., k (10)

Similarly, for other pairs points in Ṽ , the same conclusion can be obtained.
For every pair surface normal similarity, we can simply add separate Qij

together to obtain a synthetical matrix Q. Namely,

Q =
∑
xi∈Ṽ
yi∈Ṽ

Qij (11)

For (11) is just a linear algebra, all surface normal similarities in Ṽ can be
written in one expression,

hT
mQhm = 0, m = 1, ..., k (12)

For matrix H consists of k indicator hm as columns, (12) can be reformulated
as

tr(HTQH) = 0 (13)

Until now, equation (13) integrates all prior knowledge and it only places
some limitations on original problem (7)’s solution space. So, taking (13)
as a constraint condition for (7) is appropriate. Finally, the CSC problem’s
objective function is

min tr(HTLH)
(CSC) s.t. HTDH = I

tr(HTQH) = 0
(14)

4.3. Solve CSC problem

The CSC (14) is a nonconvex problem(Bertsekas and Bertsekas, 1999)
due to both the quadratic constraints, HTDH = I and tr(HTQH) = 0 ,
and thus is generally difficult to solve. Possible ways are to use Lagrange
or semidefinite programming relaxation to obtain a convex problem that is
easy to deal with(Wang and Davidson, 2010; Coleman et al., 2008; Yu and
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Shi, 2004). However, the main drawback of such relaxation is that there is
generally no guarantee for exact optimal solution. Besides, computationally,
the solving of the relaxed convex problems is still inefficient.

Our method to solve (14) is based on the observation that, although
the trace constraint tr(HTQH) = 0 is nonconvex, it can be addressed by
exploiting the null space of Q , given that Q is positive semidefinite. Then,
the rest orthogonality constraint can be dealt with by eigen-decomposition.
The following Theorem 2 summarizes the ideas above.

Theorem 2. The CSC (14) is equivalent to the following orthogonally con-
strained trace minimization

C̃SC min tr(AT ˜̃LA)
s.t. ATA = I

(15)

with ˜̃
L = UT

⊥ L̃U⊥ (16)

where U⊥ is the eigenspace associated with the 0 eigenvalue of D−1/2QD−1/2,
and L̃ is the normalized graph Laplacian.

Proof. First, by introducing variable Y = D1/2H, the CSC problem (14) can
be transformed into the equivalent problem below:

min tr(Y T L̃Y )
s.t. Y TY = I

tr(Y T Q̃Y ) = 0

(17)

where L̃ = D−1/2LD−1/2 is the normalized graph Laplacian, and Q̃ = D−1/2QD−1/2.
It is clearly that Q̃ is positive semidefinite, given Q is positive semidefinite.
Thus, we can eigen-decompose Q̃,

Q̃ =
N∑
i=1

λiuiu
T
i , λ1 ≥ · · · ≥ λp = · · · = λN = 0 (18)

Letting U⊥ = [up, ..., uN ] and m = N − p + 1 , then for any y ∈ RN , the
positive semidefinite property of Q̃ gives rise to

yT Q̃y = 0 ⇔ y = U⊥a. for some a ∈ Rm (19)
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Thus, the trace constraint tr(Y T Q̃Y ) = 0 is equivalently to the linear repre-
sentation:

Y = U⊥A, for some A ∈ RN×m (20)

By using (20), the minimization (17) with respect to Y can be transformed
to an equivalent problem with respect to A,

min tr(ATUT
⊥ L̃ U⊥A)

s.t. ATUT
⊥U⊥A = I

(21)

Finally, since UT
⊥U⊥ = I , we have

C̃SC min tr(ATUT
⊥ L̃U⊥A)

s.t. ATA = I
(22)

This completes the proof.

Suppose the optimal solution of (15) is A∗. Then, according to the proof
above, the optimal solution of (14) is given by

H∗ = D−1/2U⊥A
∗ (23)

The procedures for solving (14) is summarized as Algorithm 1 below.

Algorithm 1 Constrained Spectral Clustering

Require:
graph Laplacian L;
degree of graph D;
threshold for zero β;
constraint matrix Q;
number of cluster k;

Ensure:
the optimal cluster indicator H∗;

1: L̃ = D−1/2LD−1/2 ; Q̃ = D−1/2QD−1/2;
2: [V lam] = SV D(Q̃);
3: indx = find(diag(lam) < β);
4: U⊥ = V (:, indx);

5: [A Z] = SV D(UT
⊥ × L̃× U⊥);

6: A = A(:, end− k + 1 : end);
7: Y = U⊥ × A ;
8: H = diag(D−1/2)× Y ;
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5. Experimental Results

In this section, we conduct a set of experiments to validate our proposed
algorithm’s effectiveness.

The 3D human body point cloud used in our experiments are obtained by
emulating human action sequences. Not only full-human body point cloud,
but also semi-human body point cloud is emulated for considering the binocu-
lar cameras’ applications. Some of these point cloud contains more than 5000
points, and some of them contains only more than 800 points. Obviously,
the points we sample from human body is less than other literatures (Xiao
et al., 2003). Considering segmentation results on these less points make our
method capacity for real time applications. We choose frames consisted of
point cloud from kinds of human action sequences, e.g. running, leg-lifting
and sprint. Many unexpected situations can appear when one does these ac-
tions. when one raises his arms, lower arm may occludes upper arm. When
one lifts one of his legs, the other leg supporting the body may standing too
long to segment considerably by unconstraint method. Additionally, situa-
tion that two legs get close to each other or two arms are close to the torso
is inevitable. For these behaviors are performed by various postures other
than the standard pose (Xiao et al., 2003; Werghi and Xiao, 2002), we desire
to show our method’s ability. We evaluate the effectiveness of our algorithm
in terms of quality of posture segmentation and superiority comparing to
classical clustering way, e.g., k-means and standard SC.

Figure. 2 and 3 shows the full-human body point cloud segmentation
results. These point cloud comprise approximate 5000 points. The plots
from first to last column successively are original point cloud, segmentation
result of k-means, segmentation result of SC, segmentation result of CSC.

Figure. 2 are two different frames of sprint action. As one knee bends,
the point Euler distances between upper and low leg close to knee are smaller
than their geodesic distance along with human body surface. Without ques-
tion, k-means with Euler distance information cannot divide leg at knee
into two parts. Meanwhile, as k-means always obtains size-alike groups, the
large area of torso and the long unbend leg are segmented into several small
parts. As some literature mention, SC always segments large area into sev-
eral groups, and this reflects in the torso of our SC segmentation result.
But, from the prior knowledge, the large flat torso should be grouped as one
group. That’s exactly our constraint condition does. Normals of Points that
form torso are similar to each other. Around the center of torso, the points
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normal placed as a circle. Encode this constraint into SC, we improve the
quality of segmentation result as the plots show. From our CSC results, we
can extract topologic features more reliable.

Figure. 3 are two various frames from leg-lifting behaviors. Besides the
large flat torso and bend knee, another demanding place is the unbend leg.
In Figure. 3(a), the leg has bended a little although almost directly straight,
the little bended angle can be utilized and two line constraints alongside
upper leg and lower leg separately are encoded in our CSC algorithm. The
plot shows effectiveness of our approach. But Figure. 3(b), as the unbend
leg is too straight to distinguish upper leg and lower leg with point normal.
So, more other useful feature should be extracted to settle for this problem.

Figure. 4 and 5 shows the semi-human body point cloud segmentation
results. These point cloud comprise only approximate 800 points. This set of
results desires to explain our method’s potential for real-time applications.
Similarly with Figure. 2 and 3, the plots from first to last column successively
are original point cloud, segmentation result of k-means, segmentation result
of SC, segmentation result of CSC.

Figure. 4 are semi-human body point cloud from leg-lifting action. In
Figure. 4(a), one of arms is absent for it is occluded by torso as one throws his
arm back. The clustering for this situation can be solved with time sequence
and this paper’s attention is not here. As lifting lower leg, the upper leg
is occluded partially. Although points on upper leg is much less, with their
unique points normal comparing with normal of torso and lower leg, upper
leg points are clustered as one cluster as segmentation result of CSC shows.
In Figure. 4(b), this behavior happens when swapping lifting legs. The two
lower legs are too close to divide them as two groups for k-means and SC. But,
the points normal of two lower legs face different orientations. Again, normal
information from surface of human body is encoded in our CSC method and
helps to accomplish considering segmentation results.

Figure. 5 are semi-human body point cloud from running action se-
quences. Comparing above situations that are hard to segment, this action
is much easy to cluster just except the large flat torso. And it easily group
several small fractions of torso into one group with their similar point normal
feature.

All above results show our method’s effectiveness and point normal fea-
ture’s rationality.
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6. Conclusions

In this paper, we achieved the task of automatically segmenting 3D hu-
man posture formed by point cloud by using our proposed CSC method. We
use local feature - distance similarity and graph Laplacian to keep the man-
ifold on which 3D data points scatter while we additionally utilize human
body surface normal similarity as constraint to original SC to address the
limitations of it and enhance the segmenting results. We showed the effec-
tiveness of our method and also showed the advantage of our approach over
k-means and SC.In the future, the segmentation results will be used as a
building base block for following-up human action analysis.
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(a)

(b)

Figure 1: distance similarity and surface normal similarity
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(a)

(b)

Figure 2: Segmentation results of sprint posture formed by full-human body point cloud
with respect to method variations
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(a)

(b)

Figure 3: Segmentation results of leg-lifting posture formed by full-human body point
cloud with respect to method variations
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(a)

(b)

Figure 4: Segmentation results of leg-lifting posture formed by semi-human body point
cloud with respect to method variations
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(a)

(b)

Figure 5: segmentation results of running posture formed by semi-human body point cloud
with respect to method variations
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