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Abstract

Automating the process of wool handling has
the potential to drastically improve the produc-
tivity of on-farm operations that would result
in significant cost savings for wool growers. To-
wards this goal, we present a method to auto-
matically extract the skirting line (i.e., the sep-
aration between clean and contaminated wool)
by comparing pre- and post-skirted RGB im-
ages of freshly shorn wool fleece. The inten-
tion is to provide annotation to support down-
stream learning methods. Our approach de-
tects feature correspondences then performs
non-rigid outlier rejection to overcome the chal-
lenge of deformation when the wool is handled.
The final alignment, and hence identification of
the skirting line, is achieved through the use of
a non-rigid deformation method. A controlled
experiment shows, quantitatively, that our ap-
proach outperforms a rigid registration base-
line. We then demonstrate the applicability to
the real use case by presenting qualitative re-
sults on images of skirted fleeces collected from
a wool shed.

1 Introduction

Wool is highly sought after around the world as it is used
in a range of diverse products such as clothing, insula-
tion, carpeting, furniture and packaging. Australia con-
tributes to a significant proportion of the world’s wool
market. In 2016-17, it was estimated that the value
of Australian wool exports was $3.615 billion [DAWR,
2020).

Despite the commercial importance and significance of
the wool industry in Australia, it remains largely manual
with very little automation. In particular, the on-farm
processes, such as shearing, handling and classing, are
still currently performed by hand. Wool handling is a
highly manual and repetitive task that is particularly

amenable to automation. The task of identifying and
removing contaminants in freshly shorn fleece, known as
skirting [Hansford, 2012], is not only similar to other
factory-like tasks that have now been automated across
many industries including agriculture. Attempts have
been made in the scientific community to automate wool
inspection, e.g., [Zhang et al., 2005a), however, they deal
specifically with non-organic contaminants (such as for-
eign material).

Our previous work demonstrated that it is possible to
detect matural contaminants in wool fleece directly from
RGB images [Patten et al., 2021]. However, learning to
detect contamination requires a large volume of anno-
tated data. Annotation is not only logistically difficult
and time-consuming to obtain but is also highly unreli-
able due to the ambiguity of contamination in wool.

To address this issue, we present a method to auto-
matically determine the delineation of clean and con-
taminated wool in freshly shorn fleece by analysing im-
ages of pre- and post-skirted fleeces. A major challenge
is that the wool along the skirting line is significantly
deformed during the skirting process. The handler uses
one hand to hold down the fleece, acting as an anchor,
while the other pulls the section that needs to be re-
moved to achieve a tear along the desired skirting line.
Thus, achieving fibre separation along the skirting line
simultaneously stretches and compacts fibres on either
side of the skirting line. To overcome the challenge, we
propose an efficient pruning procedure of feature cor-
respondences that allows for non-rigid deformation and
then align the images through an optimisation process.

We quantitatively verify our method in a controlled
experiment by attaching markers to pieces of wool and
deforming them by hand. The markers serve as ground
truth, and we show that our method achieves much
better alignment to the deformed target in compari-
son to the rigid registration baseline. We then qual-
itatively show the applicability of our work using the
Dubbo dataset from [Patten et al., 2021], which consists
of pairs of pre- and post-skirted images collected during



real operations in a wool shed. Our results show a signif-
icantly more reasonable estimate of the transformation
between the wool compared to rigid registration. Inter-
estingly, the results further highlight the unreliability of
human annotation, which erroneously marks portions of
the wool that is to be removed but is still visibly present
in the post-skirted images.

2 Related Work

Distinguishing contaminants in wool in RGB images has
traditionally used adaptive thresholding [Zhang et al.,
2005b; Zhang et al., 2005a; Su et al., 2006]. This is
limited as it relies on a significant colour difference be-
tween the wool and the contaminant. Unfortunately,
this is not always the case and more robust and gen-
eral methods need to be applied. Deep learning offers
these capabilities, having achieved remarkable success in
various computer vision tasks [Krizhevsky et al., 2012].
Recently, deep learning has been used to detect contam-
inants in wool [Patten et al., 2021] and in the similar do-
main to detect foreign fibres in cotton [Wei et al., 2019;
Wei et al., 2020].

The current limitation for deploying deep learning is
the requirement of a large volume of annotated data to
supervise the learning, which in previous work was hand
labelled [Patten et al., 2021]. The motivation of our work
is to develop a method to extract the annotation auto-
matically. Given our setup and ability to collect data
before and after contamination is removed, the problem
translates into one of registering images to identify the
missing components. Since wool is highly deformable,
these images must be registered through non-rigid align-
ment.

In the field of medical imaging, similar theoreti-
cal problems can be found where scans from various
modalities require non-rigid alignment. Classical ap-
proaches [Rueckert et al., 1999] solve this problem by
optimising a deformation field that maximise the simi-
larity of the different images (in general quantified with
mutual information) while enforcing a smoothness reg-
ularisation term over the deformation. Most of the lit-
erature builds upon the seminal work from Rueckert et
al. by considering different approaches of the data pre-
processing [Pluim et al., 2003] or alternative optimisa-
tion methods [Klein et al., 2007]. These methods tightly
couple the deformation and the data association, implic-
itly defined through mutual-information, and are prone
to fall into local minima.

More specifically, to non-rigid deformation, the field
of computer graphics has extensively studied the prob-
lem of animating characters for movies and video games.
Most of the work focus on the deformation of triangle
meshes given a skeleton animation, which also provides
some partial piece-wise rigidity [Kavan et al., 2007]. Re-

lated to wool garments, [Sperl et al., 2021] employs de-
formation optimisation to animate yarn-level cloth in
real-time based on the deformation of the mesh. Other
work optimises the position of triangles in a mesh purely
based on handle-based inputs (i.e., without skeletons).
This can be obtained by minimising the distance of ver-
tex handles’ movement while simultaneously maximising
the rigidity over the surface [Sorkine and Alexa, 2007).

3 Methodology

Given two different images, I; and I3, with their respec-
tive masks, My and Ms, our approach computes features
for each image and stores them as two different sets (F;
and F3). From the putative matches between F; and
Fo, we remove the outliers to find the relative transform
that better aligns the features. This is done with a pro-
posed as-rigid-as-possible (ARAP) filter that accounts
for the non-rigid deformation present in the data. Given
the filtered feature correspondences, we use a method
based on embedded deformation [Sumner et al., 2007] to
deform the image (i.e., to obtain an individual transfor-
mation which is applied to each pixel). Technical details
of these steps are provided in the following sections.

3.1 Feature extraction

Our method uses the Scale-Invariant Feature Transform
(SIFT) [Lowe, 2004] to compare the descriptors between
the skirted and non-skirted wool. The SIFT method
proposed by Lowe helps to solve for the rotation and
change in viewpoint present in the data. The SIFT al-
gorithm is composed of four steps. Firstly, differences
of Gaussians identifies the locations and scales that are
repeated across multiple views. Secondly, a keypoint lo-
calisation model is created to determine the location and
scale of the data. Thirdly, an orientation is assigned to
the keypoint regions based on the image gradients di-
rection. Lastly, the gradient is measured at the selected
scale in the area around each keypoint.

The Euclidean distance criterion is then used to match
the feature vectors between the two images. The fea-
tures are then stored as two sets F; and JF» where
Fi = {f1,....f,} with fj € R*. Fy corresponds to
the features from the original wool and F5 corresponds
to the features from the skirted wool.

3.2 Non-rigid outliers rejection

As illustrated in Figure 1, the presence of outliers is
a common problem when performing feature matching.
Typically, this is solved using random sample consensus
(RANSAC) [Fischler and Bolles, 1981] to obtain a subset
of feature matches that provide a consensus with respect
to a rigid transformation. While RANSAC can be refor-
mulated for non-rigid cases [Tran et al., 2012], it embeds



Figure 1: Feature matching based on SIFT descriptors.
While most matches are correct, some of the matches
are outliers and need to be removed.

Figure 2: SIFT matches filtered by accounting for non-
rigid deformation.

the computation of the non-rigid transformation in an it-
erative process, which is computationally ineffective. We
propose a filter that prunes the feature matching itera-
tively with a small computational footprint. Our filter is
initiated by building graphs on the features sets and per-
forms the pruning based on the local rigidity difference
between the two graphs.

The filter is initialised by building a directed graph
that connects the feature points from F; to its k neigh-
bours. These connections are then concatenated into an
edge set &1 and the first graph is then defined as {F7, & }.
The graph on the second set of features F7 is generated
by copying the edges &; providing the graph {F», &1}

For each feature node present in the graph, the local
rigidity changes is computed based on the formulation
of the rigidity as defined in ARAP [Sorkine and Alexa,
2007]. Given two nodes, fi and f?, which correspond
to two SIFT matches, the local rigidity for the i*" node
is defined as
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where the left-hand part of the equation quantifies the
deformation operated on the edge from (f} — fjl) to (f7—
f?) while accounting for a rigid rotation R; (computed
using SVD similarly to [Sorkine and Alexa, 2007]). The
right-hand part of the equation makes this rigidity term
scale invariant.
To remove the outliers in the feature matching, the

Algorithm 1: Prunes the feature matches until

the local rigidity falls under the threshold 7.
Input: Fi, Fo, 7
Output: .7:—1, Fo

1 function ARAP filter

2 build the graph {F1, &1}

3 copy the edges on {F3, &1}

4 compute the rigidity terms r(s) with (1)

5

6

while max(r) < 7 do
prune the nodes f, ., nax(r) In F1 and Fo
7 update the graph {F1,&1}
8 copy the edges on {F3, &1}
compute the rigidity terms r(i) with (1)

feature node with the maximum ARAP residual is
pruned from the graph. The graph and the rigidity terms
are then updated and the pruning process is repeated it-
eratively until the ARAP residual falls below a defined
threshold. An example of the result after feature match-
ing pruning is shown in Figure 2 and the pseudo-code is
given in Algorithm 1.

3.3 Non-rigid deformation

We propose the use of a non-rigid deformation method
based on embedded deformation (ED) [Sumner et al.,
2007]. Given that this approach was originally designed
for three-dimensional data, this provides a natural ex-
tension of our work on RGB-D data. Furthermore, ED
is highly flexible with respect to the format of the data
to deform.

We consider the input of the non-rigid deformation
as a set of scattered points with coordinates defined in
three dimensions (in cases where a standard 2D image
is used as an alternative to an RGB-D input, the third
dimension is stacked with a row of zeros). ED performs
the non-rigid optimisation by solving the deformation
on a graph, referred to as a deformation graph. The
nodes of this graph, G = {g,,...,9,}, are obtained by
heavily downsampling the input data and the edges are
generated by connecting each node with its k£ neighbors.

Once the deformation graph is created, we optimise
the local rotations R; € R3*3 and local translations
t; € R3 for each node in the deformation graph G. This
optimisation is performed by minimising an energy func-
tion that accounts for the pairwise distance between fea-
ture nodes E.,,, the rotations F,.:, and the regulariza-
tion Ey.q such that

argmin
Ry ty1,.. Ryt

wconEcon + wrotErot + wregEreg + wrigErig

(2)

where E.,, is the Euclidean distance between the SIFT



Figure 3: Data used for the controlled experiment. The
sample (a) is annotated (b), stretched and compressed
(¢), and the annotation are then removed to enable eval-
uating SIFT feature correspondence (d).

feature matches defined as

con Z||Fll f2l||2 (3)
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FE,.: adds the errors of all the rotations matrices and is
defined similarly to [Jiawen et al., 2012] as

ud 2
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The regularisation term FE,., enforce smoothness over
the deformation and is defined as

Ereg = ZZ 1R; (g

i=1 j=1

—g;)+g;,+t; — (g, +ti)||§.
(%)
The energy function described in (2) is then minimised
with Levenberg-Marquardt optimisation. Once the new
position of the deformation graph nodes is known, the
points of P; are updated using

pi =3 w(p)IR

with the neighbour’s nodes g; from P; found using a
search with a kD-tree. The weight for each vertex is
defined as

P —g;) + 9, +til, (6)

_gj”/dmaz), (7)

where d,,q. is the maximum distance of the vertex to
the p + 1 nearest node from G.

w;(p;) = (1 —||p;

4 Experiments

Our algorithm is tested on two different scenarios. The
first is a controlled environment that is performed to
quantitatively evaluate the performance of our approach.
The second experiment is performed with data collected
in the field and is used for a qualitative evaluation and
discussion.

(¢) Manual annotations.

Figure 4: SIFT features matching before (in (a)) and af-
ter (in (b)) the filtering process described in Section 3.2.
In (c), we show the correspondences from the annota-
tions.

Data collected for the control experiment are shown in
Figure 3: a piece of wool shown in Figure 3(a), has been
annotated (Figure 3(b)), stretched and compressed (Fig-
ure 3(c)), and the annotation has been removed to avoid
corrupting the SIFT features extractions (Figure 3(d)).
The annotation alongside with the boundary of the wool
are used to quantify the output of the non-rigid defor-
mation.

The matchings of the SIFT features are shown in Fig-
ure 4(a). As shown, many outliers are present in the
feature matching and need to be removed. The filtered
feature matching using the proposed ARAP filter are
shown in Figure 4(b). The filtered matching visually cor-
responding with the manual annotations obtained from
Figure 3(b) and 3(c) and are shown in Figure 4(c) for
reference.
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Figure 5: Contours using rigid and non-rigid deforma-
tion used for evaluation. The rigid deformation result-
ing from SIFT+RANSAC filter is shown in blue and the
non-rigid deformation produced using SIFT+ARAP fil-
ter is shown in green. The original contour (red) and the
target (black) are shown for reference.

Given the filtered feature matching, we then perform
the non-rigid deformation using ED as discussed in Sec-
tion 3.3. The updated contours of the deformed image
are displayed in Figure 5 in green alongside the original
contour (in red) and the targeted image (in black). We
compare our approach to a standard method that in-
cludes SIFT matchings, RANSAC filtering and rigid de-
formation. The contour of this deformation is displayed
in blue in Figure 5.

A quantitative evaluation is performed by analysing

60

40

20

boundary distance (in pixels)

original rigid non-rigid

Figure 6: Distribution of the distance between the con-
tours (shown in Figure 5). Our proposed method gener-
ates contours that are significantly closer to the target.

Table 1: Quantitative evaluation and ablation study:
starting from the SIFT features matching, the out-
liers are filtered using RANSAC (rigid) or the proposed
ARAP filter (non-rigid). The image is then deformed
rigidly or non-rigidly. The measurement without defor-
mation is provided for reference. Distances are in pixels.
* these experiments were run 50 times given the non
deterministic property of RANSAC.

boundary annotations

filtering deform  mean std mean @ std
none none 21.83 20.18 40.17 18.22
rigid* rigid 21.16 1798 36.63 19.39
rigid* non-rigid 18.86 16.57 34.29 17.85
non-rigid rigid 19.57 19.73 23.90 18.88
non-rigid non-rigid  5.75 744 14.04 6.66

the distance between the deformed contours and the de-
formed manual annotations. The annotations (which are
extracted manually using tags on the wool) provide infor-
mation regarding the accuracy of the deformation across
the whole surface. It provides us with an accurate quan-
tification of the deformation error. The mean error and
standard deviation of these annotations are reported in
Table 1.

As a complementary quantitative evaluation, we mea-
sure the distance between the boundaries of the defor-
mation, which closely relates to the aim of our work,
i.e., solving the detection of the skirting lines. The distri-
bution of the distance between the boundaries is defined
by finding the nearest point of the targeted boundary, in
Euclidean space, for each point of the deformed bound-
ary. These distributions are displayed in the violin plots
of Figure 6 and the mean and standard deviation are
given in Table 1.

The ablation study in Table 1, which considers rigid
/ non-rigid filtering and rigid / non-rigid deformation,
shows that the problem needs to be tackled non-rigidly
for both the features matching filtering and the defor-
mation.

We also compare the proposed method with manual
annotation made by expert wool handlers. These an-
notations are a reference for where the wool is to be
skirted. The wool was then actually skirted, allowing us
to compare the data before and after the process. The
deformation of the wool after skirting has been manu-
ally assessed (with samples shown in Figure 8) and it
shows convincing results regarding the quality of the de-
formation (i.e., specific patterns in the wool are visible
in the same location for both the pre- and post-skirted
images). However, as shown in Figure 7, there is a signif-
icant difference between the manual annotation (which
corresponds to a regular trimming of a few centimetres)
and the actual skirting by the wool handler. The dis-



(c) Contour comparison between methods.

Figure 7: Data used to compare the different methods.
In (c) we demonstrate the accuracy of each method with
the use of contours: Wool handlers annotation (blue),
proposed method (red) and rigid deformation (cyan).

crepancy can be explained by the difficulty for a human
to assess the quality of the wool in an image without
manipulating it or having a close inspection. This issue,
as highlighted here, strongly supports the requirement
for our proposed method.

Figure 8: Qualitative evaluation of the morphing on data
from the field. The deformed skirted image (which bor-
der is shown in green) is superposed to the original wool
image. In blue, we show the wool image prior to skirting
and in red the sample after skirting. The areas selected
are strictly superposed.

5 Discussion and Future Work

We present a method to automatically determine the de-
lineation of clean and contaminated wool in freshly shorn
fleece by comparing pre- and post-skirted RGB images.
The process of manually removing contaminants, known
as skirting, has handlers pulling sections of the wool that
need to be removed. Fibre separation along the skirting
line simultaneously stretches and compacts the fleece,
thus undergoes non-rigid deformation. To overcome the
challenge, we apply an efficient pruning procedure of fea-
ture correspondences using the concept of as-rigid-as-
possible (ARAP) and then align the images through an
optimisation process for non-rigid deformation.

We quantitatively verify our method in a controlled
experiment by attaching markers to pieces wool and
deforming them by hand and show that our method
achieves much better alignment to the deformed target in
comparison to the rigid registration baseline. We qual-
itatively show the applicability of our work on images
acquired during operations in a wool shed. Our results
highlight the unreliability of human annotation, which
erroneously marks portions of the wool that is to be
removed but is still visibly present in the post-skirted
images.

The results provide initial evidence of the validity of
our approach, but there are a number of areas of future
work that would need to be addressed in order to de-



velop an end-to-end implemented system by exploiting
a larger dataset beyond this preliminary study. Firstly,
adequately thresholding for the ARAP filter, which de-
pends on the density of the points and the size of the
image. Secondly, evaluating the effect and constraints of
the regularisation term that controls deformation.
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