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ABSTRACT 1 

In this work a cylindrical expansion for the audio sound generated by a steerable 2 

baffled PAL based on the phased array technique is derived from the Westervelt 3 

equation. The expansion is a series of twofold summations with uncoupled angular 4 

and radial components in the cylindrical coordinate system. The angular component 5 

is determined by the trigonometric functions, and the radial one is an integral 6 

containing the Bessel functions and an arbitrary excitation velocity profile. The 7 

numerical results for a typical steerable PAL are presented and compared to those 8 

obtained using the convolution model. It is found the prediction of the audio sound 9 

using the proposed cylindrical expansion improves agreement with experimental 10 

results when compared to existing models. This is because no further approximations 11 

are required in the cylindrical expansion of the quasilinear solution of the Westervelt 12 

equation, whereas the complex near field nonlinear interactions between ultrasonic 13 

waves cannot be correctly captured in a convolution model. The proposed cylindrical 14 

expansion does therefore provide an alternative approach to modeling a phased array 15 

PAL and provides high accuracy with relatively low computational cost.  16 
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I. INTRODUCTION 1 

Parametric array loudspeakers (PALs) have been widely used in many scenarios 2 

due to their capability of generating highly directional audio sound at low 3 

frequencies.1 The physical mechanism for the PAL is that the directional audio sound 4 

beam is generated by the nonlinear interactions between ultrasound beams radiated 5 

by an array of ultrasonic transducers.2 For a conventional PAL, the excitation velocity 6 

profile for the ultrasound is uniform on the radiation surface, so that the main lobe of 7 

the radiation pattern lies on the radiation axis of the PAL. Recently, attention has 8 

focused on PALs that adopt the phased array technique,3 which means the velocity 9 

profile for the ultrasound follows a tailored amplitude and phase distribution. One 10 

typical application is a steerable PAL which can deliver directional audio beams in a 11 

desired direction without physically rotating the PAL.3-7 Such a phased array PAL has 12 

been successfully used in active noise control,3 sound reproduction systems,8 13 

immersive 3D audio,9 and related areas.4,10 However, existing models suitable for 14 

predicting the performance of a phased array PAL are not only limited for far field 15 

calculation, but also the simplifying assumptions and approximations deteriorate their 16 

accuracy.11,12  17 

The total audio sound generated by a phased array PAL is not simply the 18 

superposition of the audio sound radiated by each PAL element, because this 19 

generation is a nonlinear process. Therefore, one must start from the governing 20 

equations to obtain accurate predictions. When a PAL radiates two intensive 21 

ultrasonic waves at different frequencies, a secondary wave containing the difference-22 

frequency wave (the audio wave in air) is generated due to a second order 23 

nonlinearity.2 This process can be modelled using a second-order nonlinear wave 24 

equation if cubic and higher order terms are neglected.13-15 After neglecting the 25 

Lagrangian density, the equation can be further simplified to give the Westervelt 26 

equation characterizing the local effects, which is often used instead because it is 27 

easier to solve.14,15 It has also been demonstrated that the predictions obtained using 28 
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the Westervelt equation are accurate enough except for observation points close to the 1 

radiation surface of the PAL.14,15  2 

After using the successive method,16 the quasilinear solution of the audio sound 3 

based on the Westervelt equation can be seen as the radiation from a virtual volume 4 

source with the source density proportional to the product of the ultrasound 5 

pressure.17,18 The expression of the solution is therefore a threefold integral over the 6 

three dimensional space. The ultrasound pressure at the virtual source point is then 7 

obtained using the twofold Rayleigh integral, as the ultrasound beams can be 8 

modelled as the radiation from a baffled rigid source. The accurate calculation of the 9 

audio sound generated by a PAL then requires a numerical evaluation of a fivefold 10 

integral expression.17-19 11 

The direct numerical integration of this fivefold integral expression is known to 12 

be very time-consuming, and some approximations and assumptions are usually made 13 

in order to simplify the calculations. The paraxial model has been widely used and 14 

this assumes paraxial approximations for both the audio and ultrasound beams, so 15 

that a Gaussian beam expansion (GBE) can be used to simplify the integral into a 16 

summation of the contribution from a set of Gaussian sources.17,20,21 The prediction 17 

accuracy of the paraxial model is the same as that of the well-known Khokhlov-18 

Zabolotskaya-Kuznetsov (KZK) equation, but the results are accurate only inside the 19 

paraxial region.17,22 Furthermore, the prediction of the paraxial model is also known 20 

to be inaccurate at low frequencies. One way to overcome this problem is to assume 21 

the paraxial approximation only for ultrasound, which is termed the non-paraxial 22 

model.17,19,23,24 However, since the paraxial approximation for the ultrasound is 23 

retained in the non-paraxial model, it is still inaccurate when the sound beams of a 24 

phased array PAL are steered to a larger angle. Recently, a spherical expansion has 25 

been developed to give a rigorous simplification of the fivefold integral into a 26 

threefold series consisting of uncoupled radial and angular components,15,18 which 27 

converges more than 100 times faster. Although no paraxial approximations are 28 
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assumed in the spherical expansion, it can only be applied to the PAL with a velocity 1 

profile that is axisymmetric about the radiation axis. 2 

To avoid the heavy computation load, many models have been proposed to 3 

obtain much simpler expressions in the far field.8 The first closed-form expression 4 

for audio beam directivity was proposed in Westervelt’s seminal work and this is 5 

usually termed the Westervelt directivity.2 However, large differences between 6 

predictions obtained using Westervelt’s directivity and experimental measurements 7 

have been reported,8 and this is thought to be because the ultrasound beams are 8 

assumed to be collimated and that all nonlinear interactions happen only over a 9 

limited distance. Many attempts have been made to improve the accuracy of the 10 

directivity predictions, such as considering the directivity of ultrasound beams.6,25-27  11 

The most accurate approach to date for the far field is to employ the convolution 12 

of the ultrasonic wave directivities and Westervelt’s directivity.11,12 An arbitrary 13 

directivity for the ultrasound can then be set in the convolution model to calculate the 14 

audio sound directivity, and reported experimental results have demonstrated that it 15 

outperforms other existing models in the far field for a steerable PAL.8,11 However, 16 

the ultrasound beams are assumed to be exponentially attenuated in each direction, 17 

which is not true in reality because of the complexity of the ultrasound beams in the 18 

near field, where the majority of the nonlinear interactions take place. Furthermore, 19 

the far field is found to be more than 10 meters away from a PAL when its size is 20 

larger than 0.04 m,15,28 which is too far when compared to real applications. Therefore, 21 

differences between predictions and measurements continue to be observed, even for 22 

the sound pressure 4 meters away from the PAL.11 23 

The rectangular phased array PAL is the most common one in industrial 24 

applications. Due to the poor convergence of the Rayleigh integral, it is hard to 25 

directly calculate the radiation from a rectangular source. When one dimension of the 26 

radiation surface of a piston source is much larger than the wavelength, the radiated 27 

sound field can be approximately modelled as the radiation from infinitely long 28 



 

Page 6 of 26 

strips.29,30 After using the integral expression of the Hankel function (also known as 1 

the two dimensional Green’s function), the twofold Rayleigh integral can be 2 

simplified into a onefold one. Based on such a model, the sound field radiated by a 3 

conventional loudspeaker has been extensively studied.29 A cylindrical expansion for 4 

a conventional loudspeaker was recently proposed based on the translational addition 5 

theorem for Hankel functions.30 This can be regarded as the two dimensional version 6 

of the spherical expansion for the sound field radiated by a circular piston 7 

source.18,31,32 The cylindrical expansion converges quickly because no integral with 8 

highly oscillatory integrand is required to calculate. In addition, the radial and angular 9 

coordinates are uncoupled (separated) so that they can be calculated quickly for many 10 

observation points. Another advantage is that an arbitrary velocity profile can be set 11 

for the radiation surface, so it can be used to model a phased array. However, the 12 

cylindrical expansion for the audio sound generated by a PAL has not been developed 13 

yet.  14 

In this article, a cylindrical expansion for the ultrasound is introduced by 15 

modelling the radiating surface as a baffled phased ultrasonic source with one 16 

infinitely long dimension. The expansion for the audio sound is then developed in 17 

cylindrical coordinates using a quasilinear solution of the Westervelt equation without 18 

further approximations. Numerical results for the audio sound are presented for a 19 

steerable PAL with several typical excitation velocity profiles. The accuracy of the 20 

convolution model is then compared against this proposed model, and predictions 21 

from both models are compared against the experimental results reported in Ref. 11. 22 

 23 

II. THEORY 24 

Figure 1 shows the sketch of a baffled phased array PAL radiating ultrasound in 25 

free field. The rectangular (x, y, z) and the cylindrical (ρ, φ, z) coordinate systems are 26 

established with their origin, O, at the center of the PAL and the positive y axis 27 

pointing to the radiation direction, where ρ and φ are the radial and polar angle 28 
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coordinates, respectively. It is assumed that the dimension of the PAL along the z axis 1 

is infinitely long, so that only the sound field on the plane xOy needs to be considered. 2 

The length of the phased array PAL along the x axis is 2a.  3 

To predict the sound fields generated by a PAL using the phased array technique, 4 

the boundary condition for ultrasound is assumed on y = 0 to be 5 

 1 2i i

1 2t ( ) ( , )e ( , ) ,  e
t t

u x u x k u x k x aa
 − −

= −+  , (1) 6 

where ( , )iu x k   is an arbitrary complex velocity profile for the ultrasound at the 7 

wavenumber ki = ωi/c0+ iαi, ωi = 2πfi is the angular frequency, fi is the i-th ultrasonic 8 

frequency, i = 1 and 2, f1 > f2, αi is the sound attenuation coefficient for the i-th 9 

ultrasonic wave, c0 is the linear sound speed, i is the imaginary unit, and t is the time.  10 

 11 

 12 

FIG. 1. (Color Online) Sketch of a phased array PAL and the geometrical 13 

description of rectangular and cylindrical coordinate systems. 14 

 15 

A. Westervelt equation and quasilinear solution 16 

The Westervelt equation is given as14,15 17 
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where ρ0 is the ambient density, p is the sound pressure, β = 1.2 is the nonlinear 1 

coefficient in air, and δ is the sound diffusivity parameter. It has been demonstrated 2 

that the Westervelt equation can correctly describe the cumulative nonlinear 3 

interactions of ultrasound to the second order, which is accurate enough for many 4 

applications.14,15,33 5 

By using the successive method, the quasilinear solution of the audio sound 6 

pressure is expressed as a volume integral over the whole space17,18 7 

 
a vi |

a 0 a v v v v
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e

( ) i )
|
d d d

4π |
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k

p q x y z 
−

  

− − −
= −

−  
r r

r r
r r

, (3) 8 

where ka = ωa/c0 + iαa is the wave number for the audio sound at the angular frequency 9 

of ωa, ωa = 2πfa, αa is the sound attenuation coefficient at the audio frequency of fa, 10 

a 1 2f f f= −  , 
2 2 2

v v v v| ( )( ()| )x x y y z z− = − + − + −r r   is the distance between the 11 

point )( , ,x y z=r  and the virtual source point or its image v v v v )( , ,x y z=r , and the 12 

source density is 13 

 *a
1 22 4

0 0
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i
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=r r r , (4) 14 

where the superscript “*” represents the complex conjugate. It is noted in Eq. (3) that 15 

the integration interval from 0 to   over yv represents the contribution from the 16 

original virtual source in front of the PAL, and the integration interval from −  to 17 

0 over yv is the contribution from the image of virtual sources with respect to the 18 

baffle at y = 0. 19 

The ultrasound pressure can be obtained by the Rayleigh integral as 20 
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， , (5) 21 

where 
2 2 2

s s s)| | ( ( )x x y z z− = − + + −r r  is the distance between the point r and the 22 

source point s s s )( ,0,x z=r  on the PAL surface.  23 

After substituting Eqs. (4) and (5) into Eq. (3), a fivefold integral must be 24 



 

Page 9 of 26 

calculated numerically to obtain the audio sound, and this process is known to be very 1 

time-consuming.15,17,18 Many methods have been proposed to simplify the calculation. 2 

For example, a GBE was utilized to simplify the calculation of ultrasound in Eq. (5) 3 

subject to the paraxial approximation.17 However, the paraxial approximation is 4 

inaccurate when the sound beams of a phased array PAL are steered to a larger angle. 5 

Recently, a spherical expansion method was proposed, which is at least 15 times faster 6 

than a GBE without the paraxial approximation.15,18 Unfortunately, it can only be 7 

applied to the PAL with a velocity profile that is axisymmetric about the radiation 8 

axis. 9 

 10 

B. Convolution model in the far field 11 

In the inverse-law far field, where the audio sound pressure is inversely 12 

proportional to the propagation distance, the expression of the audio sound can be 13 

further simplified.15 The directivity for the audio sound, Da(θ) is defined as 14 

a a || ) / (( 0)pp   = , where θ is defined as the angle between the field point and the 15 

radiation axis (φ = π/2 in Fig. 1) so that π / 2 = −  . The convolution method 16 

assumes the field point is in the inverse-law far field, where good agreement between 17 

predictions and measurements has been shown using this method.11,12 This method is, 18 

therefore, used for the purpose of comparison against the proposed alternative 19 

approach and is briefly summarized here. 20 

The directivity of the audio sound is obtained by the convolution model as11,12 21 

  a 1 2 W) ) (( ( ) ( )D DD D   =  , (6) 22 

where 1( )D   and 2 ( )D   are directivities of the ultrasound,   denotes the linear 23 

convolution operation, and W ( )D   is Westervelt’s directivity:11,12 24 

 W
2 4 2

a 1 2ta

1
(

1 / )n
)

(
D

k

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=

+ +
. (7) 25 

The ultrasound in the convolution model is assumed to be exponentially 26 
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attenuated in each direction, which is not true in reality because of the complexity of 1 

ultrasound beams in the near field of the transducers. Therefore, some discrepancies 2 

are observed between measurements and predictions in Ref. 11. To address this, 3 

cylindrical expansions of both the ultrasound and audio sound are derived in Secs. 4 

II.C and II.D, and predictions are compared against the convolution method in Sec. 5 

IV. 6 

 7 

C. Cylindrical expansion of ultrasound 8 

By evaluating the Rayleigh integral with respect to zs and using the integral 9 

definition for a Hankel function of order 0, 0 )(H  , Eq. (5) can be simplified as30,34 10 

 0
0 s s s) | |) d( ( )
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−
= −r r r . (8) 11 

To express Eq. (8) as a cylindrical expansion, the translational addition theorem for 12 

the Hankel function is introduced, so that30,34  13 
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where Jn(⋅) and Hn(⋅) are Bessel and Hankel functions of order n, ρs,< represents the 15 

lesser of ρ and ρs, and ρs,> the greater of the two. For the source point on the positive 16 

x axis, s sx =  and s 0 = ; for the source point on the negative x axis, s sx = −  17 

and s π = . Substituting Eq. (9) into Eq. (8), yields 18 
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where the radial component for ultrasound is 20 
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By introducing the substitution 22 

 s s s( ) , ) ( 1) (( , ), n

n i i iu k u k ku  = + − − , (12) 23 
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Eq. (11) is rewritten in a more compact form 1 

 
s, s, s s

0
() ( d,( , ) ) ( )

a

n i n i n i n i iR k H kJ k k u k     =  . (13) 2 

Compared to the original twofold integral in Eq. (5), the cylindrical expansion 3 

in Eq. (10) is more computationally efficient due to three reasons. First, a twofold 4 

integral with a highly oscillatory integrand is required to evaluate in Eq. (5). Second, 5 

the radial and angular coordinates, ρ and φ, are uncoupled (separated) in Eq. (10), so 6 

that the radial and angular components can be calculated separately to obtain the 7 

sound pressure for many field points. Finally, for the most field points when ρ > a, 8 

s, s,) ( )(n i n iH kJ k   
  becomes s ) ( )(n i n iHJ k k    in Eq. (13), so that the integral 9 

needs to be calculated only one time for each order n at different field points. In 10 

addition, the integral in Eq. (13) can be further simplified to a series by using the 11 

power expansion of the Bessel function.30 12 

To obtain the directivity of the ultrasound used in the convolution method in Eq. 13 

(6), the radial component given by Eq. (13) can be simplified using the limiting forms 14 

of the Hankel functions for large arguments, see Eq. (5.1.17) in Ref. 35, so that 15 
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which is valid in the far field.  17 

 18 

D. Cylindrical expansion of audio sound 19 

Substituting Eq. (10) into the source density of the audio sound given by Eq. (4), 20 

one obtains the cylindrical expansion of Eq. (4) as 21 

 
i

2

* ( )a
1 2

0

) ( , ) , )e(
4

(
i

m n

m n

m n

q R k R k
c


 

 
−

=− =−

=  r , (15) 22 

Similar to Eq. (8), the audio sound pressure in Eq. (3) can be obtained as  23 
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Substituting Eqs. (9) and (15) into Eq. (16), one obtains 25 
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where ρv,< represents the lesser of ρ and ρv, and ρv,> the greater of the two. Only the 2 

terms when l m n= −  are left in Eq. (17), because 3 
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The audio sound pressure may then be reduced to a cylindrical expansion, which 5 

yields 6 
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where the radial component for the audio sound is expressed as 8 
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In the far field, Eq. (20) has the limiting form  10 
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As the main result of this paper, the cylindrical expansion of the audio sound 12 

given by Eq. (19) consists of a series of two summations with the uncoupled radial 13 

and angular components, so it can be calculated quickly for many field points. It can 14 

be seen as a two dimensional version of the spherical expansion as developed in Refs. 15 

15 and 18, which is a series of triple summations. It has been demonstrated the 16 

calculation of the spherical expansion is more than 100 times faster than the direct 17 

integration of the fivefold integral given by Eq. (3) after the substitution of Eqs. (4) 18 

and (5). The cylindrical expansion is simpler than the spherical expansion, so the 19 

computational efficiency is further improved. In addition, arbitrary excitation 20 

velocity profiles, u(x,ki), can be assumed for the ultrasound source in Eq. (13), so it 21 

can be used to model a phased array PAL. 22 

 23 
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E. Velocity profiles for a steerable PAL 1 

In this paper, a steerable PAL is used as an example of the proposed cylindrical 2 

expansion, which aims to steer the audio beam in a desired direction. The phased 3 

array technique assumes that an excitation of an array of PALs consists of an 4 

amplitude and a phase at each PAL element.8 5 

For the ideal configuration, when the size of the PAL element is infinitely small, 6 

a continuous velocity profile can be assumed as 7 

 0i cos

0, ) e( ik x

iu x k u


= , (22) 8 

where u0 is a constant with the unit of m/s, and φ0 is the steering angle so that 9 

00 π  .  10 

For the non-ideal configuration, when the PAL element has a finite size of a0 11 

(also known as the sub-array size), the phase distribution on the radiation surface of 12 

each element must be uniform. Therefore, the discrete profile is given by a relation 13 

to the continuous one as 14 
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. (23) 15 

In real applications, the separation between the centers of adjacent PAL elements 16 

may be larger than their size to give a blank region on the rigid baffle (also known as 17 

the array kerf).11 This can be modelled by multiplying the profiles in Eqs. (22) and 18 

(23) with a weighting function such that the weight is zero in the blank region, which 19 

reads  20 

 
1 1

0

0

1
1,  

) 2 2 2

0,  otherwise

(A

a ax
x a

ax

   
−  − +     =    




, (24) 21 

where a1 is the distance between the centers of the adjacent PAL elements.  22 

To better understand the continuous and discrete velocity profiles for a steerable 23 

PAL, Fig. 2 shows a comparison between them for amplitudes and phases. The 24 

parameters used are the same as in Fig. 8 of Ref. 11: the PAL is steered at 70° with a 25 
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carrier frequency of 40 kHz; the phased array PAL size is 2a = 0.1 m; the size of each 1 

PAL element is a0 = 0.01 m; and the separation of the centers of adjacent elements is 2 

a1 = 0.0125 m. 3 

 4 

 5 

FIG. 2. (Color Online) Comparison of the continuous and discrete velocity profile 6 

for the ultrasound: (a) normalized amplitude distribution, and (b) normalized phase 7 

distribution. 8 

 9 

III. NUMERICAL ALGORITHMS 10 

The cylindrical expansion of the audio sound in Eq. (19) is a series which must 11 

be truncated to obtain numerical results. The truncation limit is set to 70 for both m 12 

and n in the following simulations, which delivers an error of less than 0.1 dB for the 13 

parameters used in this paper. The onefold integrals in Eq. (13) and Eq. (20) are 14 

calculated using the classical Gauss-Legendre quadrature method, although the 15 

computational efficiency can be further improved using the series expression and the 16 

complex plane method.18,30 The sound attenuation coefficients for both ultrasound 17 

and audio sound are estimated according to ISO 9613.36 The directivities of the 18 
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ultrasound used in Eq. (6) of the convolution model are obtained using the cylindrical 1 

expansion in Eq. (10) with the limiting form of the radial component at large 2 

arguments in Eq. (14). 3 

It is found in the simulations that the calculation of the Bessel functions overflow 4 

or underflow when the argument is much smaller than the order. Therefore, 5 

normalized Bessel and Hankel functions are used in this paper and defined as  6 

 
2

( ) (! )

n

n nJ n
w

ww J
 

=  
 

, (25) 7 

 
iπ

( )
! 2

( )

n

n n

w
H

n
ww H

 
=  

 
, (26) 8 

where “!” represents the factorial. Using these definitions, the normalized Bessel and 9 

Hankel functions have the limiting behavior when | 0|w →  as 10 

 1,  ( ) 1( )n nJ nH ww → → . (27) 11 

The following relation, required in Eqs. (13) and (20), is then obtained as 12 
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Equations (25) and (26) are similar to the normalization technique used to solve the 14 

overflow problem in the calculation of spherical Bessel functions.18,37 Recurrence 15 

relations, see Eqs. (5.1.21) in Ref. 35, yield 16 
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Numerical results can then be obtained using the backward and forward recurrence 19 

relations given by Eqs. (29) and (30), respectively. 20 

 21 

IV. RESULTS 22 

To compare against experimental data in the literature, the parameters are set to 23 
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be the same as those in Ref. 11. The center frequency of the ultrasound is 40 kHz, and 1 

all the sound pressure levels (SPLs) in the following simulations are normalized, with 2 

a maximum of 0 dB to aid comparison. The medium is assumed to be air and the 3 

temperature is set as 20°C. 4 

 5 

A. Conventional PAL with a uniform excitation 6 

In this subsection, a continuous uniform velocity profile is assumed, as this best 7 

represents a conventional PAL. Figure 3 shows the audio sound fields generated by a 8 

conventional PAL with a size of 2a = 0.08 m at 500 Hz, 1 kHz, 2 kHz, and 4 kHz. 9 

The Rayleigh distance is about 0.6 m at 40 kHz. The results are obtained using the 10 

proposed cylindrical expansion. It is observed that the main lobe of the generated 11 

audio beam is on the radiation axis so that φ0 = 90°, and the beam becomes more 12 

focused as the frequency increases.  13 

 14 

 15 

 16 

FIG. 3. (Color Online) Audio sound fields generated by a conventional PAL with a 17 
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uniform profile and a size of 0.08 m at (a) 500 Hz, (b) 1 kHz, (c) 2 kHz, and (d) 4 1 

kHz. 2 

 3 

The directivity of the audio sound beam in the far field at different angles and 4 

frequencies is shown in Fig. 4 using the far field solution of the cylindrical expansion 5 

[Eqs. (19) and (21)]. Because the sound pressure was measured at 4 meters away from 6 

the PAL in Ref. 11, the results at a radial distance of 4 m are calculated using the 7 

cylindrical expansion [Eqs. (19) and (20)], and these are also presented in Fig. 4. It is 8 

interesting to note that the difference between these two curves is large at most angles. 9 

For example, the difference at 70° is 3.3 dB, 2.7 dB, 1.7 dB, and 2.1 dB, at 500 Hz, 1 10 

kHz, 2 kHz, and 4 kHz, respectively. It indicates that the far field solution is 11 

inaccurate for predicting the audio sound at 4 meters away from the PAL. To obtain 12 

accurate predictions using the far field solution, the observation point should be far 13 

away from the virtual source of the audio sound rather than the Rayleigh distance. As 14 

demonstrated by Zhong et al.15, an empirical formula of 4/αu can be used to estimate 15 

the far field transition distance, where αu is the ultrasound attenuation coefficient at 16 

the average ultrasound frequency. The far field transition distance is about 32 meters 17 

at 40 kHz, which is seen to be much larger than the Rayleigh distance of 4 m. 18 

Therefore, only those results at a radial distance of 4 m obtained using the cylindrical 19 

expansion are presented in the following figures.  20 

The directivity of the audio sound beam in the far field can also be obtained 21 

using Eq. (6) of the convolution model, so the results calculated using this approach 22 

are presented in Fig. 4 for comparison. It can be seen in Fig. 4 that the SPL values 23 

calculated using the convolution model are slightly larger than the cylindrical 24 

expansion at a radius of 4 m for angles around 90°, and smaller at other angles. For 25 

example, in Fig. 4(d) the SPL obtained at 4 m using the convolution model for a 26 

frequency of 4 kHz is 0.8 dB larger, and 1.6 dB smaller, than that obtained with a 27 

cylindrical expansion at 94.1° and 102.1°, respectively. This difference becomes 28 
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larger as the frequency decreases, indicating that the accuracy using the convolution 1 

model deteriorates at low frequencies. 2 

The measured audio sound directivities at 4 kHz are available from Fig. 4 of Ref. 3 

11, and they are presented in Fig. 4(d). The ultrasound directivities are required to 4 

obtain the audio sound directivity in the convolution model as shown in Eq. (6). They 5 

are predicted using Eqs. (10) and (14) in this paper, but obtained by measurement in 6 

Ref. 11. Therefore, the results obtained using the convolution model in Ref. 11 can 7 

be different and they are also presented in Fig. 4(d) for comparison. It can be seen in 8 

Fig. 4(d) that the SPL values obtained with the cylindrical expansion at 4 m provides 9 

better agreement with measurement when compared to the convolution model, for 10 

angles larger than 85°. For example, the difference between measurement and the 11 

value obtained using the cylindrical expansion is only 0.5 dB at 94.8°, while it 12 

increases to 1.5 dB when compared to the convolution model.  13 

 14 

 15 

 16 

FIG. 4. (Color Online) Audio SPL generated by a conventional PAL with a uniform 17 

profile and a size of 0.08 m calculated using the convolution method and the 18 
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cylindrical expansion at (a) 500 Hz, (b) 1 kHz, (c) 2 kHz, and (d) 4 kHz. Red 1 

hollow square, convolution model; blue hollow circle, cylindrical expansion at 4 m; 2 

orange triangle, cylindrical expansion in the far field; green solid square, 3 

convolution method from Ref. 11; purple solid circle, measurement from Ref. 11. 4 

 5 

B. Steerable PAL generating one beam 6 

The steerable PAL with a steering angle of 70° used in Sec. III.C of Ref. 11 is 7 

considered in this subsection. Figure 5 shows the audio sound fields at 4 kHz 8 

generated by a steerable PAL with a continuous or discrete profile, where the size of 9 

the phased array PAL is 2a = 0.08 m, and the size of the PAL element is a0 = 0.01 m. 10 

Comparing Fig. 5(a) to Fig. 3(d), demonstrates the ability of a phased array PAL to 11 

steer the audio beam in a desired direction. When the velocity profile is discrete 12 

(which is usually limited by the size of real ultrasonic transducers), a side lobe would 13 

occur around 120° as shown in Fig. 5(b). This is known as the spatial aliasing 14 

phenomenon arising from the fact that the size of the PAL element (0.01 m) is greater 15 

than the half of the wavelength of the ultrasound (0.0086 m at 40 kHz).6 16 

 17 

 18 

FIG. 5. (Color Online) Audio sound fields at 4 kHz generated by a steerable PAL 19 

with a steering angle of 70° (denoted by dashed lines), a size of 0.08 m, and a (a) 20 

continuous, or (b) discrete profile with a PAL element size of 0.01 m.  21 

 22 

Figure 6 compares the audio SPL at different angles using the convolution model 23 
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and the cylindrical expansion at a radial distance of 4 m. The measurement data and 1 

the results obtained using the convolution model and measured ultrasound 2 

directivities in Ref. 11 are also presented for comparison. It can be found both models 3 

can predict similar results around the main lobe at 70°. The side lobe is 115°for the 4 

data in Ref. 11 while it is 120° for the predictions in this paper. The reason may arise 5 

from the measurement error, imperfect positioning of the phased array, and so on. The 6 

experimental result at the side lobe (115°) in Ref. 11 is 3.1 dB below the prediction 7 

from the convolution model, which can be more accurately predicted by the 8 

cylindrical expansion as a decrement (3.0 dB) can be observed at the side lobe (120°). 9 

It indicates the cylindrical expansion is more appropriate for the prediction of a 10 

steerable PAL with a discrete profile. Furthermore, the cylindrical expansion can 11 

predict the details of the sound field in the near field as shown in Fig. 5. 12 

 13 

 14 

FIG. 6. (Color Online) Audio SPL at 4 kHz at different angles generated by a 15 

steerable PAL with a steering angle of 70°, a size of 0.08 m, and a discrete profile 16 

with a PAL element size of 0.01 m. Red hollow square, convolution model; blue 17 

hollow circle, cylindrical expansion at 4 m; green solid square, convolution model 18 

from Ref. 11; purple solid circle, measurement from Ref. 11. 19 

 20 
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C. Steerable PAL generating dual beams 1 

The generation of an unwanted side lobe when using a discrete velocity profile 2 

for a steerable PAL was shown in Sec. IV.B. However, this effect can be utilized to 3 

generate dual audio beams, see Ref. 6 for more details. For example, Fig. 7 shows a 4 

4 kHz dual audio beam at 70° and 110° using the parameters in Fig. 8 of Ref. 11, and 5 

this was achieved by steering the ultrasound beams to 69° and 71° at 38 kHz and 42 6 

kHz, respectively. The size of the phased array PAL is 2a = 0.1 m, the size of the PAL 7 

elements is a0 = 0.01 m, their center separation is a1 = 0.0125 m, and the velocity 8 

profile is illustrated in Fig. 2. The details of the audio sound in the near field shown 9 

in Fig. 7 demonstrates that this method can successfully generate dual beams with an 10 

acceptable acoustic contrast in the full field. 11 

 12 

 13 

FIG. 7. (Color Online) Audio sound fields at 4 kHz generated by a steerable PAL 14 

generating dual beams at 70° and 110° (denoted by dashed lines), where the size of 15 

the phased array PAL is 0.1 m, the size of PAL elements is 0.01 m, and their center 16 

separation is 0.0125 m. 17 

 18 

The audio SPL at different angles, obtained using the proposed cylindrical 19 

expansion and the convolution model is compared in Fig. 8. The measurement data 20 

and the results obtained using the convolution model and ultrasound directivities in 21 
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Ref. 11 are also presented. As shown in Fig. 8, it is clear the cylindrical expansion 1 

provides a much better agreement with the measurement data. At the angles between 2 

two lobes the SPL values obtained using the convolution model are lower than those 3 

found using the cylindrical expansion. The difference between the two is a maximum 4 

of 5.8 dB at 90°. The nonlinear interactions between ultrasonic waves in the near field 5 

becomes more complex in this case when compared to a conventional PAL with a 6 

uniform excitation. These interactions cannot be captured in the convolution model 7 

because only the far field directivity for ultrasound is used. The prediction accuracy 8 

is, therefore, deteriorated significantly in this case. However, no simplifications for 9 

ultrasound are made in the cylindrical expansion, so it provides a more accurate 10 

solution.  11 

 12 

 13 

FIG. 8. (Color Online) Audio SPL at 4 kHz at different angles generated by a 14 

steerable PAL generating dual beams at 70° and 110°, where the size of the phased 15 

array PAL is 0.1 m, the size of PAL elements is 0.01 m, and their center separation 16 

is 0.0125 m. Red hollow square, convolution model; blue hollow circle, cylindrical 17 

expansion at 4 m; green solid square, convolution model from Ref. 11; Purple solid 18 

circle, measurement from Ref. 11. 19 

 20 
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V. CONCLUSIONS 1 

In this paper, a cylindrical expansion for the radiation from infinitely long strips 2 

was reviewed. The cylindrical expansion was then extended for the audio sound 3 

generated by a PAL after adopting the phased array technique based on a quasilinear 4 

solution of the Westervelt equation. The expansion is a series of twofold summations 5 

with uncoupled angular and radial components in the cylindrical coordinate system. 6 

The angular component is determined by the trigonometric functions, and the radial 7 

one is an integral containing the Bessel functions and an arbitrary excitation velocity 8 

profile. The proposed expansion converges much faster than the direct numerical 9 

integration of the quasilinear solution. 10 

The numerical results are presented for several steerable PALs and compared to 11 

predictions obtained using the convolution model. A comparison with measurements 12 

reported by Shi and Kajikawa, in Figs. 4, 6, and 8 demonstrates that the proposed 13 

cylindrical expansion provides better agreement with measurement when compared 14 

to the convolution model. This is because the complex nonlinear interactions of the 15 

ultrasound waves in the near field are correctly captured by the cylindrical expansion. 16 

In addition, the proposed cylindrical expansion in Eqs. (19) and (20) can predict the 17 

near audio sound field as shown in Sec. IV, whereas it is not applicable for the 18 

convolution model in Eq. (6).  19 

The cylindrical expansion requires that the radiation surface of the PAL array is 20 

infinitely long in one dimension. This requirement is easy to satisfy because the 21 

ultrasonic wavelength is usually much smaller than an ordinary PAL. However, this 22 

is not always the case for the audio sound and so prediction accuracy at low audio 23 

frequencies may deteriorate when using the cylindrical expansion and this remains to 24 

be addressed. Nevertheless, the proposed cylindrical expansion is shown to provide a 25 

computationally efficient approach to modelling a PAL after adopting the phased 26 

array technique.  27 

 28 
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