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Abstract

Bio-based rhamnolipid production from waste streams is gaining momentum 

nowadays because of increasing market demand, huge range of applications and its economic 

and environment friendly nature. Rhamnolipid type biosurfactants are produced by 

microorganisms as secondary metabolites and have been used to reduce surface/interfacial 

tension between two different phases. Biosurfactants have been reported to be used as an 

alternative to chemical surfactants. Pseudomonas sp. has been frequently used for production 

of rhamnolipid. Various wastes can be used in production of rhamnolipid. Rhamnolipids are 

widely used in various industrial applications. The present review provides information about 

structure and nature of rhamnolipid, production using different waste materials and scale-up 

of rhamnolipid production. It also provides comprehensive literature on various industrial 

applications along with perspectives and challenges in this research area.    

Keywords: Rhamnolipid; Scale-up process; Remediation; Enhanced oil recovery; Oily waste; 

Agro-industrial waste
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1. Introduction 

Surfactants are amphiphilic molecules that help to reduce interfacial tension between 

two different phases (solid-liquid, air-liquid and liquid-liquid) and allow them to mix and 

interact more easily (Jiménez-Peñalver et al., 2019; Conceição et al., 2020). Based on surface 

properties and chemical structure, surfactants can act as wetting agents, dispersants, 

detergents, foaming agents and emulsifiers (Varjani and Upasani, 2017b; Moshtagh et al., 

2018). Surfactants are used in almost every product of daily life from which half of the total 

production is used in food, textiles, cosmetics, mining, pharmaceuticals, agriculture, etc. and 

other half is used in laundry and household detergents (Renterghem et al., 2018; Jiménez-

Peñalver et al., 2019). 

Biosurfactants are surface-active agents produced by a wide range of microorganisms 

(fungi, bacteria, yeast) as secondary metabolites (Díaz De Rienzo et al., 2016; Kourmentza et 

al., 2017). Biosurfactant producing microorganism and the yield has been narrated in table 1. 

Biosurfactants can be classified based on their molecular weight, chemical structure and 

organisms that produce them. Fatty acids, neutral lipids and phospholipids; glycolipid, 

particulate and polymeric biosurfactants; lipoproteins and lipopeptides are classified based on 

their chemical structure (Moshtagh et al., 2018). Based on molecular weight, biosurfactants 

classified into two major groups (a) high molecular weight biosurfactants and (b) low 

molecular weight biosurfactants. Surface properties of biosurfactants vary due to the presence 

of different chemical structures (Jiménez-Peñalver et al., 2019). Biosurfactants are alternative 

to synthetic surfactants due to (i) cost effective production from waste materials or renewable 
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feedstock; (ii) contain great environmental compatibility, low toxicity and biodegradable; and 

(iii) shown stable activity at extreme temperature, pH and salinity (Henkel et al., 2017; 

Varjani and Upasani, 2017b; Jiang et al., 2019; Wang et al., 2020). 

According to Jiménez-Peñalveret et al. (2019) the global turnover of surfactants in 

2016 was US$31 Billion and by 2024 it is expected to grow US$40 Billion. Surfactants have 

been used in soil remediation, degradation of crude oil, wastewater treatment, etc. (He et al., 

2020). 344 thousand tons of biosurfactants were globally sold in 2013 and by 2020 it is 

expected to reach 461 thousand tons. Additionally, in 2016 the global market of 

biosurfactants was estimated at US$3.99 billion and is expected to reach US$5.52 billion by 

2022 (Singh et al., 2018; Wang et al., 2018; Wang et al., 2020).

Most common biosurfactants are glycolipids and are formed of saccharides (mono, di, 

tri or tetra) of glucose, rhamnose, mannose or galactose that are attached to aliphatic acids 

(long-chain) with an ether or ester linkage. Most studied class of biosurfactants are 

rhamnolipids, which are anionic glycolipids formed of units of β – hydroxyalkanoic acids and 

rhamnose residue (Pérez-Armendáriz et al., 2019). Literatures are available that show 

production of rhamnolipid using various waste materials such as refinery, petroleum, fruit, 

dairy, agricultural, bakery and other industrial waste. Waste materials used for the production 

of rhamnolipids are cost-effective. Rhamnolipids are highly used in various applications that 

include industrial (detergent, food, pharmaceutical, dairy, etc.), medical, bioremediation, 

microbial enhanced oil recovery.

***Insert Table 1***

The present review intends to expand the literature about production of rhamnolipids 

from different waste streams. It includes information about nature and chemical structure of 
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rhamnolipids and scale-up of rhamnolipid production. It summarizes perspectives and 

challenges for research in rhamnolipid production from wastes. Already published literature  

at various periods have focused on a limited aspect in bio-based rhamnolipid production. 

However this review provides comprehensive findings pertaining to developments in the 

topics presented as sections of this paper.  

 

2. Nature and chemical structure of rhamnolipid

Rhamnolipids are a type of glycolipids, low molecular weight and most popular 

biosurfactant due to their great physicochemical properties (Zhao et al., 2018; Jahan et al., 

2019; Varjani and Upasani, 2019; Drakontis and Amin, 2020). It is a diverse group of 

molecules with more than 60 reported congeners (Tiso et al., 2017). Rhamnolipid name is 

due to presence of rhamnose moiety, it is generally produced by Pseudomonas 

aeruginosa (Satpute et al., 2017). They contain fatty acid tail (β – hydroxydecanoic acid) 

with lengths of 8, 10, 12 and 14 carbons and one or two glycosyl head groups (rhamnose 

moiety) (Elshikh et al., 2017; Henkel et al., 2017; Zhao et al., 2018; Pérez-Armendáriz et al., 

2019). Rhamnolipids can be classified structurally based on presence of number of rhamnose 

group (i) monorhamnolipd and (ii) dirhamnolipid (Elshikh et al., 2017). Growth and 

environmental conditions influence production of rhamnolipids which can lead rhamnolipids 

with different degree of unsaturation, degree of branching and length of chain for fatty acids 

(Drakontis and Amin, 2020). According to Drakontis and Amin (2020) with the use of 

different concentration of bacterial species, 60 different rhamnolipid homologues and 

congeners can be produced. Rhamnolipids are more suitable for various industrial 

applications due to its great surface and biological activities (Zhao et al., 2018; Drakontis and 

Amin, 2020). 
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3. Rhamnolipids from various waste streams

 

Large amount of waste is produced each year by restaurants, houses and industries 

(Mishra et al., 2020). Improper disposal of waste can cause various environmental issues 

(Pérez-Armendáriz et al., 2019). Waste like oil, petroleum, agricultural and food can be used 

to produce various biosurfactants (rhamnolipids and sophorolipids, etc.) with help of various 

microbial cultures (Rajmohan et al., 2020). From all microorganisms, Pseudomonas 

aeruginosa is highly used for producing rhamnolipid because they can survive extreme 

environmental conditions (Li, 2017; Varjani et al., 2020a).

 

3.1.  Oily waste

Biosurfactants can be produced using industrial wastes such as food, oil refineries and 

petroleum oily waste as low cost raw material (Müller and Hausmann, 2011). Rhamnolipid 

production from different oily wastes employing microorganisms is shown in table 2. 

Pérez-Armendáriz et al. (2019) have prepared 4 different factorial designs and performed 32 

treatments for rhamnolipid production from which the highest rhamnolipid yield was 

obtained from factorial design 4 and treatment 8. Factorial design 4 contained waste canola 

oil as a source of carbon and sodium nitrate as a source of nitrogen and produced 3585.31 ± 

66.24 mg/L rhamnolipid using Pseudomonas aeruginosa. Özdal et al. (2017) have reported 

12.1 g/L production of rhamnolipid using Pseudomonas aeruginosa OG1 in the presence of 

10 g/L ram horn peptone (RHP) and waste frying oil. Sood et al. (2020) have reported 19.22 

g/L rhamnolipid production in basal medium amended with rice bran oil and 21.77 g/L 
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rhamnolipid production in glycerol amended Luria Bertani (LB) medium using Pseudomonas 

aeruginosa CR1.

***Insert Table 2***

3.2. Agro-industrial waste

High content of lipids and carbohydrates are present in the agro-industrial waste 

hence it can be used to produce biosurfactants (Nitschke et al., 2004). Published literature 

shows production of rhamnolipid from various wastes such as oil mill wastewater (Gudiña et 

al., 2016), paneer whey (Patowary et al., 2016), barley pulp (Kaskatepe et al., 2017), orange 

peel (George and Jayachandran, 2008) and cassava waste (Costa et al., 2009; Tianran et al., 

2019), etc. Rhamnolipid production from different agro-industrial and other wastes 

employing microorganisms is shown in table 2. Joy et al. (2019) have reported 4.13 ± 0.12 

g/L rhamnolipid production after 192 h using Achromobacter sp. PS1 from lingo-cellulosic 

residues (sugarcane bagasse, rice-straw and wheat-straw). Patowary et al. (2016) have 

reported production of 2.7 g/L rhamnolipid using paneer whey as a source of carbon with 

help of Pseudomonas aeruginosa SR17 which was increased to 4.8 g/L when media was 

supplemented with 2% mineral salts and glucose. 

***Insert Table 3***

3.3.  Other wastes

Apart from above other wastes can also be used as a source of carbon for production 

of rhamnolipid such as bakery waste, shrimp shell waste, rice grains, fruit industrial waste, 

whey waste, dairy waste, etc. Patowary et al. (2018) have reported 11.56 g/L rhamnolipid 

from bakery waste supplemented with mineral salt media using Pseudomonas 

aeruginosa PG1. Kadam and savant (2019) have isolated Pseudomonas stutzeri L1 from 
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marine fishing port located in Mumbai and produced 4-6 g/L rhamnolipid using shrimp shell 

waste. Borah et al. (2019) have produced 14.87 g/L rhamnolipid by providing rice based 

distillers dried grains with solubles (rDDGS) as a carbon source to Pseudomonas 

aeruginosa SS14.

 

4. Scale-up of rhamnolipid production

Biosurfactants possesses important advantages over chemical surfactants. However, 

their production is still at laboratory level and needs further examination for industrial scale 

production. Good scale-up method used for production of rhamnolipid can decrease material 

cost as well as labour intensity (Amani, 2018). Production of rhamnolipid at large scale 

requires following steps (i) Microbial growth: rhamnolipid producing bacterial growth on 

petri plate containing growth media, (ii) Shake flask (small scale): bacterial growth used to 

test the production of rhamnolipid and study optimization production, (iii) Small scale 

fermenter (laboratory scale): bacterial culture than inoculated into the laboratory scale 

fermenter, and (iv) Large fermenter (pilot scale or industry level): used to produce huge 

amount of rhamnolipid developed at laboratory scale (Fedorenko et al., 2015; Li et al., 2015; 

Chong and Li, 2017; Heryani and Putra, 2017; Salea et al., 2017; Ye et al., 2018; Barros et 

al., 2019). This scale-up process is necessary for large scale product manufacturing, since 

every process varies in the condition which affects the production. 

Gong et al. (2020) have performed scale-up for production of rhamnolipid using air 

pressure pulsation solid-state fermentation (APP-SSF) and achieved 39.8 g/L rhamnolipid 

production in a 30L APP-SSF fermenter using 10% Pseudomonas aeruginosa SKY as 

inoculum, and incubation was performed at 37ºC for 168 hours at 50 rpm. Rhamnolipid 
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produced by this method at large-scale contains high productivity, low cost and low 

impurities of production. Amani (2018) has performed rhamnolipid production experiment 

using 2.5 L and 20 L bioreactor using Pseudomonas aeruginosa MM1011. Maximum 

production of rhamnolipid (8.3 g/L) was reported in 20 L bioreactor which was 10% better 

than in 2.5 L bioreactor after 7 days at 37oC.

5. Applications 

 

Rhamnolipids have found various applications in bioremediation of polluted 

environments (hydrocarbon, heavy metals, pesticides, dyes and plastics etc), microbial 

enhanced oil recovery, agricultural, beverages, cosmetics, foods, pharmaceuticals (Singh et 

al., 2009; Jiménez-Peñalver et al., 2019; Rajmohan et al., 2019; Biselli et al., 2020; Shi et al., 

2020; Varjani et al., 2020b). Some rhamnolipids contain antifungal, antiviral and antibacterial 

properties which make them useful for fighting against infections and diseases (Souza et al., 

2017).

5.1.  Bioremediation

 

Biosurfactants are used to intensify the bioremediation process (Varjani et al., 2017; 

Staninska-Pięta et al., 2019). Rhamnolipid have been used to remediate heavy metals, dyes, 

pesticides, hydrocarbons, oil spills and contaminated soils, etc. (Varjani, 2017; Patel et al., 

2018; Lee and Kim, 2019; Varjani et al., 2019; Wei et al., 2020; Kumar et al., 2020). 

Rhamnolipids help in remediation process by emulsifying or solubilizing hydrocarbons and 

modifying bacterial cell surface properties for intensification of interfacial uptake of 

hydrocarbons (Liu et al., 2018). Bhosale et al. (2019) have reported 92.72% decolorization of 
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methyl violet dye using rhamnolipid functionalized iron oxide nanoparticles (RL@IONPs) as 

photocatalyst (8 mg) and sodium dodecyl sulfate (SDS) as absorbent (0.12 mg). Rhamnolipid 

was produced by Pseudomonas aeruginosa ATCC 9027 using 10 mL culture medium. 

Olasanmi and Thring (2020) have used rhamnolipid at 500 mg/L concentration for reduction 

of petroleum hydrocarbons. The maximum petroleum hydrocarbons reduction rate for total 

petroleum hydrocarbon (TPH) fractions F2 (C10-C16), F3 (C16-C34) and F4 (C34-C50) was 

58.5%, 48.4%, 63.5% and 59.8%, respectively for petroleum contaminated soil. Chen et al. 

(2017) have reported 80.21%, 47.85%, 63.54% and 86.87% removal of Cu, Cr, Pb and Cd, 

respectively using 0.8% rhamnolipid for experiment of 12h at pH 7.0. Gaur et al. (2019) 

produced 1.6 g/L rhamnolipid using Lysinibacillus sphaericus IITR51. Rhamnolipid at 

concentration of 90 mg/L was reported for higher dissolution of γ-hexachlorocyclohexane, β-

endosulfan and α-endosulfan up to 1.8, 2.9 and 7.2 folds, respectively than at other 

concentrations i.e. 45 mg/L, 60 mg/L, 75 mg/L, 90 mg/L, and 105 mg/L. They have reported 

application of rhamnolipid for enhanced dissolution and increased bioavailability of 

pollutants. 

5.2.  Microbial enhanced oil recovery

Microbial enhanced oil recovery (MEOR) has been used as a tertiary process when 

primary and secondary treatment processes are no longer able to recover oil (Varjani and 

Upasani, 2016a). Rhamnolipids (biosurfactants) are key elements in oil recovery process due 

to their tolerant capability to withstand extreme environmental conditions, nontoxic and eco-

friendly nature (Varjani and Upasani, 2016b; Das and Kumar, 2019; Elakkiya et al., 2020; 

Wei et al., 2020). Elakkiya et al. (2020) produced rhamnolipid (0.34 mg/mL) from cassava 

solid waste using Pseudomonas aerugimosa TEN01 and achieved highest oil recovery 
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14.28% using biosurfactant based silver nanoparticle which was similar to chemically 

produced silver nanoparticle. Haloi et al. (2020) have used  Pseudomonas sp. TMB2 

(KX661384) for production of 2.8 ± 0.5 g/L rhamnolipid and reported overall 27.11% oil 

recovery efficiency with an additional 16.7% recovery after secondary brine flooding from 

rock plug NH1. Câmara et al. (2019) have produced rhamnolipid using Pseudomonas 

aeruginosa for oil recovery. They have reported 11.91 ± 0.39% improved advanced recovery 

by microorganisms from a total recovery factor of 50.45 ± 0.79%.

5.3.  Medical applications

Rhamnolipid possesses antimicrobial properties and can be used as biopesticides. 

Rhamnolipids are more effective against gram-positive bacteria than gram-negative bacteria 

due to presence of outer membrane in gram-negative bacteria which works as a protective 

layer (Murugan et al., 2018; Naughton et al., 2019). Literatures are available that shows 

various applications of rhamnolipid biosurfactant in the field of biomedicine as anticancer, 

antimicrobial, antitumor, antiviral, immune modulators and wound treating agent (Chen et al., 

2017; Kumar and Das, 2018). Yi et al. (2019) have prepared nanoparticles of rhamnolipid 

using flax seed oil and loaded them with model drug pheophorbide a (Pba). They have used 

photodynamic in vivo therapy and rhamnolipid nanoparticle to achieve complete suppression 

of tumor. Chen et al. (2017) have reported antimicrobial activity of rhamnolipid mixture 

produced by P. aeruginosa sp.

Niaz et al. (2019) have performed inhibitory activity assay with rhamnolipid at 

minimal inhibitory concentrations (MICs) at 5, 10, 50 and 1000 μg/mL against P. 

aeruginosa, S. aureus, E. coli and L. monocytogenes, respectively. Results propose that all 
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foodborne pathogens used in study were sensitive to rhamnolipid at very low concentrations 

except L. monocytogenes. They have reported 80% decrease in generation of biofilm biomass 

when treated with nisin-loaded rhamnosome nano-vesicles (RSNVs). Gaur et al. (2019) have 

reported production of rhamnolipid by Lysinibacillus sphaericus IITR51. It showed 

antibacterial activity against pathogenic bacteria such as Bacillus subtilis MTCC 441, 

Aeromonas hydrophilia MTCC 1143, Pseudomonas aeruginosa MTCC 424, Vibrio cholera 

MTCC 3904, Escherichia coli MTCC 723 and Klebsiella pneumonia MTCC 109. Gaur et al. 

(2020) have produced 2.5 and 1.8 g/L rhamnolipid using Planococcus rifietoensis IITR53 and 

Planococcus halotolerans IITR55 and reported antibacterial activity against Yersinia 

enterocolitica MTCC 859, Vibrio cholerae MTCC 3904, Clostridium perfringens MTCC 

450, Streptococcus mutans MTCC 497, Salmonella typhimurium MTCC 98 and 

Streptococcus oralis MTCC 2696.

 

5.4.  Other applications

Rhamnolipid is a low foaming agent. Its foaming capability can be increased by the 

combination with alpha olefin sulfonate (AOS) or sodium lauryl ether sulfate (SLES). Due to 

its low foaming capability rhamnolipid based liquid detergents can be used for washing 

machines as laundry detergents (Jadhav et al., 2019). Around 5,00,000 tons of emulsifiers are 

produced each year for food industry applications (Gudiña and Rodrigues, 2019). 

Rhamnolipids are used in food industries as wetting or foaming agents/stabilizers (to support 

stability of food ingredients) and emulsifiers (for texture and consistency of food), thereby it 

helps in increasing shelf life of food products. 

6. Research needs and future directions
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Bio-based surfactant production from waste streams would be a favourable way for 

resource recovery. However, developments need to be carried out for enabling economically 

& ecologically feasible production and recovery technologies. Rhamnolipid biosurfactant can 

be produced by various microorganisms using different industrial wastes/raw materials; 

however, it requires further examination for scale-up to produce rhamnolipid. Many 

researchers have used Pseudomonas sp. for production of rhamnolipid (Li, 2017; Varjani and 

Upasani, 2016c; Das and Kumar, 2018; Varjani and Upasani, 2019). Rhamnolipid has various 

industrial applications but it is limited due to its high cost for production (Benrebah et al., 

2007). Different microorganisms can be used to produce biosurfactants with different 

structures and characteristics having different application efficiency (Varjani and Upasani, 

2017a; Dell’Anno et al., 2018). Carbon sources and fermentation conditions can affect yield 

of rhamnolipid (Li, 2017). There are many bottlenecks that are required to be resolved to 

support biosurfactant production and recovery from waste streams as an advantageous option 

for resource recovery. After production, recovery would certainly add to the total cost for 

biosurfactant production using waste streams. It is necessary to recover maximum surfactant 

produced from waste streams. For this care should be taken in order not to have too much 

cost which would not be feasible economically. The challenge would be selection of cost-

effective method for recovery which would lead to maximum biosurfactant recovery at 

minimal cost. 

 Future research should examine various factors that may affect rhamnolipid 

production.

 For application of biosurfactants in remediation of polluted sites or enhanced oil 

recovery in depth efficiency of rhamnolipid type biosurfactants should be studied. 
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Application of rhamnolipid should be studied under extreme environmental 

conditions.

 The quality and production yield of rhamnolipid can be improved using genetic 

engineering.

 New technologies and strategies are required to improve yield and decrease 

production costs. There is a need for in depth cost-benefit analysis for biosurfactant 

recovery methods.

 Rhamnolipid production using wastes as raw materials need to be performed at large 

scale to support waste valorisation concept.

7. Conclusions

Production of bio-based rhamnolipids from waste streams is gaining interest of 

researchers. Rhamnolipids have found applications in various industries such as petroleum, 

agriculture, cosmetics and medicine. Systematic research is required to be performed to study 

the effect of operational conditions for rhamnolipids production and recovery from wastes. 

There is a need for in depth cost-benefit analysis for recovery of biosurfactants. Large scale 

production and purification of rhamnolipids increase cost which can be reduced using waste 

materials for its production. It is opined that employing wastes as source would make the 

process more environmental friendly and cost effective. 
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Table 1. Biosurfactant producing microbes

Sr. No. Biosurfactants Microbial culture Yield References

Starmerella ombicola 115.2 g/L Kaur et al., 2019

Candida albicans SC5314 and 

Candida glabrata CBS138

- Gaur et al., 2019

Candida bombicola 623 g/L Dolman et al., 2017

26 g/L

21 g/L

Starmerella bombicola

19 g/L

Shah et al., 2017

Cutaneotrichosporon mucoides 

UFMG-CM-Y6148

0.167 g.L−1. h−1 Marcelino et al., 2019

1 Sophorolipid

Starmerella bombicola - Huang and Wages, 

2016

Pseudomonas aeruginosa DAB 17.3 g/L He et al., 2017

Pseudomonas aeruginosa  

KVD-HR42

5.90 ± 2.1 g/L Deepika et al., 2016

2 Rhamnolipid

Pseudomonas aeruginosa 

PAO1

0.43 g/L Radzuan et al., 2017

Rhodococcus qingshengii FF 7.97 g/L Wang et al., 2019

Gordonia sp. 1D - Delegan et al., 2019

Pseudomonas fragi ATCC 

4973

2.89 g/L Mei et al., 2016

3 Trehalose lipids

Rhodococcus erythropolis 25 g/L Patil and Pratap, 2018

Pseudomonas aeruginosa - Lewenza et al., 2011; 

Kim et al., 2018

4 Ornithine lipid

Thiobacillus thiooxidans - Roy, 2017



34

Table 2. Rhamnolipid production from different oily wastes employing microorganisms

Sr. No. Organisms Type of waste Yield Reference

1 Pseudomonas aeruginosa 

PAO1

Palm Fatty Acid Distillate 

(PFAD)

0.43 g/L Radzuan et 

al., 2017

Pseudomonas aeruginosa 

PrhlAB

2.87 g/L

Pseudomonas aeruginosa SG 1.98 g/L

2

Pseudomonas stutzeri Rhl

Crude glycerol

0.87 g/L

Zhao et al., 

2019

3 Pseudomonas aeruginosa 

MR01

SOM medium including 

soybean oil 6% (V/V) 24-36 mg/L

Lotfabad et 

al., 2017

4 Pseudomonas aeruginosa Sunflower acid oil 4.9 g/L Jadhav et al., 

2019

5 Pseudomonas aeruginosa Petroleum oil wastes 2.7 g/L Mostafa et al., 

2019

Stenotrophomonas 

maltophilia IITR87

570 mg/L

Ochrobactrum anthropic 

IITR07

294 mg/L

6

Pseudomonas aeruginosa 

IITR48

Crude oil

270 mg/L

Tripathi et al., 

2019

7 Pseudomonas aeruginosa 

ORA9

Mineral medium with 

soybean fried oil

2.3 ± 0.8 g/L Gámez et al., 

2017

Soybean oil 4.31 g/L8 Pseudomonas aeruginosa 

GS9-119 and Pseudomonas Safflower oil 2.98 g/L

Rahman et 

al., 2002
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aeruginosa DS10-129 Glycerol 1.77 g/L

9 Pseudomonas aeruginosa

LBI

Soybean oil soap-stock 11.7 g/L Nitschke et 

al., 2009

10 Pseudomonas aeruginosa

AB93066

Cooking oil fume 

condensates

12.3 g/l Wu et al., 

2019

11 Pseudomonas aeruginosa 

NCIM 5514

Bushnell-Hass medium with 

1% crude oil

3.146 ± 0.087 

g/L

Varjani and 

Upasani, 

2019

12 Pseudomonas aeruginosa Kitchen waste oil 2.47 g/L Chen et al., 

2018

13 Pseudomonas aeruginosa 

estA

Crude glycerin 17.6 g/L Dobler et al., 

2020

14 Pseudomonas aeruginosa 

#112

Oil mill wastewater 5.1 g/L Gudiña et al., 

2016

15 Pseudomonas aeruginosa Olive mill (OMW) waste 29.5 mg/L Ramírez et 

al., 2016

16 Pseudomonas aeruginosa 

AMB AS7

Coconut oil sludge and oil 

cake

5.53 g/L Samykannu 

and Achary, 

2017

Diesel 1300 mg/L17 Pseudomonas aeruginosa J4

Kerosene 709 mg/L

Wei et al., 

2005
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Table 3. Rhamnolipid production from different agro-industrial and other wastes employing 

microorganisms

Sr. No. Organisms Waste Yield Reference

1 Pseudomonas aeruginosa 

SR17

Paneer whey 2.7 g/L Patowary et al., 2016

2 Pseudomonas azotoformans 

AJ15

Agro industrial waste 1.6 g/L Das and Kumar, 

2018

Pseudomonas aeruginosa 

ATCC 9027

9.3 g/L

Pseudomonas pachastrellae 

LOS20

8.5 g/L

3

Pseudomonas putida IBS036

Barley pulp

6.7g/L

Kaskatepe et al., 

2017

4 Pseudomonas aeruginosa 

MTCC 2297

Orange peel 9.18 g/L George and 

Jayachandran, 2008

5 Pseudomonas aeruginosa Cassava wastewater 660 

mg/L

Costa et al., 2009

6 Pseudomonas 

aeruginosa ATCC 10145

Cassava residues 18.28 

g/L

Tianran et al., 2019

7 Achromobacter sp. (PS1) Lignocellulosic 

residues

4.13 ± 

0.12 g/L

Joy et al., 2019
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Highlights

 Rhamnolipid can be recovered from waste streams.

 The major stumbling block in rhamnolipid production is cost of production.

 Various applications of Rhamnolipid have been explained.

 Summarised state-of-art information for new opportunities in research and scientific 

innovation in bio-based rhamnolipids field.
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