
PADS: A Simple Yet Effective Pattern-Aware Dynamic Search

Method for Fast Maximal Frequent Pattern Mining

Xinghuo Zeng† Jian Pei† Ke Wang† Jinyan Li‡

† School of Computing Science, Simon Fraser University, Canada. {xzeng, jpei, wangk}@cs.sfu.ca
‡ School of Computer Engineering, Nanyang Technological University, Singapore. jyli@ntu.edu.sg

Abstract
While frequent pattern mining is fundamental for many data mining tasks, mining maximal

frequent patterns efficiently is important in both theory and applications of frequent pattern
mining. The fundamental challenge is how to search a large space of item combinations. Most of
the existing methods search an enumeration tree of item combinations in a depth-first manner.

In this paper, we develop a new technique for more efficient max-pattern mining. Our method
is pattern-aware: it uses the patterns already found to schedule its future search so that many
search subspaces can be pruned. We present efficient techniques to implement the new approach.
As indicated by a systematic empirical study using the benchmark data sets, our new approach
outperforms the currently fastest max-pattern mining algorithms FPMax* and LCM2 clearly.

1 Introduction

Let I be a set of items. An itemset X is a subset of I. A transaction is a tuple (tid, Y) where tid is a
unique transaction-id and Y is an itemset. Transaction (tid, Y) is said to contain itemset X if X ⊆ Y .
For a given transaction database TDB which consists of a set of transactions, the support of an itemset
X is the number of transactions containing X, that is, sup(X) = |{(tid, Y) ∈ TDB|X ⊆ Y }|. For a
given minimum support threshold min sup, an itemset X is a frequent pattern if sup(X) ≥ min sup.
Given a transaction database and a minimum support threshold, the problem of frequent pattern
mining [4] is to find the complete set of frequent patterns.

For example, consider the transaction database TDB in Figure 1. For the sake of simplicity, we
write an itemset as a string of items. For example, itemset {a, c, d} is written as acd. Let the support
threshold min sup = 2. Since abcd is contained in transactions 20, 30 and 40, sup(abcd) = 3 and
abcd is a frequent pattern.

Frequent pattern mining is fundamental for many data mining tasks, such as mining association
rules [5], correlations [10], causality [29], sequential patterns [6], episodes [22], partial periodicity [16],

1

tid itemset

10 bcde

20 abcd

30 abcdf

40 abcde

50 def

Figure 1: A transaction
database.

acd ace acf ...

...

abcde abcdf abcef abdef acdef bcdef

abcdef

(a) the itemset lattice

abc abd abe abf acd ace acf ...

...

abcde abcdf abcef abdef acdef bcdef

abcdef

(b) a set enumeration tree

...ab bd

a b c d e f

{}

ac ad ae af bc be bf cd

abf

c d e f

{}

ac ad ae af bc be bf cd ...

abc abd abe

b

ab bd

a

Figure 2: An itemset lattice and a set enumeration tree.

iceberg-cube computation [8], associative classification [19], and subspace clustering [3]. It is also
important in many applications, such as market analysis and network intrusion detection.

Frequent patterns have the well-known monotonic Apriori property [4]: if X is frequent, then
every nonempty subset of X is also frequent. For an itemset X, |X| is called the length of X.
According to the Apriori property, a long frequent pattern of length n leads to (2n − 2) shorter
non-empty frequent patterns. For example, in Figure 1, if min sup = 2, abcd is a frequent pattern.
All subsets of abcd including a, b, c, d, ab, . . . , bcd are also frequent patterns.

To avoid mining all frequent patterns, we can mine only those max-patterns [7]. An itemset X is
a maximal frequent pattern or a max-pattern for short if X is frequent and every proper superset of X

is infrequent. In Figure 1, when min sup = 2, the max-patterns are abcd, bcde and df . The problem
of mining maximal frequent patterns (or mining max-patterns for short) is to find the complete set of
max-patterns.

Mining max-patterns efficiently is important in both theory and applications of frequent pattern
mining. On the theoretical side, the max-patterns serve as the border between the frequent patterns
and the infrequent ones. With the set of max-patterns, whether an itemset is frequent or not can
be determined quickly using the Apriori property. On the application side, max-patterns are used
in a few interesting and challenging data mining tasks. For example, using max-patterns, we can
find emerging patterns [12] which are patterns frequent in the positive samples and infrequent in the
negative samples. Emerging patterns can be used to construct effective classifiers [18]. As another
example, using max-patterns with respect to a series of support thresholds, we can summarize and
approximate the support information of all frequent patterns [26].

More broadly, mining max-patterns is also related to many data mining problems, including

2

mining generators [20], mining borderline description [13], mining maximal sequential patterns [21],
web log mining [28], condensed representations of constrained frequent patterns [9], and summarizing
association rules [23].

The fundamental challenge of mining max-patterns is how to search a large space of itemsets
and identify max-patterns. Most of the existing methods search an enumeration tree of itemsets in a
depth-first manner. The search is often arranged according to some heuristics such as the frequencies
of items. [2] provides a good survey.

One important and interesting issue overlooked in the previous studies is how the max-patterns
already found can help to plan the search of new max-patterns. In this paper, we develop a novel
pattern-aware approach which dynamically schedules the search based on the max-patterns already
found. A distinct advantage is that many branches in the dynamic scheduled search space can be
pruned sharply. We also present efficient techniques to implement the new approach. As indicated
by a systematic empirical study using the benchmark data sets, our new approach outperforms the
currently fastest max-pattern mining algorithms FPMax* [15] and LCM2 [30] in a clear margin.

2 Search Space and Search Strategies

Due to the Apriori property, only frequent items can appear in a max-pattern. Thus, the search space
of max-pattern mining is the lattice of itemsets consisting of only frequent items, which is called the
itemset lattice. Figure 2(a) shows the itemset lattice of the transaction database in Figure 1, where
I = {a, b, c, d, e, f}, min sup = 2, and every item is frequent.

Essentially, the itemset lattice can be searched in an either breadth-first or depth-first manner.
Consider the transaction database TDB in Figure 1. In a breadth-first search, we start with finding
the frequent items, i.e., a, b, c, d, e and f . Then, we combine the frequent items to generate length-2
itemsets, i.e., ab, ac, . . . , ef . The supports of those length-2 candidates are counted, and the length-2
frequent patterns are found. A length-3 pattern X is generated as a candidate only if every length-2
subset of X is frequent. For example, abc is generated as a length-3 candidate since ab, ac and bc

are frequent, while def should not be generated as a length-3 candidate since ef is infrequent. The
search continues until all candidates of the current iteration are infrequent, or no longer candidates
can be generated.

A few methods such as MaxMiner [7] search an itemset lattice in a breadth-first manner. As
indicated by some previous studies such as [2], the breadth-first search methods may have to search
many patterns that are not maximal or even infrequent.

To reduce the number of patterns searched, some recently developed methods such as Depth-
Project [1], Mafia [11], GenMax [14], FPMax* [15] and LCM2 [30] conduct depth-first searches. A

3

global order called the enumeration order on all frequent items can be used to enumerate all itemsets
systematically in a set enumeration tree [27]. Figure 2(b) shows a set enumeration tree of the lattice
in Figure 2(a) where the lexicographic order of items is used as the enumeration order. In the subtree
of a, we search for patterns having item a. In the subtree of b, we search for patterns having item b

but no item a. The search space of other subtrees can be specified similarly.

Depth-first searches can be implemented efficiently using projected databases. To search patterns
in the subtree of a, we only need to check the transactions containing a, which is called the a-projected
database. Similarly, to search patterns in the subtree of ab, we only need to check the ab-projected
database, which is a subset of the a-projected database. Since ab is a child of a in the set-enumeration
tree, the depth-first search takes a divide-and-conquer strategy.

A critical pruning technique called head-and-tail pruning was firstly proposed in MaxMiner, and
was adopted by DepthProject, Mafia, GenMax and FPMax*. Consider Figure 1 again and let
min sup = 2. Suppose we use the lexicographic order of items in a depth-first search of max-
patterns. The a-projected database consists of transactions 20, 30 and 40. Items b, c and d are
frequent in the a-projected database and form the tail of a, denoted by Tail(a) = bcd. According
to the Apriori property, any pattern X containing a can have only items from Tail(a) or a itself,
i.e., X ⊆ a ∪ Tail(a) = abcd. Before we unfold the subtree of a, we can first check sup(abcd). Since
abcd is frequent and no other max-patterns found later will contain a (due to the divide-and-conquer
partitioning in the set-enumeration tree), abcd is a max-pattern. Any frequent pattern in the subtree
of a must be a subset of abcd and thus cannot be a max-pattern. We do not need to search the subtree.
Similarly, we can find max-pattern bcde from the subtree of b. Now, let us consider c. Tail(c) = de

which means any pattern containing c but no a or b must be a subset of c∪Tail(c) = cde. Since cde

is a subset of bcde, a max-pattern found before, the subtree of c does contain any max-pattern and
thus can be pruned immediately.

In the head-and-tail pruning, finding long max-patterns early may prune more subtrees. A
heuristic called dynamically ordering of frequent items was firstly proposed in MaxMiner, and was
adopted by DepthProject, Mafia, GenMax and FPMax*. When we search the subtree of itemset X,
we find the set of items that are frequent in the X-projected database. We sort those frequent items
in the support ascending order to construct the subtree of X. The rationale is that a set enumeration
tree constructed using such an order may have a small left subtree, and may lead to max-patterns
early.

The previous studies such as [2] suggest that depth-first searches often have a better performance
than breadth-first searches in mining max-patterns.

4

(a) static scheduling (b) dynamic scheduling

{}

a b ...

abcd

... cde

pruned

{}

a b ...

abcd

c d e...

Figure 3: The pruning effect of pattern-aware dynamic search.

3 Pattern-Aware Dynamic Search

Consider TDB in Figure 1 again. From the a-projected database, we can find max-pattern abcd.
Now, let us consider how to search the subtree of b. Tail(b) = cde. Since b∪Tail(b) 6⊆ abcd, we need
to search the subtree of b.

If we use the order of c-d-e to enumerate patterns containing b but no a, as shown in Figure 3(a),
then, we need to search all the three subtrees of the children of b, namely bc, bd and be.

Given abcd is a max-pattern found before, one critical observation here is that e is the only item
in b ∪ Tail(b) but not in abcd. Any pattern in the subtree of b not containing item e is a subset of
max-pattern abcd and thus cannot be a max-pattern. In other words, in the subtree, we only need to
search the patterns containing e. Thus, in the subtree of b, if we sort the items such that e precedes
c and d, as shown in Figure 3(b), we only need to search the subtree of e, and the subtrees of c and
d can be pruned immediately. In fact, the ordering between c and d does not matter.

The essential idea of pattern-aware dynamic search is simple. When a subtree is searched, based
on the max-patterns found before, we construct the subtree in a way that the potential max-patterns
are scheduled into some branches that have to be searched, and the patterns that are subsets of max-
patterns found before are organized into branches that can be pruned.

Let us generalize the idea technically. Suppose we want to search the subtree of an itemset X.
Let Y ⊃ X be a max-pattern found before. Then, we can schedule the search of the subtree of X as
follows. We partition Tail(X) into two subsets: T1 = Tail(X) − Y is the set of items that do not
appear in Y ; and T2 = Tail(X) ∩ Y is the set of items that appear in Y . Any max-pattern in the
subtree of X must contain at least one item from T1. Thus, we order the items such that the items
in T1 precede the items in T2.

Using this order, we only need to search the children of X that are in T1. The children of X

in T2 and their subtrees can be pruned immediately. The above process is called the pattern-aware
dynamic search (PADS for short), and an order where items in T1 precede items in T2 is called a

5

PADS order with respect to Y . Max-pattern Y is called the key pattern of the search scheduling.

We prove the correctness of the above scheduling.

Theorem 1 (Correctness) Let X be a frequent pattern, and Y be a max-pattern such that X ⊂ Y .
If a PADS order with respect to Y is used to construct the set enumeration subtree of X, then for
any item z ∈ Tail(X) ∩ Y and any pattern Z in the subtree of X ∪ {z}, Z ⊂ Y .

Proof. As discussed before, Tail(X ∪ {z}) ⊂ Tail(X). Since a PADS order with respect to Y

is used, z is behind all items in Tail(X) − Y in the order. That is, Tail(X ∪ {z}) ⊂ Y . Since
z ∈ Tail(X) ∩ Y and X ⊂ Y , we have Z ⊆ (X ∪ {z} ∪ Tail(X ∪ {z})) ⊂ Y .

The pattern-aware dynamic search technique is different from the technique of dynamically order-
ing frequent items developed in the previous studies, which uses the item frequency ascending order
to construct a set enumeration subtree. Dynamically ordering frequent items is a heuristic method.
Due to the correlations among frequent items, there exist counter examples where sorting frequent
items in support ascending order does not help pruning. In contrast, the effect of pattern-aware
dynamic search is determined once the key pattern is chosen. To search the subtree of a pattern X,
once there exists at least one key pattern Y ⊃ X found before, a PADS order based on Y can be
used to prune some children of X by pattern-aware dynamic search. It is not heuristic.

4 Choosing a Good PADS Order

To the best our knowledge, LCM2 [30] is the only existing method adopting a similar idea in mining
max-patterns. What is the critical difference between our method and LCM2?

For a pattern X, if there are more than one pattern Y such that Y ⊃ X, then each pattern can
serve as a key pattern, and thus multiple PADS orders are feasible. Now, the problem becomes how
to select a good PADS order.

In LCM2, an arbitrary item e in the tail of Y is picked, and the max-patterns containing Y ∪{e}
are mined. Then, the longest max-pattern containing Y ∪ {e} is chosen as the key pattern, and the
PADS order is determined accordingly. However, the method may not lead to good performance all
the time.

First, issuing a sub-routine to find all max-patterns containing Y ∪ {e} may lead to searching a
large part of the subtree of Y ∪ {e}. Those max-patterns are not necessarily good since e is chosen
arbitrarily.

Instead of searching many new max-patterns containing Y ∪ {e}, PADS reuses the max-patterns
already found as much as possible to find a good key pattern. Therefore, we avoid the cost of
searching many new max-patterns in order to scheduling the future search.

6

Second, the longest max-pattern may not be always good. For example, suppose the current
pattern Y = fgh, tail(Y) = ijk, and item i is chosen. Furthermore, suppose the longest max-
pattern found containing Y ∪ {i} = fghi is X1 = abcdfghi. It in fact does not provide any pruning
power in the scheduling. Suppose another max-pattern X2 = efghik is found before. Then, X2

provides a good pruning power in the scheduling: we only need to search the Y ∪ {j} subtree.

Instead of choosing key patterns based on length, PADS measures the pruning powers of the
max-patterns already found, and selects key patterns accordingly.

As analyzed, the effect of the pattern-aware dynamic search technique depends on the choice of
key patterns. In this section, we discuss how to choose a good key pattern.

Let us consider choosing a key pattern for an itemset X. If Y ⊃ X is chosen, as indicated by
Theorem 1, all children of X in Tail(X) ∩ Y can be pruned. Therefore, the more items in Tail(X)
appear in the key pattern, the more children can be pruned. Thus, we can choose a max-pattern
Y ⊃ X as the key pattern such that Y has the largest overlap with Tail(X). That is,

Y = arg maxmax-pattern Z ⊃ X{|Z ∩ Tail(X)|}

Please note that Y contains at least one item that is not in Tail(X). Otherwise, X ∪ Tail(X) is
a subset of Y , and thus X is pruned by the head and tail pruning technique. In the example shown
in Figure 3(b), pattern abcd is a perfect choice for b since we only need to search one child of b.

We choose key patterns for itemset X in two steps.

4.1 Step 1

In the first step, we check all max-patterns Y1 found before that are supersets of X and measure
|Y1 ∩ Tail(X)|. The max-pattern with the most overlap with Tail(X) is chosen as the candidate.

This step can be implemented as a byproduct of the head-and-tail pruning. For each itemset X,
to apply the head-and-tail pruning, we have to check X∪Tail(X) against the max-patterns found so
far. We also collect the information of |Y1 ∩Tail(X)| at the same time. Thus, the cost of computing
the candidate in this step is very little.

There can be many (millions or more) max-patterns found so far in a large database. To speed up
checking whether X is a subset of some max-patterns found before, we adopt the progressive focusing
search strategy developed in GenMax. When we search an itemset X and its subtree, any patterns
found in the subtree must be a superset of X. Thus, we can maintain the set of max-patterns found
so far that are supersets of X. Any patterns found in the subtree of X only need to be checked
against those max-patterns.

The technique can be applied recursively. For itemset X ∪ {y} that is a child of X in the set

7

enumeration tree, the max-patterns containing X ∪{y} is a subset of those containing X. Thus, the
maintenance of the matching max-patterns is progressive.

4.2 Step 2

In some situations, max-patterns found so far may not have heavy overlaps with the tail of X. Thus,
as the second step, we also find in the projected database of X’s parent one max-pattern Y such that
Y2 ⊃ X and Y2 ⊂ X ∪Tail(X). This can be done quickly as follows. According to the order used by
the parent of X, items in Tail(X) can be ordered into a list, say x1, . . . , xn. Since x1 is frequent in
the X-projected database, X ∪ {x1} must be frequent. We first assign Y2 = X ∪ {x1} and check the
supports of Y2∪{x2}, Y2 ∪{x3}, . . . , Y2∪{xn}. If none of them is frequent, then Y2 is the candidate
key pattern. Otherwise, let i1 be the smallest index number such that Y2 ∪ {xi1} is frequent. Then,
we update Y2 to Y2 ∪ {xi1}. We recursively use xi1+1, xi1+2, . . . , xn to expand Y2 until it cannot be
expanded longer. It is easy to see that the pattern Y2 found as such is a max-pattern if it is not a
subset of a max-pattern found before.

By the second step, we can find at least one max-pattern that can be used as a key pattern. We
compare the two key pattern candidates found from the two steps, and pick the one Y having the
better pruning power as the key pattern. The PADS order is made accordingly.

In implementation, we use FP-trees [17] as the core data structure to store transactions and
projected databases. We also integrate the advantages in the existing methods. Particularly, we
adopt the pattern expansion technique which was firstly proposed in CLOSET [25] and CHARM [32]
in the context of frequent closed itemset mining, and later used by Mafia and GenMax in max-
pattern mining. Consider the situation where every transaction containing itemset X also contains
item y ∈ Tail(X). Then, it is impossible that a max-pattern contains X but does not contain y.
Therefore, we do not need to search any subtree of X where y does not appear. In other words,
instead of searching the subtree of X, we can directly search the subtree of X ∪ {y}.

The algorithm PADS (for pattern-aware dynamic search) is summarized in Figure 4. Moreover,
we make the source code and the executable code (on both Windows and Linux platforms) publicly
available at http://www.cs.sfu.ca/~jpei/Software/PADS.zip.

Complexity Analysis

As indicated in [31], the problem of mining max-patterns is NP-hard. Therefore, all max-pattern
mining algorithms developed so far unfortunately have the exponential complexity.

Our PADS method shares the same depth-first search framework with the state-of-the-art, depth-
first search methods such as FPMax* and LCM2. To analytically understand the efficiency of the

8

Input: a transaction database TDB and support threshold min sup;
Output: the set of max-patterns;
Method:
1: find I, the set of frequent items in TDB;
2: CALL PADS(TDB, ∅, I);

Function PADS(PDB,X, T) // PDB is the X-projected database, T is the tail of X

11: let Z = {z ∈ T |sup(z) = |PDB|}, X = X ∪ Z, T = T − Z;
// pattern expansion

12: FOR EACH item x in T DO

13: X ′ = X ∪ {x};
14: let PDBx be the X ′-projected database;
15: T ′ = the set of frequent items in PDBx;
16: IF (X ′ ∪ T ′) is a subset of some max-pattern found before THEN RETURN;
17: let Y1 be candidate key pattern as the max-pattern with the largest overlap with T ′

obtained as the byproduct of the subpattern checking; // Section 4.1
18: let Y2 be the candidate key pattern obtained from the projected database PDB;

// Section 4.2
19: IF Y = Y2 and Y2 is a max-pattern THEN output Y2;
20: let Y be the better key pattern between Y1 and Y2;
21: make a PADS order on T ′ according to Y ;
22: CALL PADS(PDBx, X ′, T ′);

END FOR

RETURN

Figure 4: The PADS algorithm.

PADS method, the critical issue is to analyze the cost of implementing the pattern-aware dynamic
search. Particularly, the cost of finding key patterns in PADS is important.

First of all, let us consider the complexity of finding the first max-pattern. Algorithm PADS
works as any depth-first search max-pattern mining algorithm. It starts with the first frequent item
x1 in the alphabetical order1, and sets pattern Y = x1. Recursively, a projected database TDBY is
formed and the frequent items in TDBY are found. The first frequent item in the alphabetical order
in TDBY , say x, is used to expand Y to a longer pattern Y ∪ {x}. The recursion continues until no
frequent item can be found in the projected database.

1In fact, any total order works here. For the sake of simplicity, we use alphabetical order in our discussion.

9

Clearly, we have the following result.

Lemma 1 The time complexity of finding the first max-pattern is O(|TDB| · l) where l is the length
of the longest transaction in TDB.

Proof. Trivially, a projected database can be formed and the frequent items in the projected
database can be found in time O(|TDB|). There are at most l recursion steps is needed to find
the first max-pattern, since any frequent pattern cannot be longer than the length of the longest
transaction. Thus, we have the lemma.

In implementation, PADS adopts pseudo-projection [24] to find the first max pattern. In pseudo
projection, no physical projected databases are constructed. Instead, PADS only manipulates point-
ers to construct “virtual” projected database.

As analyzed before, for an itemset X, algorithm PADS chooses a key pattern for X in two
steps. In the first step, PADS finds a max-pattern Y1 found before which maximizes the overlap
between Y1 and Tail(X). Clearly, the complexity of this step is linear with respect to the number
of max-patterns found so far that contain X.

In the second step, PADS finds a max-pattern containing X by considering the items in Tail(X).
Therefore, the complexity of this step is linear with respect to |Tail(X)|. Moreover, since a max-
pattern cannot be longer than l, the length of the min sup-th longest transaction in the X-projected
database, the cost of this step is also linear with respect to l. In the worst case where min sup = 1,
l is the length of the longest transaction in the X-projected database. Last, the cost in this step is
linear with respect to the number of transactions in the X-projected database, since PADS needs
to scan the database iteratively to count the support of items in Tail(X). In summary, we have the
following claim about the cost in the second step.

Lemma 2 For an itemset X, the cost of Line 8 in Figure 4 is O(|TDBX | ·min{|Tail(X)|, l}), where
l is the length of the longest transaction in the X-projected database.

Taking both the cost of the two steps in finding key patterns together, we have the following
result about the cost of finding a key pattern.

Theorem 2 For an itemset X, the cost of finding a key pattern for X in PADS is O(m+ |TDBX | ·
min{|Tail(X)|, l}), where m is the number of max-patterns containing X and l is the length of the
longest transaction in the X-projected database.

How can we compare the cost of finding key patterns against the benefit of pruning sub-trees in the
set-enumeration search space using the pattern-aware dynamic search? One important observation

10

Data set # tuples # items avg trans len

Chess 3, 196 76 37

Mushroom 8, 124 120 23

Pumsb* 49, 046 2, 088 50

Pumsb 49, 046 2, 113 74

Connect 67, 557 150 43

Table 1: Characteristics of benchmark data sets.

is that the cost of determining whether a frequent pattern X is maximal is O(m), where m is the
number of max-patterns containing X. Therefore, the cost of finding a key pattern is mainly the cost
of step 2, which is of complexity O(|TDBX | ·min{|Tail(X)|, l}). Following with the results in [31],
the cost of finding all max-patterns in a sub-tree rooted at X in the set-enumeration search space
is of complexity O(2|Tail(X)|). Therefore, once a pruning case happens in PADS, we save the search
cost of O(2|Tail(X)|) using a key pattern searching cost O(|TDBX | ·min{|Tail(X)|, l}).

Both PADS and LCM2 use pattern-aware dynamic search. Then, what is the difference between
their efficiency? For an itemset X, LCM2 chooses an arbitrary item x ∈ Tail(X) and use the longest
max-pattern containing X ∪ {x} as the key pattern. The cost of finding such a key pattern is of
complexity O(2|Tail(X∪{x})|), which is much higher that the cost of key pattern finding in PADS.
However, the effectiveness of the key pattern chosen by LCM2 may not be always better than that
of PADS since PADS considers all max-patterns found so far (step 1) and also one max-pattern of
good coverage in Tail(X) (step 2). Our experimental results clearly show that PADS outperforms
LCM2 in both the number of patterns checked and the number of projected databases generated.

5 Empirical Evaluation

We conducted an extensive performance study to evaluate the effectiveness of the pattern-aware
dynamic search and the efficiency of our PADS algorithm. Here we report the experimental results
on five real data sets. Those five real data sets were prepared by Roberto Bayardo from the UCI
datasets and PUMSB. They have been used extensively in the previous studies as the benchmark
data sets. Some characteristics of the five data sets are shown in Table 1. We downloaded the data
sets from http://fimi.cs.helsinki.fi/data/.

All the experiments were conducted on a PC computer running the Microsoft Windows XP SP2
Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a
160 GB hard disk. The programs were implemented in C/C++ using Microsoft Visual Studio. NET

11

 0
 50

 100
 150
 200
 250
 300
 350

 10 15 20 25 30

R
un

tim
e

(s
ec

on
ds

)

Support (%)

Chess

FPMax*
LCM v2

PADS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1 0.2 0.3 0.4 0.5

R
un

tim
e

(s
ec

on
ds

)

Support (%)

Mushroom

FPMax*
LCM v2

PADS

 0

 50

 100

 150

 200

 250

 2 4 6 8 10

R
un

tim
e

(s
ec

on
ds

)

Support (%)

Pumsb*

FPMax*
LCM v2

PADS

 0

 200

 400

 600

 800

 1000

 35 40 45 50 55

R
un

tim
e

(s
ec

on
ds

)

Support (%)

Pumsb

FPMax
LCM v2

PADS

 0
 20
 40
 60
 80

 100
 120
 140
 160

 3 4 5 6 7

R
un

tim
e

(s
ec

on
ds

)

Support (%)

Connect

FPMax*
LCM v2

PADS

Figure 5: The runtime comparison between PADS and FPMax* on the five benchmark data sets.

2003.

We compare our method with FPMax* and LCM2, the currently fastest max-pattern mining
methods according to the extensive empirical study reported in the Frequent Itemset Mining Imple-
mentations Repository website (http://fimi.cs.helsinki.fi/). We used the code of the two algorithms
published by the authors.

It should be mentioned that LCM2 has execution problems under some circumstances. On the
Pumsb data set with min sup lower than 40%, on the Pumsb* data set with min sup lower than
6%, and on the Connect data set with min sup lower than 0.2%, LCM2 gives segmentation faults
and cannot finish properly. Therefore parts of its curves are missing.

Figure 5 shows the runtime comparison among the three algorithms on the five data sets. In
the figures, a support threshold is presented as a percentage with respect to the total number of
transactions in the data set, i.e., min sup

|D| where D is the data set in question.

Figure 5 clearly shows that PADS outperforms FPMax* on all data sets. The lower the support
threshold, the larger the difference in runtime. With a smaller support threshold, more patterns and
longer patterns are qualified as frequent patterns. This trend suggests that PADS is more scalable
than FPMax* on mining a large number of long patterns. When the support threshold is low, the
difference in runtime between the two methods can be more than 60%.

12

Most of the time, PADS outperforms LCM2 clearly, especially on the Mushroom and the Connect
data sets. The only circumstance where LCM2 outperforms PADS is on the Chess data set with
min sup ≤ 15%. The reason is that the number of max-patterns is large (more than 1 million) but
the database size is very small (only 3, 196 tuples). The advantage of selecting a good key pattern is
not clear in this situation.

What are the major reasons that PADS outperforms FPMax* and LCM2? The major cost of
max-pattern mining in depth-first manner comes from two aspects: generating projected databases
and checking whether a pattern is a subset of some max-patterns found before.

In Figure 6, we compare the three methods in terms of the number of projected databases
generated on the five data sets. PADS generates much (about 80%) less projected databases than
FPMax*. LCM2 generates the largest number of projected databases. This clearly shows the power
of pattern-aware dynamic search in PADS. Many subtrees can be pruned by scheduling using good
key patterns carefully chosen by our method.

In Figure 7, we compare the three methods in terms of the number of patterns that are checked
against the max-patterns found before. PADS also conducts less subpattern checking than FPMax*
and LCM2. The reason is that the pattern-aware dynamic search prunes many subtrees. Some
patterns in those subtrees that are checked in FPMax* and LCM2 do not need to be checked by
PADS. The savings in generating projected databases and checking subpatterns explain the advantage
of PADS in performance.

Last, Figure 8 compares the memory usage of the three methods. Both PADS and FPMax* use
FP-trees as the major data structure. Thus, their memory usage is very similar. Their memory
usage increases as the support threshold decreases, since they store the max-patterns already found
in memory, and the number of such patterns increases as the support threshold decreases. On the
other hand, LCM2 stores max-patterns on disk, and uses an array in main memory to store the
database and the projected databases. Thus, its memory usage is insensitive with respect to support
thresholds. In large data sets such as Mushroom and Connect, PADS and FPMax* use less memory
than LCM2. In small data sets, LCM2 consumes a smaller amount of main memory than the other
two methods.

6 Conclusions

Max-pattern mining is important in both theory and applications of frequent pattern mining. In
this paper, we developed a novel pattern-aware dynamic search method for fast max-pattern mining.
The major idea is to schedule the depth-first search according to the max-patterns found so far, and
prune the search space systematically. We present efficient methods to implement pattern-aware

13

 0
 2e+006
 4e+006
 6e+006
 8e+006
 1e+007

 1.2e+007
 1.4e+007

 10 15 20 25 30

pr

oj
ec

te
d

da
ta

ba
se

s

Support (%)

Chess

FPMax*
LCM v2

PADS

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

 0.1 0.2 0.3 0.4 0.5

pr
oj

ec
te

d
da

ta
ba

se
s

Support (%)

Mushroom

FPMax*
LCM v2

PADS

 0
 500000
 1e+006

 1.5e+006
 2e+006

 2.5e+006
 3e+006

 2 4 6 8 10

pr

oj
ec

te
d

da
ta

ba
se

s

Support (%)

Pumsb*

FPMax*
LCM v2

PADS

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 35 40 45 50 55

su

bp
at

te
rn

s
ch

ec
ke

d

Support (%)

Pumsb

FPMax*
LCM v2

PADS

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 3 4 5 6 7

pr

oj
ec

te
d

da
ta

ba
se

s
(m

ill
io

n)

Support (%)

Connect

FPMax*
LCM v2

PADS

Figure 6: Number of projected databases generated.

 0
 2e+006
 4e+006
 6e+006
 8e+006
 1e+007

 1.2e+007
 1.4e+007

 10 15 20 25 30

m

ax
im

al
ity

 c
he

ck
 o

pe
ra

tio
ns

Support (%)

Chess

FPMax*
LCM v2

PADS

 20000

 40000

 60000

 80000

 100000

 120000

 0.1 0.2 0.3 0.4 0.5

m

ax
im

al
ity

 c
he

ck
 o

pe
ra

tio
ns

Support (%)

Mushroom

FPMax*
LCM v2

PADS

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 2 4 6 8 10

m

ax
im

al
ity

 c
he

ck
 o

pe
ra

tio
ns

Support (%)

Pumsb*

FPMax*
LCM v2

PADS

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 35 40 45 50 55

m

ax
im

al
ity

 c
he

ck
 o

pe
ra

tio
ns

Support (%)

Pumsb

FPMax*
LCM v2

PADS

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 3 4 5 6 7

m

ax
im

al
ity

 c
he

ck
 o

pe
ra

tio
ns

Support (%)

Connect

FPMax*
LCM v2

DSS

Figure 7: Number of patterns checked against max-patterns.

14

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 10 15 20 25 30

M
em

or
y

(B
yt

e)

Support (%)

Chess

FPMax*
LCM v2

PADS

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 0.1 0.2 0.3 0.4 0.5

M
em

or
y

(B
yt

e)

Support (%)

Mushroom

FPMax*
LCM v2

PADS

 0
 1e+007
 2e+007
 3e+007
 4e+007
 5e+007
 6e+007
 7e+007

 2 4 6 8 10

M
em

or
y

(B
yt

e)

Support (%)

Pumsb*

FPMax*
LCM v2

PADS

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

 3e+008

 35 40 45 50 55

M
em

or
y

(B
yt

e)

Support (%)

Pumsb

FPMax
LCM v2

PADS

 0
 1e+007
 2e+007
 3e+007
 4e+007
 5e+007
 6e+007
 7e+007
 8e+007
 9e+007

 3 4 5 6 7

M
em

or
y

(B
yt

e)

Support (%)

Connect

FPMax*
LCM v2

PADS

Figure 8: Memory usage.

dynamic search. An empirical evaluation using the benchmark real data sets clearly shows that our
method outperforms the currently fastest max-pattern mining algorithms FPMax* and LCM2 in a
clear margin.

As future work, it is interesting to explore how the pattern-aware dynamic search method can be
extended to other frequent pattern mining tasks, such as mining frequent closed itemsets, max- and
closed sequential patterns, and max- and closed graph patterns.

References

[1] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth first generation of long
patterns. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 108–118, Boston, Massachusetts, United States, 2000. ACM
Press.

[2] Charu C. Aggarwal. Towards long pattern generation in dense databases. SIGKDD Explor.
Newsl., 3(1):20–26, 2001.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of
high dimensional data for data mining applications. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’98), pages 94–105, Seattle, WA, June 1998.

15

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in
large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’93),
pages 207–216, Washington, DC, May 1993.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 1994 Int.
Conf. Very Large Data Bases (VLDB’94), pages 487–499, Santiago, Chile, Sept. 1994.

[6] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf. Data Engi-
neering (ICDE’95), pages 3–14, Taipei, Taiwan, Mar. 1995.

[7] R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. 1998 ACM-SIGMOD
Int. Conf. Management of Data (SIGMOD’98), pages 85–93, Seattle, WA, June 1998.

[8] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In
Proc. 1999 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’99), pages 359–370,
Philadelphia, PA, June 1999.

[9] Francesco Bonchi and Claudio Lucchese. On condensed representations of constrained frequent
patterns. Knowl. Inf. Syst., 9(2):180–201, 2006.

[10] S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules
to correlations. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’97),
pages 265–276, Tucson, Arizona, May 1997.

[11] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm for
transactional databases. In Proc. 2001 Int. Conf. Data Engineering (ICDE’01), pages 443–452,
Heidelberg, Germany, April 2001.

[12] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences.
In Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining (KDD’99), pages 43–52, San
Diego, CA, Aug. 1999.

[13] Guozhu Dong and Jinyan Li. Mining border descriptions of emerging patterns from dataset
pairs. Knowl. Inf. Syst., 8(2):178–202, 2005.

[14] Karam Gouda and Mohammed Javeed Zaki. Efficiently mining maximal frequent itemsets. In
ICDM, pages 163–170, 2001.

[15] Gosta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset mining using fp-trees. IEEE
Transactions on Knowledge and Data Engineering, 17(10):1347–1362, 2005.

[16] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database.
In Proc. 1999 Int. Conf. Data Engineering (ICDE’99), pages 106–115, Sydney, Australia, April
1999.

[17] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc.
2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00), pages 1–12, Dallas, TX,
May 2000.

[18] Jinyan Li, Guozhu Dong, Kotagiri Ramamohanarao, and Limsoon Wong. Deeps: A new
instance-based lazy discovery and classification system. Mach. Learn., 54(2):99–124, 2004.

[19] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proc.
1998 Int. Conf. Knowledge Discovery and Data Mining (KDD’98), pages 80–86, New York, NY,
Aug. 1998.

16

[20] Guimei Liu, Jinyan Li, and Limsoon Wong. A new concise representation of frequent itemsets
using generators and a positive border. Knowl. Inf. Syst. (accepted).

[21] Congnan Luo and Soon M. Chung. A scalable algorithm for mining maximal frequent sequences
using a sample. Knowl. Inf. Syst. (accepted).

[22] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1:259–289, 1997.

[23] Carlos Ordonez, Norberto Ezquerra, and Cesar A. Santana. Constraining and summarizing
association rules in medical data. Knowl. Inf. Syst., 9(3):1–2, 2006.

[24] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-Mine: Hyper-structure mining of
frequent patterns in large databases. In Proc. 2001 Int. Conf. Data Mining (ICDM’01), pages
441–448, San Jose, CA, Nov. 2001.

[25] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent closed item-
sets. In Proc. 2000 ACM-SIGMOD Int. Workshop Data Mining and Knowledge Discovery
(DMKD’00), pages 11–20, Dallas, TX, May 2000.

[26] Jian Pei, Guozhu Dong, Wei Zou, and Jiawei Han. Mining condensed frequent-pattern bases.
Knowl. Inf. Syst., 6(5):570–594, 2004.

[27] R. Rymon. Search through systematic set enumeration. In Proc. 1992 Int. Conf. Principle of
Knowledge Representation and Reasoning (KR’92), pages 539–550, Cambridge, MA, 1992.

[28] Mehmet Sayal and Peter Scheuermann. Distributed web log mining using maximal large item
sets. Knowl. Inf. Syst., 3(4):389–404, 2001.

[29] C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal
structures. In Proc. 1998 Int. Conf. Very Large Data Bases (VLDB’98), pages 594–605, New
York, NY, Aug. 1998.

[30] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. In Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’04), Brighton, UK, November 2004.

[31] G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent patterns.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD’04). ACM Press, 2004.

[32] M. J. Zaki and C. J. Hsiao. Charm: An efficient algorithm for closed association rule mining.
In Technical Report 99-10, Computer Science, Rensselaer Polytechnic Institute, 1999.

17

