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Abstract—Federated learning (FL) has emerged as a highly-
effective distributed learning framework for various AI-based
mobile applications. However, in conventional FL, participating
mobile users (MUs) may have limited computing resources to
train their local data, which leads to degradation of learning
quality for the whole FL process. To address this problem,
coded FL (codFL) has been recently introduced, allowing MUs
to upload part of their coded data to a mobile application
provider (MAP) before the learning process. As a result, codFL
can not only deal with the MUs’ limited computing resources,
but also provide more benefits for the MUs to participate in
the learning process. Nonetheless, in practice, the MAP and
MUs often belong to different parties who unilaterally aim to
maximize their individual utility functions. Thus, in this paper,
we propose an effective mechanism for the codFL process to
incentivize all the participating MUs while improving the learning
quality of the MAP. Specifically, we first design a codFL contract
optimization problem leveraging a multi-principal one-agent
(MPOA) approach in contract theory, under limited computing
resources at the MAP and MUs as well as information asymmetry
between them. To find the optimal contracts for MUs, we develop
an iterative contract algorithm which can produce maximum
utilities for all MUs while satisfying all the constraints of the
MAP. Numerical results show that our framework can enhance
the utilities of MUs up to 113% and system performance in terms
of social welfare up to 42% compared with the baseline method.

Keywords- Federated learning, coded computing, multi-
principal one-agent, contract theory, mobile application.

I. INTRODUCTION

Federated learning (FL) has been considered as a highly-
effective learning method to deal with a massive demand
of big data trading especially for emerging artificial intelli-
gence (AI)-based mobile application services (e.g., healthcare,
crowdsensing, and mobile social networks). Using FL, mobile
users (MUs) can help the mobile application provider (MAP)
build highly-accurate mobile applications without requiring
MUs to share their raw data [1], [2]. Specifically, at each
learning round, the participating MUs can first train their
local data to generate local trained models individually. Then,
they can upload their local models to the MAP for a global
model update, aiming at improving the global model accuracy.
However, in practice, participating MUs usually do not have
sufficient computing resources to train their local datasets and
may suffer from unrealiable wireless communication links
when uploading the local trained models to the MAP. As such,
the quality of the FL process can be significantly degraded due
to low prediction model accuracy as well as unstable local
trained model updates from straggling devices.

To address the aforementioned issues, the local data from
unreliable MUs can be uploaded to an edge or the cloud
server as investigated in recent works [3]–[5]. Although this
data-sharing approach can relieve the burden of the MUs
and maintain the FL performance, sharing local data to the
edge/cloud server may violate the data protection and privacy
preservation, the key advantages of FL. For that, utilizing
an additional coded computing for the FL process (referred
to as coded FL) has emerged as one of the most effective
solutions to simultaneously maintain the FL performance and
mitigate the privacy concern [6]–[8]. In particular, parts of
local data from all participating MUs can be first encoded
to protect their data privacy. Then, the coded data can be
offloaded to the MAP for the additional training process (in
addition to the local training process using the rest of local
data at all the MUs). In this way, the coded FL can not only
compensate the MUs’ limited computing resource problem,
but also bring more benefits for the MUs to join in the
learning process. However, the above coded FL works do
not consider the conflicts-of-interests between the MUs and
MAP as well as the competition among the MUs to maximize
their own benefits. For that, an effective incentive mechanism
for both the MAP and the MUs is required to guarantee
that the MUs and the MAP are willing to join the learning
processes (including local/coded data training and local/global
model exchanges). Alternatively, it is critical to find a mutual
incentive mechanism that can maximize the utilities for the
MUs and at the same time improve the learning quality
of the MAP under their constraints, e.g., limited computing
resources.

To achieve the above goal, it is essential to consider the self-
interest interaction between the MAP and participating MUs.
For example, the authors in [10]–[12] discuss Stackelberg
game models where the MAP and MUs can act as leaders or
followers. Nonetheless, these models are only applicable when
both the MAP and the MUs have the complete knowledge from
each other (referred to as information symmetry), e.g., the MUs
know the MAP’s available computing resource. In practice,
the MAP may keep its computing resource information as a
private information (referred to as information asymmetry).
Additionally, the participating MUs may not fully follow
the controls from the MAP due to the conflict of economic
interests between them. Consequently, all the aforementioned
works may not be effective to implement in our problem.

Given the above, the contract-based game approach [13]
can be used to cope with the information asymmetry is-



sue under the competition among participating MUs while
considering the economic interests between the MAP and
the MUs. For that, in this paper, we propose an effective
incentive mechanism for coded FL (codFL) leveraging a multi-
principal one-agent (MPOA)-based contract approach [14],
aiming at maximizing the utilities for both the MAP and
participating MUs in the codFL process. In particular, the
participating MUs act as the principals which offer contracts
containing the sizes of local and coded datas as well as their
offered payments to the MAP individually. Meanwhile, the
MAP operates as the agent which can optimize the offered
contracts on behalf of the participating MUs. To this end, we
formulate the contract model as a codFL contract optimiza-
tion problem under the limited computing resources at the
MAP and MUs, information asymmetry between them, and
the MAP’s common constraints. These common constraints
guarantee that the MAP will always obtain a non-negative
and maximum utility during the codFL process. To address
the problem, we develop an iterative algorithm at the MAP
to not only obtain the optimal contracts but also find the
equilibrium solution for all participating MUs. This solution
can achieve the performance gap within 0.57% compared with
that obtained by the information-symmetry FL contract, i.e.,
when each MU completely knows other MUs’ available data
sizes and the MAP’s current available computing resource.
Through numerical results, we demonstrate that our framework
can improve the utilities of MUs up to 113% and social welfare
up to 42% compared with the baseline method.

II. SYSTEM MODEL

The system model of the considered codFL process is
shown in Fig. 1. We consider an MAP as a parameter server
and multiple participating MUs as the workers who wish to
contribute to the FL process. Let I = {1, . . . , i, . . . , I} denote
the set of participating MUs in the codFL process. Prior to
the FL process, each participating MU-i can capture sensing
information via its embedded sensor devices, e.g., smartphones
and smartwatches, during a particular period. This sensing
information can be stored in a log file at the MU’s internal
storage and then can be used as the available dataset with size
δi for the learning process. Nonetheless, due to the limited
available computing resources and unstable communication
links of the participating MUs when implementing the learning
process [2], [8], each MU-i may want to offload a part
of its local data to the MAP before the FL process. The
coded dataset with size δci is first generated using a privacy-
preserving encoding method [8]. Then, the generated coded
dataset is uploaded to the MAP once and trained during the
coded computing process iteratively. Meanwhile, the remain-
ing local datasets with sizes δli,∀i ∈ I, are trained locally at
MUs. The local and coded trained models which are produced
from the codFL process at the participating MUs and the MAP,
respectively, can be then aggregated to update the global model
at each learning round until the codFL process converges.
However, due to limited computing resource at the MAP to
train the coded datasets uploaded from all the participating

Fig. 1: The codFL process in a mobile application service.

MUs during the codFL process, the total coded dataset that
can be collected by the MAP is constrained by the MAP’s total
computing resource, which can be expressed by the maximum
size of trainable coded dataset δcmax of the MAP. Additionally,
due to limited computing resource at each MU-i, the size of
local dataset must be less than or equal to the maximum size
of dataset that can be processed at the MU-i, i.e., δ̂li, for the
entire FL process, which is δli ≤ δ̂li [2].

In our considered problem, the MAP keeps its willingness to
train the total coded dataset as an information asymmetry for
the MUs due to its economic benefit. This willingness is de-
fined as the type of the MAP [13] and influenced by the MAP’s
current available computing resource. Specifically, a higher
type indicates the willingness to train more coded datasets
from the participating MUs due to its higher available com-
puting resource. In other words, the willingness to train more
coded datasets can compensate the low computing resource
problem more, and thus bring more benefits for the MUs and
better learning quality for the MAP. In this way, a finite set of
the MAP’s types can be defined as Z = {π1, . . . , πk, . . . , πK},
and π1 < π2 < . . . < πk < . . . < πK−1 < πK , where
k ∈ K with K = {1, . . . , k, . . . ,K} specifies the type index.
Although the MAP’s type is unknown, the participating MUs
can still observe the distribution of MAP’s types, i.e, ρk, where∑K
k=1 ρk = 1,∀k ∈ K [16], e.g., by monitoring public work-

loads of the MAP in the previous learning processes. For the
MAP with type πk, it has the maximum size of trainable coded
dataset δ̂ck, where δ̂ck = πk

πK
δcmax,∀k ∈ K. Based on δ̂ck, the

MAP can determine the coded dataset proportion for each MU-
i accordingly. For the MAP with type πk, the coded dataset
proportion vector of all participating MUs can be denoted by
φ = [φ1, . . . ,φk, . . . ,φK ], where φk = [φ1k, . . . , φ

i
k, . . . , φ

I
k],

and 0 ≤ φik ≤ 1,∀k ∈ K,∀i ∈ I. We denote the size of coded
dataset and corresponding payment vectors of all participating



MUs for all MAP’s types in the contract implementation as
δc = [δc1, . . . , δ

c
k, . . . , δ

c
K ] and %c = [%c1, . . . ,%

c
k, . . . ,%

c
K ],

respectively, where δck = [δck,1, . . . , δ
c
k,i, . . . , δ

c
k,I ] and %ck =

[%ck,1, . . . , %
c
k,i, . . . , %

c
k,I ]. As such, each MU-i can offer higher

size of coded dataset to the MAP when the MAP’s type
gets higher since the MU-i can obtain higher payment from
the MAP. Moreover, we denote δl = [δl1, . . . , δ

l
i, . . . , δ

l
I ] and

%l = [%l1, . . . , %
l
i, . . . , %

l
I ] to be the size of local dataset and

corresponding payment vectors of all the MUs, respectively.

III. MPOA-BASED CODFL CONTRACT PROBLEM

In this section, we formulate and exploit the codFL contract
optimization problem using the MPOA approach, i.e., the
MAP and participating MUs act as the agent and principals,
respectively, to maximize the utilities of the MAP and partic-
ipating MUs in the FL process. Specifically, the participating
MUs can first send initial contracts containing local dataset
sizes δli,∀i ∈ I (where 0 ≤ δli ≤ δi), and payments
%li = γlδ

l
i,∀i ∈ I, as well as the expected coded dataset

sizes δck,i,∀i ∈ I,∀k ∈ K (where 0 ≤ δck,i ≤ δi) and
payments %ck,i = γcδ

c
k,i,∀i ∈ I,∀k ∈ K. The constants γl

and γc indicate unit fees of utilizing a local dataset sample
for local training at an MU and a coded dataset sample for
coded training at the MAP, respectively. Then, the utility
optimizations for both the MAP and participating MUs can
be described below.

A. The MAP’s Utility Maximization
Given the coded dataset proportion vector for the MAP with

type πk, i.e., φk, the local dataset size vector, i.e., δl, and its
payment vector, i.e., %l, the coded dataset size vector for the
MAP with type πk, i.e., δck, and its payment vector for the
MAP with type πk, i.e., %ck, the MAP’s utility for type πk in
the codFL process with the MU-i,∀i ∈ I, can be derived by
ψkMAP =πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k)︸ ︷︷ ︸

Utility of coded training

+ Sl(δ
l)− Cl(%l)︸ ︷︷ ︸

Utility of local training

.

(1)
In this case, the utility of MAP with type πk can be divided
into two utility functions. For the former one, it has the
gain function Sc(φk, δ

c
k) and cost function Cc(φk,%

c
k, δ

c
k)

for collecting and training the coded dataset at the MAP. The
type πk specifies the weight of Sc(φk, δ

c
k) for the MAP with

type index k. As such, the MAP with a higher type obtains
a higher weight due to the MAP’s willingness to train more
coded dataset in the codFL process. Meanwhile, for the later
utility, it contains the gain function Sl(δ

l) and cost function
Cl(%

l) for local training at the MUs.
For both gain functions, we utilize a squared-root function

in a similar way as that of [16]. In this case, the gain functions
for training coded and local datasets can be respectively
formulated by

Sc(φk, δ
c
k) = αc

√∑
i∈I

φikδ
c
k,i, and Sl(δl) = αl

√∑
i∈I

δli,

(2)
where αc > 0 and αl > 0 are the conversion parameters repre-
senting the monetary unit of using the coded and local datasets,

respectively, which are determined by the current data trading
market [16]. For the MAP’s cost function Cc(φk,%

c
k, δ

c
k), we

define it as the sum of total payments to the participating MUs
(regarding their coded datasets) and energy consumption cost
for training all coded datasets in the codFL process, i.e.,

Cc(φk,%
c
k, δ

c
k) =

∑
i∈I

φik%
c
k,i + ξβf2

∑
i∈I

φikδ
c
k,i, (3)

where ξ, β, and f are respectively the capacitance parameter
of computing chipset [9], the number of CPU cycles to train
one coded dataset sample, and used computing resource for
the MAP. For the MAP’s cost function Cl(%l), we can simply
formulate it as the total payments to the participating MUs
with respect to their local training processes, i.e.,

Cl(%
l) =

∑
i∈I

%li. (4)

From (1)-(4), we can formulate the optimization problem of
the MAP with type πk whose optimal proportion vector φ̂k
can maximize its utility as follows:

(P1) max
φk

ψkMAP, (5)

s.t.
∑
i∈I

φikδ
c
k,i ≤ δ̂ck, (6)

0 ≤ φik ≤ 1,∀i ∈ I, (7)
where the constraint (6) implies that the total coded dataset
trained at the MAP cannot exceed the maximum trainable
coded dataset at the MAP with type πk, i.e., δ̂ck. From (P1),
we can obtain the optimal φ̂k = [φ̂1k, . . . , φ̂

i
k, . . . , φ̂

I
k],∀k ∈ K.

B. Participating MUs’ Utility Maximization

Next, we derive the utility optimization for the participating
MUs to maximize expected utility of each MU-i indepen-
dently. Particularly, given φ̂k,∀k ∈ K, each MU-i can obtain
its expected utility by considering all possible types of the
MAP as expressed in (8). Specifically, the first term in (8)
indicates the utility of coded dataset training implemented
by the MAP. As such, the MU-i can receive the payment
φ̂ik%

c
k,i for sharing the coded dataset under privacy protection

and transmission costs of the coded dataset. In this case,
σ
2 log2

(
1 +

εiφ̂
i
kδ

c
k,i

A2
i

)
[15] specifies the privacy cost for the

coded dataset generation of MU-i when the MAP has type
πk, where εi (εi ≤ 1) [16] is the privacy protection level,
σ is the unit cost of the privacy, and Ai is the amount of
additional noise to the coded dataset of MU-i. Moreover,
υφ̂ikδ

c
k,i indicates the transmission cost of coded dataset, where

υ is the unit cost of sending a coded dataset sample to the
MAP. Meanwhile, the second term in (8) represents the utility
of local dataset training at the MU-i. Particularly, the MU-i
receives the payment for training the local dataset with the
cost of energy consumption ξiβif2i δ

l
i, where ξi, βi, and fi are

the capacitance parameter of computing chipset, the number
of CPU cycles to execute a local dataset sample, and used
computing resource for the MU-i, respectively.

To maximize the expected utility of all participating MUs,
we need to satisfy the IR and IC constraints from the MAP
as stated in Definition 1 and 2.



ψi(δ
c,%c, δl,%l) =

K∑
k=1

(
φ̂ik%

c
k,i −

σ

2
log2

(
1 +

εiφ̂
i
kδ
c
k,i

A2
i

)
− υφ̂ikδck,i︸ ︷︷ ︸

Utility of coded training

+ %li − ξiβif2i δli︸ ︷︷ ︸
Utility of local training

)
ρk. (8)

Definition 1. IR constraint: The MAP with type πk, k ∈ K,
must obtain a non-negative utility to join in the codFL contract
optimization, i.e.,
πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k) + Sl(δ

l)− Cl(%l) ≥ 0,

∀k ∈ K.
(9)

Definition 2. IC constraint: The MAP with true type πk, k ∈
K, will choose a contract designed for its current type πk
rather than with another type πk∗ to maximize its utility, i.e.,
πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k) ≥ (10)

πkSc(φk∗ , δ
c
k∗)− Cc(φk∗ ,%ck∗ , δ

c
k∗), k 6= k∗,∀k, k∗ ∈ K.

Based on the above IR and IC constraint definitions, the
codFL contract optimization problem (P2) which can max-
imize the expected individual utility for MU-i via the MAP
(under the MAP’s constraints and the MUs’ limited computing
resources) can be expressed by

(P2) max
δc,%c,δl,%l

ψi(δ
c,%c, δl,%l),∀i ∈ I, (11)

s.t.
∑
i∈I

φ̂ikδ
c
k,i ≤ δ̂ck,∀k ∈ K, (12)

δli ≤ δ̂li,∀i ∈ I, (13)

φ̂ikδ
c
k,i + δli ≤ δi,∀k ∈ K,∀i ∈ I, (14)

πkSc(φk, δ
c
k)− Cc(φk,%ck, δ

c
k) + Sl(δ

l)− Cl(%l) ≥ 0,

∀k ∈ K, (15)
πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k) ≥ πkSc(φk∗ , δ

c
k∗)−

Cc(φk∗ ,%
c
k∗ , δ

c
k∗), k 6= k∗,∀k, k∗ ∈ K. (16)

IV. MPOA-BASED CODFL CONTRACT SOLUTION

Based on (P2), it is intractable to solve the problem directly
due to complicated IR and IC constraints, especially when
the number of MAP’s possible types is high. To solve this
problem, we can modify the problem into an equivalent prob-
lem using a transformation method, i.e., IR and IC constraint
reduction. Specifically, we first can show that the MAP’s utility
is monotonically increasing in its type in Lemma 1.

Lemma 1. For any feasible contract
(
δc,%c, δl,%l

)
, the

MAP’s utility must hold the following condition
πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k) ≥ πk∗Sc(φk∗ , δ

c
k∗)−

Cc(φk∗ ,%
c
k∗ , δ

c
k∗), k 6= k∗, (17)

where πk ≥ πk∗ , k 6= k∗, k, k∗ ∈ K.

Proof. Due to limited space, we briefly prove Lemma 1 as
follows. We first prove that if πk ≥ πk∗ , then δck ≥ δ

c
k∗ , where

k 6= k∗, k, k∗ ∈ K. Moreover, if δck ≥ δ
c
k∗ , then %ck ≥ %ck∗ .

Hence, if πk ≥ πk∗ , then the condition (17) hold.

Using Lemma 1, we then can decrease the number of
IR constraints by using the MAP’s minimum type, i.e.,

π1, such that πkSc(φ̂k, δ
c
k) − Cc(φ̂k,%

c
k, δ

c
k) + Sl(δ

l) −
Cl(%

l) ≥ πkSc(φ̂1, δ
c
1)−Cc(φ̂1,%

c
1, δ

c
1)+Sl(δ

l)−Cl(%l) ≥
π1Sc(φ̂1, δ

c
1)−Cc(φ̂1,%

c
1, δ

c
1) + Sl(δ

l)−Cl(%l) ≥ 0. In this
case, the IR constraints for other types πk, where k > 1, are
satisfied if and only if we can hold the IR constraint for π1.
As a result, we can transform the IR constraints in (15) into
π1Sc(φ̂1, δ

c
1)− Cc(φ̂1,%

c
1, δ

c
1) + Sl(δ

l)− Cl(%l) ≥ 0. (18)
Additionally, we can reduce the number of IC constraints

in (16) using the following transformation in Lemma 2.

Lemma 2. The IC constraints in (16) of (P2) can be modified
into the local downward incentive constraints (LDIC) by
πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k) ≥ πkSc(φk−1, δ

c
k−1)−

Cc(φk−1,%
c
k−1, δ

c
k−1),∀k ∈ {2, . . . ,K},

(19)
where δck ≥ δ

c
k−1,∀k ∈ {2, . . . ,K}.

Proof. Due to limited space, we briefly prove
Lemma 2 as follows. Specifically, we first specify
local downward ICs (LDICs) and local upward ICs
(LUICs). Then, using some derivations, we can obtain
that πk+1Sc(φ̂k+1, δ

c
k+1) − Cc(φ̂k+1,%

c
k+1, δ

c
k+1) ≥

πk+1Sc(φ̂k−1, δ
c
k−1) − Cc(φ̂k−1,%

c
k−1, δ

c
k−1) ≥ . . . ≥

πk+1Sc(φ̂1, δ
c
1)− Cc(φ̂1,%

c
1, δ

c
1),∀k ∈ {1, . . . ,K − 1}.

Equations (19) specifies that if the IC constraint for type
πk−1 holds, then all other IC constraints are also satisfied
as long as the conditions δck ≥ δck−1,∀k ∈ {2, . . . ,K},
hold. To this end, using (18) and (19), we can transform the
optimization problem (P2) into the problem (P3) as follows:

(P3) max
δc,%c,δl,%l

ψi(δ
c,%c, δl,%l),∀i ∈ I, (20)

s.t. (12)-(14), and,

π1Sc(φ̂1, δ
c
1)− Cc(φ̂1,%

c
1, δ

c
1) + Sl(δ

l)− Cl(%l) ≥ 0, (21)
πkSc(φk, δ

c
k)− Cc(φk,%ck, δ

c
k) ≥ πkSc(φk−1, δ

c
k−1)−

Cc(φk−1,%
c
k−1, δ

c
k−1),∀k ∈ {2, . . . ,K}, (22)

δck ≥ δ
c
k−1,∀k ∈ {2, . . . ,K}. (23)

To obtain optimal contracts
(
δ̂
c
, %̂c, δ̂

l
, %̂l
)

from prob-
lem (P3), we implement an iterative process as shown in
Algorithm 1. Particularly, the optimal values of φ̂ which
maximize (P3) are required to be found first. Using the
iterative algorithm, the MAP can then update contract for each
MU-i iteratively considering that other MUs’ current contracts
remain fixed [17], aiming at maximizing the objective function
in (P3) at each iteration. The above process terminates when
the gaps between the expected utilities of MU-i, ∀i ∈ I, at
previous and current iterations are equal or less than the op-
timality tolerance κ. In this way, the algorithm converges and
the equilibrium contract solution can be found. Alternatively,



considering the equilibrium contract solution of other MUs(
δ̂
c

−i, %̂
c
−i, δ̂

l

−i, %̂
l
−i

)
, the expected utility of the MU-i at the

equilibrium contract solution
(
δ̂
c

i , %̂
c
i , δ̂

l

i, %̂
l
i

)
will produce the

highest value compared with the ones using all other contract
solutions. This condition is formally described in Definition 3.

Definition 3. Equilibrium contract solution for (P3): The
optimal contracts

(
δ̂
c
, %̂c, δ̂

l
, %̂l
)

are the equilibrium solution
of the (P3) if and only if the conditions

ψi

(
δ̂i, %̂i, δ̂−i, %̂−i

)
≥ ψi

(
δi,%i, δ̂−i, %̂−i

)
, (24)

∀i ∈ I, are satisfied and the optimal contracts
(
δ̂
c
, %̂c, δ̂

l
, %̂l
)

still hold the constraints (21)-(23), where δ̂i =
(
δ̂
c

i , δ̂
l

i

)
, δi =(

δci , δ
l
i

)
, %̂i =

(
%̂ci , %̂

l
i

)
, %i =

(
%ci ,%

l
i

)
, δ̂−i =

(
δ̂
c

−i, δ̂
l

−i

)
,

and %̂−i =
(
%̂c−i, %̂

l
−i

)
.

Algorithm 1 CodFL Contract Algorithm
1: Initialize iteration τ = 0 and κ
2: Set δ(τ)i =

(
δ
c,(τ)
i , δ

l,(τ)
i

)
, %(τ)

i =
(
%
c,(τ)
i ,%

l,(τ)
i

)
, δ(τ)−i =(

δ
c,(τ)
−i , δ

l,(τ)
−i

)
, and %(τ)

−i =
(
%
c,(τ)
−i ,%

l,(τ)
−i

)
3: All MUs in I send initial contracts

(
δ
(τ)
i ,%

(τ)
i

)
to the MAP

4: repeat
5: Find φ̂

(τ)
values which maximize (P1) using(

δ
(τ)
i ,%

(τ)
i

)
, ∀i ∈ I

6: for ∀i ∈ I do
7: Find the new contract

(
δnew
i ,%new

i

)
, which maximizes (P3)

given φ̂
(τ)

and
(
δ
(τ)
−i ,%

(τ)
−i

)
8: if

[
ψi

(
δnew
i ,%new

i , δ
(τ)
−i ,%

(τ)
−i

)
−

ψi
(
δ
(τ)
i ,%

(τ)
i , δ

(τ)
−i ,%

(τ)
−i

)]
> κ then

9: Set
(
δ
(τ+1)
i ,%

(τ+1)
i

)
=

(
δnew
i ,%new

i

)
10: else
11: Set

(
δ
(τ+1)
i ,%

(τ+1)
i

)
=

(
δ
(τ)
i ,%

(τ)
i

)
12: end if
13: end for
14: τ = τ + 1
15: until ψi

(
δ
(τ)
i ,%

(τ)
i , δ

(τ)
−i ,%

(τ)
−i

)
, ∀i ∈ I, remain unchanged

16: Obtain optimal contracts
(
δ̂
c
, %̂c, δ̂

l
, %̂l

)

V. PERFORMANCE EVALUATION

A. Simulation Setup

For performance evaluation, we use 10 types of the MAP
with uniform distribution of the types. We set δ̂ck = 5 × 105

samples. We also define αc and αl at 0.125 and 3, respectively,
and γc and γl at 0.001 and 0.005, respectively, to show that
the unit payment for local training is higher than that for
coded training at the MAP (since the MUs help the MAP
to complete its FL tasks). We denote σ = 1 and υ = 0.0001.
We use ξi = 0.5 × 10−26 [11], and fi = 2GHz, ∀i ∈ I. We
then compare our proposed method, i.e., MPOA, with baseline
and information-symmetry methods. For the baseline method,
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Fig. 2: The codFL contract performance for various methods.

each MU can offer the proportional amount of coded dataset
to the MAP (with respect to the MAP’s available computing
resource) without using contract policy. Meanwhile, for the
information-symmetry method, each MU is assumed to com-
pletely know the MAP’s true type and other MUs’ contracts
to obtain the optimal contract policy (which is considered as
the upper bound solution).

B. Simulation Results

We first compare the MAP’s utility of the proposed mech-
anism with those of the baseline and information-symmetry
methods. As shown in Fig. 2(a), the proposed method can
achieve the highest utility for all types of the MAP. In
particular, the proposed method can produce higher utility
(up to 17%) than that of the baseline method. The reason
is that the baseline method cannot optimize the coded dataset
proportion from the MAP since the MAP can only collect the
proportional amount of coded datasets from the participating
MUs under the MAP’s current available computing resource.
For the information-symmetry method, it suffers from zero
utility for all types of the MAP since all participating MUs
can collaborate together to obtain maximum utility by fully
perceiving the current true type, i.e., the available computing
resource, of the MAP. As a result, the information-symmetry
method can maximize the total utility of participating MUs as
shown in Fig. 2(b). To this end, the proposed method can
still obtain higher total utility of participating MUs up to
113% compared with that of the baseline method. Although
the information-symmetry can obtain the total utility of the
MUs up to 2.6 times higher than that of the proposed method,
our proposed method can achieve the social welfare within
0.57% as close as that obtained by the information-symmetry
method (referred to as the upper-bound solution) as observed
in Fig. 2(c). Moreover, the proposed method can obtain the
social welfare up to 42% higher than that of the baseline



method. To this end, we can conclude that our proposed
method is highly economic-effective to implement in the
codFL process by balancing the utility performance of the
MAP and participating MUs.
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Fig. 3: The utility performance when the total offloaded coded
dataset increases for various types of the MAP.
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Fig. 4: The utility performance for various FL scenarios.

We then observe the utility performances of proposed
method in Fig. 3 when the total offloaded coded dataset in
the FL process increases for various types of the MAP. In
particular, when the MAP has low types, i.e., type 2 and
4, the utilities of the MAP and all the participating MUs
will converge to low utility values for most of the total
coded dataset scenarios due to small computing resources of
the MAP to train the coded dataset. Meanwhile, when the
MAP has high types, i.e., type 8 and 10, both the MAP
and the participating MUs can improve their utilities and
reach much higher convergence values up to 86% and 126%,
respectively. Moreover, we present Fig. 4 to further show that
more offloaded coded dataset can improve utilities for both
the MAP and MUs under sufficient computing resource of the
MAP with a certain type, e.g., type 10 in this case. Specifically,
the codFL scenarios when 40%, 60%, and 80% local data are
coded and trained at the MAP, i.e., coded 40%, 60%, and
80% scenarios, can achieve higher utilities of the MAP and
the MUs up to 60% and 88%, respectively, compared with
that of the FL scenario without any coded data and coded
computing, i.e., no coded scenario. The reason is that the MUs
can reduce significant training tasks by uploading the coded
data to the MAP for the coded computing, which then leads
to better learning quality, especially when some MUs suffer
from low computing resources. The above results imply that
the MUs can obtain more benefits by contributing more coded
data to the MAP and at the same time the MAP can improve its

system performance, e.g., highly-accurate global model, while
compensating the straggling problem, i.e., long training time.

VI. CONCLUSION

In this paper, we have proposed an effective codFL-based
incentive mechanism using the MPOA contract scheme to
maximize the utilities for participating MUs while maintain-
ing the learning quality of the MAP. Particularly, we have
first formulated the codFL contract optimization problem and
then developed the iterative codFL contract algorithm to find
optimal contracts that can achieve the equilibrium solution
for all participating MUs. Through numerical results, we
have demonstrated that our incentive mechanism can obtain
the close performance with the upper bound solution, and
enhance the utilities of MUs as well as social welfare sig-
nificantly compared with the baseline method. Furthermore,
the proposed method can stabilize the utility optimizations of
all participating MUs and the MAP based on their optimal
contracts and optimal coded dataset proportions, respectively.
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