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Abstract—In intelligent transportation systems (ITS), vehicles
are expected to feature with advanced applications and services
which demand ultra-high data rates and low-latency communi-
cations. For that, the millimeter wave (mmWave) communication
has been emerging as a very promising solution. However,
incorporating the mmWave into ITS is particularly challenging
due to the high mobility of vehicles and the inherent sensitivity of
mmWave beams to the dynamic blockages, resulting in frequent
handover and higher latency/disconnection probability. Thus, this
article develops an optimal beam association framework for the
mmWave vehicular networks under high mobility. Specifically,
we use the semi-Markov decision process (SMDP) to capture the
dynamics and uncertainty of the environment. The Q-learning
algorithm is then often used to find the optimal policy. However,
Q-learning is notorious for its slow-convergence. Hence, we
leverage the fact that there are usually multiple vehicles on the
road to speed up the convergence to the optimal solution. To
that end, we develop a lightweight yet very effective parallel
Q-learning algorithm to quickly obtain the optimal policy by
simultaneously learning from various vehicles. Extensive simu-
lations demonstrate that our proposed solution can increase the
data rate by 57% and reduce the disconnection probability by
34% compared to other solutions.

Index Terms—millimeter wave, vehicular networks, high mo-
bility, handover, beam selection, parallel Q-learning.

I. INTRODUCTION

Over the past few years, the explosive growth of interest
in intelligent transportation and vehicular communications
offers a great potential to enhance traffic efficiency, improve
road safety, and enable open disruptive entertainment services
and autonomous driving [1], [2]. These applications often
require low-latency, high reliability, and especially multi-Gbps
network access. For instance, Google’s self-driving car in
a second can generate up to 750 MB of data [3]. It is
expected that a vehicle may produce 1 Terabyte of data in a
single trip [1]. To address this critical problem, the emerging
millimeter wave (mmWave) communication has been recently
considered as a very promising solution [4]. Comparing with
existing wireless networks, the mmWave technology operates
at much higher carrier frequencies, i.e., from 30 GHz to
300 GHz. Thus, it possesses much more abundant spectrum
resources, resulting in potentially extremely high data rates
and low-latency communications. Nevertheless, in mmWave
communications, the temporal degradation of channel quality
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occurs much more frequently than conventional (lower fre-
quency) communications due to high propagation attenuation,
selective directivity, and severe susceptibility to blockages,
especially in vehicular communications under high mobility.
This work aims to address these problems to enable mmWave
communications under high mobility.

A. Related Work and Motivation

Several studies in the literature have been proposed to ad-
dress the above inherent limitations of mmWave communica-
tions [5]-[11]. In [5], the authors aimed to jointly optimize the
transmit power, interference coordination, and beamforming
to maximize the signal to interference plus noise ratio and
the sum-rate. In [6], the authors aimed to enhance the users’
quality-of-experience by scheduling communication tasks on
both conventional microwave and mmWave bands. Similarly,
a new protocol that enables simultaneous connections to con-
ventional 4G cells and 5G mmWave cells is introduced in [7].
In [8], the authors considered the throughput maximization
problem in mmWave ultradense networks using dynamic spec-
trum sharing. Differently, in [10], a new adaptive beamforming
strategy is proposed to improve the system communication rate
by taking the measurement noise into account and selecting
the beamforming vectors based on the posterior of the angle-
of-arrival.

Although the aforementioned solutions and others in the
literature can improve the performance of mmWave systems,
they did not account for the high mobility of vehicles and
dynamics of the environment, hence are inapplicable to such
a scenario. In [12], the authors pointed out that one challenge
when incorporating mmWave into vehicular networks is that
mmWave must support ultra-fast data exchanges between
infrastructure (e.g., road side units (RSUs)) and vehicles.
Thus, the authors proposed an adaptive channel estimation
mechanism for beamforming with the aid of location infor-
mation to solve the problem. The position information is then
demonstrated as an important factor to greatly improve the
initial association of vehicles to the infrastructure. Similarly,
in [13], the authors introduced a beam switching mechanism
in mmWave vehicle-to-infrastructure communications. Differ-
ently, the authors in [14] studied the transmission range of
mmWave microcellular networks in urban areas with vehicle-
to-infrastructure communications using stochastic geometry. In
particular, the authors first derived the coverage probability
under certain base station association conditions and then



obtained closed-form policies. The authors showed that non-
line-of-sight base stations have little impact on the association
process, and they are not the source of interference in almost
scenarios.

It is important to note that these works and many others in
the literature cannot deal with the dynamic and uncertainty of
the system in which the channel quality is usually degraded
due to the intermittent connectivity of mmWave links. For that,
in [15], the authors proposed an online learning algorithm to
obtain the optimal beam selection policy based on the prior
environment information. This problem is first modeled as
a contextual multi-armed bandit problem. Then, the learning
algorithm is developed to guide the mmWave base station to
select an optimal subset of beams for vehicles by exploiting
coarse user location information. The simulation results con-
firmed the efficiency of the proposed solution. Nevertheless,
in this paper, the authors only attempted to obtain the optimal
beam selection for a single base station. In practice, multiple
base stations are often in place, and they can cooperate to
achieve a globally optimal beam selection solution. In addition,
the high mobility of vehicles has not been studied. In [16], the
authors aimed to maximize the number of bits delivered from
a base station to a mobile users by considering the trade-off
between directive data transmission (DT) and directional beam
training (BT) in mmWave vehicular networks. Specifically, the
system is formulated as a partially observable Markov decision
process with the system state defined as the position of the
mobile user within the road link. The simulation results shown
that the proposed solution is superior to other conventional
heuristic methods in terms of data rates. However, the authors
considered only one user and one base station which is
may not applicable in practice. Similarly, an online learning
approach is proposed in [17] to jointly optimize beam training,
data transmission, and handover processes. Nevertheless, the
effect of high mobility on the system performance has not
been carefully studied. Moreover, similar to [16], only one
mobile user is considered in this paper. In [18], the authors
considered the vehicle-cell association problem for mmWave
vehicular networks to maximize the average rate of vehicles.
Specifically, the authors first formulated the problem as a
discrete non-convex optimization problem. Then, a learning
algorithm is developed to estimate the solution for the non-
convex optimization problem. Although achieving a good
data rate and low signaling overhead, the effects of the high
mobility and blockage on beam association/handover have not
been considered. In addition, these learning approaches do not
leverage the fact that there are multiple vehicles running on
the road at the same time to improve the learning efficiency.

Given the above, this work aims to develop an optimal
beam association framework for mmWave vehicular communi-
cations under the high mobility of vehicles and the uncertainty
of blockages. We adopt the data rate, handover overhead,
and disconnection probability as major performance metrics.
In particular, to capture the dynamics of blockages, channel
quality, and mobility, we first model the problem as a semi-
Markov decision process (SMDP). The Q-learning algorithm
is then often adopted to solve the optimization problem the
underlying SMDP. Nevertheless, the Q-learning algorithm is

well known for its slow convergence rate, especially in dy-
namic and complicated environments. Instead of adopting deep
reinforcement learning structures e.g., double deep Q-learning,
deep dueling (like most works in the literature, e.g., [18]), in
this article, we leverage the fact that there are usually multiple
vehicles on the road to speed up the convergence to the optimal
solution. To that end, we develop a lightweight yet very
effective parallel Q-learning algorithm to quickly obtain the
optimal policy by simultaneously learning from various vehi-
cles. Specifically, vehicles on the road can act as active learners
to help the system simultaneously collect data. Based on the
collected data, the proposed parallel Q-learning algorithm can
quickly learn the environment information, e.g., RSSI profile,
beam’s location, vehicle’s velocity, and blockage, to derive
the optimal beam association strategy. The proposed parallel
Q-learning algorithm does not only require lower complexity
but also converge faster than the latest deep learning-based
approaches (e.g., double Q-learning, deep dueling). Moreover,
unlike deep reinforcement learning methods (e.g., [18]), our
proposed parallel Q-learning framework is proven to always
converge to the optimal policy. We show that the high mobility
and parallelism of vehicles now become helpful in speeding
up the learning process of our underlying algorithm.

It is worth noting that unlike existing works, e.g., [15], [18],
in which learning algorithms are deployed at the vehicles with
limited resources, in our design, the eNodeB executes the
parallel Q-learning algorithm and sends optimal beam asso-
ciation/handover actions to vehicles. As such, the computing
complexity is moved to the eNodeB. The simulation results
then show that our proposed parallel Q-learning algorithm can
increase the data rate for each vehicle by up to 57% and reduce
the disconnection probability by 34% compared to existing
approaches.

B. Main Contributions

In the following, we highlight the key contributions of this
paper.
• Develop an optimal beam association solution for

mmWave vehicular communication networks using the
semi-Markov decision process framework that can effec-
tively deal with the inherent dynamics of the mmWave
connection quality and the uncertainty of the environ-
ment, e.g., beam’s location, RSSI profile, the velocity of
the vehicle, and blockages, in a real-time manner.

• Develop a lightweight yet very effective parallel Q-
learning algorithm to quickly obtain the optimal policy by
simultaneously learning from various vehicles to update
the global Q-table at the eNodeB. The proposed parallel
Q-learning algorithm does not only require lower com-
plexity but also converges faster than latest deep learning-
based approaches. Specifically, the algorithm deploys
multiple learning processes at the eNodeB, and each
learning process is assigned to learn from a vehicle on
the considered road to update the global policy.

• Prove that the proposed parallel Q-learning framework
converges with probability one to the optimal policy. Note
that deep Q-learning based approaches (e.g., deep double



and deep dueling) with advanced deep neural networks
are not always guaranteed to converge. We also provide
a comprehensive analysis of the convergence time/rate,
complexity, and overhead of the proposed framework.

• Perform extensive simulations to demonstrate the effec-
tiveness of the proposed parallel Q-learning algorithm.
By learning from multiple vehicles and exploiting the
high mobility of vehicles, our proposed algorithm can
achieve the performance close to that of the hypothetical
scheme which requires complete environment information
in advance.

The rest of paper is organized as follows. The system model
is described in Section II. In Section III, we present the
problem formulation based on the SMDP. Then, Section IV
describes the conventional Q-learning algorithm and our pro-
posed parallel Q-learning algorithm. After that, we provide
the evaluation results in Section V. Finally, the conclusion is
highlighted in Section VI.

II. SYSTEM MODEL

Consider a millimeter wave (mmWave) vehicular network,
where an LTE eNodeB and a set of # mmWave base stations
(mmBSs) �( = {�(1, . . . , �(=, . . . , �(# } are deployed as
shown in Fig. 1. This is an expected network model for 5G
and beyond systems [19], [20]. All the mmBSs can connect to
the eNodeB via backhaul links. Each vehicle is equipped with
two communication interfaces: (i) an LTE interface to com-
municate with the eNodeB and (ii) an mmWave interface to
communicate with an mmBS [15]. The Friss free-space equa-
tion reveals that with given transmit power and antenna gains,
the pathloss increases when the frequency increases [1], [34].
For example, increasing the carrier frequency from 2 GHz
to 60 GHz 1 results in an increase of 29 dB for the pathloss.
The mmWave signals also suffer from obstacles and scattering
objects (both static and dynamic). Thus, the path loss model
between the vehicle and the mmBS can be formulated as
follows [1], [34]:

%! (3) [3�] = %! (30) + 10= log10
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(1)

where 30 is the reference distance, %! (30) is the free-space
loss at the reference distance, = is the path loss exponent,
3 is the distance between the vehicle and the mmBS, _ is
the carrier wavelength, and k is the log-normal shadowing
loss caused by the absorption of obstacles and scattering
objects. Moreover, the log-normal shadowing loss increases
with distance between the vehicle and the mmBS as the farther
the transmitter and the receiver are the more likely that there
are obstructing objects in between them. When the path loss
increases, the received power at the mmBS decreases. Thus,
when the vehicle leaves a beam or moves to a blockage zone,
the received signal strength indicator (RSSI) will drop. As
such, the vehicle is not be able to communicate with its

160 GHz is the common frequency band used for automotive communica-
tions.

connected mmBS (through the beam). To avoid disrupting the
service, the vehicle needs to connect to another beam which
provides better channel quality. This beam can belong to the
current connected mmBS, i.e., beam association, or belong to
another mmBS, i.e., handover.

Conventional methods in the literature [27]-[29] usually
make a beam association/handover decision based on the
current channel information or network state, e.g., SINR or
RSSI, where the decision is triggered when the SINR/RSSI are
dropped due to blockage objects or mobility. However, these
solutions may lead to too frequent handover and hence the
associated handover cost/interruption, especially in mmWave
networks where the temporal degradation of channel qual-
ity frequently occurs due to the intermittent connectivity of
mmWave links. In addition, as the mmWave communication
quality often deteriorates intermittently and rapidly, these
solutions may lead to the ping-pong effect resulting in high
outage probability and low system performance [9], [30].

In this paper, our learning algorithm can efficiently address
these critical problems by learning the environment condi-
tions. In particular, we consider a centralized controller, i.e.,
the eNodeB, that “learns” from vehicles on the considered
road and makes beam association/handover decisions for all
vehicles. With the proposed learning algorithm, the eNodeB
can learn the RSSI profiles of the beams in the systems. To
reduce the number of beam association/handovers, the eNodeB
can guide the vehicle to connect to a beam with a “better”
RSSI profile (in terms of the long-run average data rate).
In addition, the beam association/handover decision can be
triggered even when the RSSI level is still good to anticipate
the intermittent problem of mmWave links. It is worth noting
that the RSSI level can be inferred by the mmBS through
the received signals from the vehicle. Moreover, with current
standards in ITS systems [35], the mmBS always has the
location of its connected vehicles. Based on this information,
the eNodeB runs the algorithm to obtain the best beam for
the vehicle to connect without adding noticeable overhead to
current ITS systems.

We assume that each mmBS �(= has a finite set B= =
{1=,1, . . . , 1=,: , . . . , 1=,K} of  orthogonal beams [15]. Based
on the information learned from the vehicle, i.e., location,
velocity, and RSSI level, the eNodeB selects beam 1=,: of
mmBS �(= to support the communications of the vehicle. In
this paper, the velocity of each vehicle is not fixed. When
the vehicle is connected to beam 1=,: , it can successfully
transmit data with rate A=,: . Note that A=,: is a random
variable, depending on the RSSI level (i.e., channel quality)
of the channel. Consider " RSSI levels R = {0, 1, . . . , "−1}
which depend on the environmental conditions, e.g., channel
conditions (as modeled above) and blockage probability. The
higher the RSSI level is, the higher the achievable data rate of
the vehicle. We assume that when the vehicle enters blockage
zone, the RSSI level drops to 0, and thus the vehicle cannot
connect to the mmBS. We then define l1:= is the blockage
probability of beam 1=,: with 0 ≤ l1:= ≤ 1. l1:= = 1
if there are static blockage objects (e.g., buildings) in the
coverage of the beam. Note that the blockage model is not
the input of our proposed algorithm, i.e., it is not required to
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Fig. 1: System model.

be available in advance. Instead, our proposed algorithm can
learn the blockage model by interacting with the environment
and observing the immediate reward. Thus, our proposed
framework can work with any probabilistic blockage model
(i.i.d or non i.i.d). Similar to [15], we assume that A=,: is
varied from 0 to 'max, where 'max is the maximum achievable
rate, corresponding to the highest RSSI level. Formally, A=,:
can be formulated as in (2).

A=,: =

{
0, with probability l1:= ,
Δ(;), ; ∈ {R \ {0}}, with probability 1 − l1:= ,

(2)
where Δ(;) is the rate corresponding to the current RSSI level
; [15]. Note that to capture the fading effect of the channel,
Δ(;) follows a given random distribution.

Note that although the above environment information (e.g.,
the RSSI profiles, vehicle velocities, and the blockage proba-
bility) are required for the modeling/formulation purpose, the
proposed parallel Q-learning algorithm below does not require
these parameters explicitly as input. Instead, after executing an
action, the eNodeB observes the reward, i.e., the actual data
rate between the vehicle and the connected mmBS. The reward
function (defined below) hence captures the communication
channel between vehicles and mmBSs (e.g., the bit error
rate and fading). The details of the proposed algorithm are
described in the next section.

III. PROBLEM FORMULATION

As mentioned, in this work, we aim to deal with the dy-
namics of blockages, channel quality, and mobility. However,
the conventional Markov decision process is not effective in
capturing the dynamics and uncertainty of the system. Thus,
in this work, we propose to use the semi Markov decision

process (SMDP) [21]. Different from the MDP, in an SMDP,
an action is only taken when an event occurs, i.e., decision
epoch. An SMDP can be defined as a tuple < C 9 ,S,A, A >,
where S and A are the state space and the action space of
the system, respectively. C 9 defines decision epoch 9-th when
an event occurs, and A is the reward function.

A. State Space

The state space of each vehicle is represented as the
discretized space of RSSI levels, the connected beam, the
speed, and the direction of the vehicle. Thus, the state space
S is defined as follows:

S ,
{
(;, 1=,: , E, 3) : ; ∈ {0, . . . , <, . . . , " − 1},

1=,: ∈ B= ∪ {10,0},∀= ∈ {1, . . . , #},∀: ∈ {1, . . . ,  },

E ∈ {1, . . . , Emax}, 3 ∈ {0, 1}
}
,

(3)

where ; is the RSSI level of the current vehicle, 1=,: is the cur-
rent connected beam of the current vehicle, E is the vehicle’s
speed, and 3 is the direction of the vehicle (0 and 1 represent
two directions of the vehicle). 10,0 is a virtual beam used to
capture the case that there is no available beam at a given
location of the current vehicle. In this case, the RSSI level of
the current vehicle is always 0. Note that we choose not to
have the vehicle’s velocity as part of the system stage. Instead,
the vehicle’s velocity is implicitly captured through the actual
average data rate, i.e., reward, when an action is made (as
discussed in the Section III-C). The effects of the vehicle’s
velocity on the system performance as well as the convergence
time of the algorithm will be also comprehensively discussed
in the simulation results. Note that the RSSI estimate can
be highly inaccurate, providing less useful information for



selecting the next action and leveraging the value function of
future states. In practice, mmWave channel is sparse, and only
a few beams provide good channel quality. Therefore, the RSSI
of many mis-aligned/blocked beams will be highly inaccurate.
However, this is one of the key motivations of our machine
learning-based framework that can learn the RSSI profiles of
beams by interacting with the environment and observing the
actual reward (transmission rate) other than just relying on the
instantaneous RSSI estimate.

The road is modeled as an one-dimension area W ∈ R
that is discretized to

⌊
,
I

⌋
zones, where , is the length of

the considered road, I is the length of each zone, and b.c :
R → N is the floor function. When the vehicle at location
F ∈ W, the vehicle is at zone

⌊
F
I

⌋
-th. At the current state

B ∈ S, an event 4B is triggered if a vehicle reaches a new zone.
Note that as the vehicle’s speed is not fixed, the time interval
between two consecutive epochs varies. To capture that, the
semi-Markov decision process is used in this work, instead of
the conventional Markov decision process with identical time
slots.

B. Action Space

When the vehicle reaches a new zone on the road, i.e., event
4B is triggered (given its current state B ∈ S), the eNodeB
decides if the vehicle needs to associate to a new beam or
stay on the current beam. The action space AB of the system
is then defined as follows:

AB , {0} = {1=,: , 10,0},∀=,∀:, (4)

where 0 is the action made at state B. 0 = 1=,: if the eNodeB
guides the vehicle to connect to beam 1=,: , i.e., beam :−th of
mmBS �(=. This includes the case staying with the current
beam. 0 = 10,0 if there is no available beam at the current
location.

C. Immediate Reward

In this paper, we aim to maximize the long-term average
data rate of the system. As mentioned, at decision epoch C,
if an action is taken so that the vehicle connects to beam
1=,: , it can communicate with a rate of 0 ≤ A=,: ≤ '<0G
corresponding to the current RSSI level (from its current state
B defined above).

The resulting data that the vehicle receives from the mmBS
is calculated as 9 C

=,:
A=,: , where 9 C

=,:
is the connection time

between two consecutive decision epochs (during which the
vehicle can communicate with the mmBS through beam 1=,: ).
As the algorithm observes the reward at the end of each
decision epoch, 9 C

=,:
is the duration from the time that the

vehicle enters the current zone until it leaves (the current zone)
to enter the next zone. 9 C

=,:
hence depends on the velocity of

the vehicle EC at the epoch C. Practically, the velocity EC can
change from one to another epoch or even during the time 9 C

=,:
.

However, without loss of generality, we assume that the time
9 C
=,:

between two consecutive epochs is small enough (e.g.,
by setting the length per zone I as small as necessary) so that
the vehicle’s RSSI level and velocity remain unchanged. Thus,
connection time 9 C

=,:
can be calculated as I

EC
.

In addition, the service may be interrupted during the
handover/beam-switching, denoted as ℎ, i.e., the time it takes
for the vehicle to switch to the new beam. We assume that the
handover time is the same for all the beams/mmBSs. Taking
the handover time into account, at state B ∈ S, the immediate
data rate after performing action 0 is obtained in (5).

A (BC , 0C ) =
{
( 9 C
=,:
− ℎ)A=,: , if 0C = 1=,: ,

0, otherwise,
(5)

where BC and 0C are the system state and the action taken at
decision epoch C, respectively and A=,: is the communication
rate when the vehicle connects to beam 1=,: as defined in (2).
Note that 9 C

=,:
, A=,: , and ℎ depend on the channel and environ-

ment conditions such as blockages, beam’s location, and RSSI
profiles. Under our design, they are implicitly learned through
interacting with the environment and observing the immediate
reward in an online manner.

D. Optimization Formulation

The decision policy c of the proposed SMDP can be defined
as a mapping from the state space to the action space: S →
AB [36], [21]. Thus, with initial state B, the long-term average
data rate is formulated as follows:

Rc (B) = lim
)→∞

E{∑)C=0 A (BC , c(BC )) |B0 = B}
E{∑)C=0 bC |B0 = B}

,∀B ∈ S, (6)

where bC is the time interval between the C-th and (C + 1)-th
decision epochs, c(B) is the action at state B based on policy
c, and A is the immediate reward after performing an action.
In Theorem 1, we will prove that the limit in (6) exits [22].

THEOREM 1. With the number of events in a given time and
the number of states in the state space S are finite, we have:

Rc (B) = lim
)→∞

E{∑)C=0 A (BC , c(BC )) |B0 = B}
E{∑)C=0 bC |B0 = B}

=
L cA (B, c(B))
L c H(B, c(B))

,∀B ∈ S,
(7)

where H(B, c(B)) denotes the expected time interval between
two consecutive decision epochs when an action is taken at
state B following policy c. L c is the limiting matrix of the
transition probability matrix Lc given policy c [21] as defined
in the following.

L c = lim
)→∞

1
)

) −1∑
C=0
LCc , (8)

Proof. First, we prove the following lemma.

Lemma 1. The limiting matrix L c of the the transition
probability matrix Lc always exists.

Proof. The proof of Lemma 1 is provided in Appendix A. �



As the limiting matrix L c exits (see Lemma 1) and the total
probabilities of transiting from a given state to other states
equals to 1, i.e.,

∑
B′∈S L c (B′ |B) = 1 , we have:

L cA (B, c(B)) = lim
)→∞

1
) + 1

E
{ �∑
C=0

A (BC , c(BC ))
}
,∀B ∈ S,

L c H(B, c(B)) = lim
)→∞

1
) + 1

E
{ )∑
C=0

bC

}
,∀B ∈ S.

(9)

Clearly, the long-term average reward in (7) is obtained by
taking the ratio of L cA (B, c(B)) and L c H(B, c(B)). In addition,
the ratio of limits equals to the limit of the ratio. As a result,
the long-term average reward in (7) is well defined and exists.

�

Next, in Theorem 2, we prove that the underlying Markov
chain is irreducible, and thus the long-term average date rate
R(c) does not depend on the initial state B0.

THEOREM 2. For every c, the long-term average date rate
R(c) is well defined and does not depend on the initial state,
i.e., Rc (B) = Rc ,∀B ∈ S.

Proof. The proof of Theorem 2 is provided in Appendix B. �

Then, the long-term average data rate optimization problem
can be formulated as follows:

max
c

Rc =
L cA (B, c(B))
L c H(B, c(B))

(10)

s.t.
∑
B′∈S
L c (B′ |B) = 1,∀B ∈ S.

Our aim in this work is finding the optimal beam association
policy to maximize the long-term average data rate, i.e.,

c∗ = argmax
c

Rc . (11)

IV. PARALLEL REINFORCEMENT LEARNING FOR BEAM
ASSOCIATION IN HIGH MOBILITY MMWAVE VEHICULAR

NETWORKS

In this section, we develop the parallel Q-learning algorithm
that obtains the optimal beam association policy much faster
than those of the existing reinforcement learning based algo-
rithms (e.g., [18]). For that, we first briefly present the details
of the conventional Q-learning algorithm. Related mmWave
works in the literature usually adopt the Q-learning and deep
Q-learning algorithms to solve their problems. However, with
dynamic and complicated system, the Q-learning algorithm
usually takes a very long time to obtain the optimal strategy.
In addition, the deep Q-learning algorithm (e.g., [18]) requires
high performance computing resources and does not always
ensure to converge to the optimal policy due to the overes-
timation of the optimizer. Note that our proposed parallel Q-
learning algorithm obtains the optimal beam association policy
in an on-line manner, bringing various advantages, compared
with the off-line learning approach. First, in mmWave vehicu-
lar communication systems, the conditions of the environment
may be changed quickly in a short time. This is due to the fast
and intermittent change in the quality of the mmWave links

and the dynamics of blockages. Thus, a good beam/mmBS
at the current time may quickly become worse later. For
that, if we use the off-line training, the framework may be
mis-trained with the short-term fluctuation of the channels.
Under the proposed on-line training, channel conditions can
be quickly learned to obtain the optimal beam association
policy for vehicles. Second, off-line training requires frequent
maintenance and adjustment to adapt to the new conditions of
the environment (e.g., new buildings, new bus/transportation
schedules). Differently, our on-line training can reduce hu-
man intervention and management costs as the algorithm can
automatically learn the environment conditions and adjust its
optimal policy. Third, on-line training is data-efficient as we
do not need to store the old experiences which have become
obsolete and less or not useful for the learning process under
the new environment conditions.

A. Q-Learning Approach

This section presents the Q-learning algorithm [26], which
enable the eNodeB to obtain the optimal beam association
strategy for vehicles without prior environment parameters,
e.g., RSSI profiles and blockages. The key idea of the Q-
learning algorithm is updating the Q-value function for all
state-action pairs stored in a Q-table. At a given system state,
the Q-learning algorithm performs an action and observes the
immediate reward as well as the next state of the system.
Based on these observations, the algorithm can update the
Q-value for the current state-action pair based on the Q-
value function [26]. As such, the learning process is able
to learn from the previous experiences, i.e., current state,
action, next state, and immediate reward, to derive the optimal
solution [26]. In the following, we present the fundamentals
of the Q-value function.

We first define the beam association policy as c : S → A.
In particular, c is a mapping from a given state to its
corresponding action. Our aim in this paper is finding the
optimal beam association policy c∗ to optimize the system
performance in terms of the average data rate, disconnec-
tion probability, and number of handovers. Then, we define
V c (B) : S → R as the expected value function of state B ∈ S
given policy c. V c (B) can be formulated as follows:

V c (B) = Ec
[ ∞∑
C=0

WAC (BC , 0C ) |B0 = B
]

= Ec

[
AC (BC , 0C ) + WV c (BC+1) |B0 = B

]
,

(12)

where 0 ≤ W < 1 denotes the discount factor. In particular,
W represents the effect of the future rewards. The higher the
discount factor is, the more important future rewards are. At
each state B, we aim to find the optimal action to derive the
optimal beam association policy c∗, which is a map from a
given state to the optimal action. To do that, the optimal value
function for each state has to be obtained as formulated in the
following:

V∗ (B) = max
0

{
Ec [AC (BC , 0C ) + WV c (BC+1)]

}
, ∀B ∈ S. (13)



We then denote the optimal Q-function state-action pair
(B, 0),∀B ∈ S,∀0 ∈ A as follows:

Q∗ (B, 0) , AC (BC , 0C ) + WEc [V c (BC+1)] . (14)

Hence, the optimal value function is written as follows:

V∗ (B) = max
0
{Q∗ (B, 0)}. (15)

To solve (15), we can update the Q-function to determine
the optimal Q-values of all state-action pairs by using the
following rules [26]:

QC+1 (BC , 0C ) = QC (BC , 0C ) + gC
[
AC (BC , 0C )

+ Wmax
0C+1
QC (BC+1, 0C+1) − QC (BC , 0C )

]
,

(16)

where gC denotes the learning rate, determining the impact of
new experiences to the current Q-value [26]. By updating the
Q-value functions of all state-action pairs by using (16), the
algorithm can derive the optimal beam association policy.

B. Parallel Q-Learning Approach

Note that the conventional Q-learning algorithm can con-
verge to the optimal beam association policy quickly when
the system is simple. However, with the dynamics and un-
certainties of the system considered in this work, the Q-
learning algorithm may take a very long time to obtain the
optimal strategy. This is due to the fact that the Q-learning
algorithm require a huge number of training episodes to
collect enough data for learning. To speed up the Q-learning
algorithm, the deep reinforcement learning algorithm is usually
adopted in the literature. Nevertheless, this algorithm requires
high performance computing resources and does not ensure
to converge to the optimal policy due to the overestimation
of the optimizer [22], [23]. The convergence rate of the deep
reinforcement learning algorithm can be improved by imple-
menting several techniques. For example, by using the deep
dueling neural network architecture [24], one can significantly
improve the convergence rate and stability of the Q-learning
algorithm. However, in our work, we leverage the fact that
there are simultaneously multiple vehicles running on the road
to design the parallel Q-learning algorithm. The proposed
algorithm does not only require lower complexity but also
converge faster than the latest deep learning-based approaches.
In particular, vehicles running on the road act as active learners
which can help the system simultaneously collect data and
significantly speed up the learning process as shown in Fig. 2.

To that end, the parallel Q-learning algorithm employs
multiple learning processes. Each learning process is assigned
for a vehicle running on the road (in the coverage of the
eNodeB). Specifically, each learning process 8 updates the Q-
value function at the global Q-table as follows:

QC+1 (B8C , 08C ) = QC (B8C , 08C ) + gC
[
A 8C (B8C , 08C )

+ Wmax
08
C+1

QC (B8C+1, 0
8
C+1) − QC (B

8
C , 0

8
C )
]
,

(17)

where 0 ≤ W < 1 is the discount factor that presents the
effect of future rewards [26]. In particular, when W is low, e.g.,

close to 0, the learning process prefers the current reward.
Differently, when W is high, e.g., close to 1, the long-term
reward will be considered. In this work, we set W the same for
all vehicles, i.e., learners. A 8C (B8C , 08C ) is the immediate reward
when vehicle 8 performs action 08C at state B8C (computed using
equation 5 above). gC is the learning rate at decision epoch
C [26]. Note that the learning rate can be fixed at a constant
value or it can be adjusted when running the algorithm. In
this paper, the learning rate is fixed during the training process
and is the same for all learning processes. At each decision
epoch and given a current state, i.e., RSSI level and current
connected beam, the current vehicle chooses to connect to
a beam (following the current beam association policy sent
from the eNodeB) and observes the data rate of the connected
beam as well as the next state. Then, these observations
are sent to the eNodeB for learning by the corresponding
learning process to update the global Q-table (equation 17).
Algorithm 1 describes the fundamental of the proposed parallel
Q-learning algorithm.

Algorithm 1 Parallel Q-learning Algorithm for Vehicle 8

1: for t=1 to T do
2: Vehicle 8 observes the current state B8C ∈ S and execute

action 08C ∈ A based on the n-greedy policy.
3: Vehicle 8 observes the immediate reward A 8C and new

state B8
C+1 ∈ S.

4: Vehicle 8 sends transition (B8C , 08C , A 8C , B8C+1) to the eN-
odeB for learning by updating the table entry of Q(B8C , 08C )
as as follows:

QC+1 (B8C , 08C ) = QC (B8C , 08C ) + gC
[
A 8C (B8C , 08C )

+ Wmax
08
C+1

QC (B8C+1, 0
8
C+1) − QC (B

8
C , 0

8
C )
] (18)

5: Replace B8C ← B8
C+1.

6: end for

In particular, vehicle 8 first observes the current state B8C ∈ S
and performs action 08C based on the n-greedy policy [32].
Then, the eNodeB selects an action that maximizes the Q-
value function with probability 1−n and a random action with
probability n . Then the eNodeB sends this action to vehicle
8 to perform. In this work, we gradually reduce the value of
n . In other words, the algorithm first chooses random actions
and gradually change to the deterministic strategy, i.e., choose
an action with the highest Q-value at a given state. To that
end, n is set at a high value (e.g., 1) when the algorithm
starts running. Then, at later iterations, the value of n is slowly
reduced to a small value (e.g., 0.1). After performing action
08C , vehicle 8 observes immediate data rate A 8C (B8C , 08C ) and next
state B8

C+1. These observations are then sent to the eNodeB
for learning. Note that the learning process of each vehicle is
independent from others, and all the learning processes share
the same global Q-table. By doing that, the Q-table is updated
with more experiences from multiple vehicles running on the
road. As such, the convergence rate and convergence time of
the parallel Q-learning algorithm will be better than that of
the conventional Q-learning algorithm as demonstrated in the
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Fig. 2: Parallel Q-learning based model enables simultaneous learning from multiple vehicles.

simulation results in the following section.
The convergence of our proposed parallel Q-learning al-

gorithm can be guaranteed if its learning processes are se-
rializable [33]. In this case, the parallel Q-learning algo-
rithm can achieve the optimal policy as the one obtained
by the Q-learning algorithm. In particular, multiple learning
processes (corresponding to multiple vehicles running on the
road) simultaneously update different non-related states can
be considered as independent processes. As a result, these
processes are serialized. Note that as the learning processes
update the global Q-table simultaneously, the selection of an
action of a learning process may be based on the new Q-
value that updated by the other learning process. Specifically,
at state B, a learning process chooses to perform action 0 that
maximizes the Q-value function. However, another learning
process may reach state B before, take action 0′, and update
the Q-value of action 0′ to be the highest value. In this case,
action 0 may still be selected by the n-greedy policy mentioned
above. In other words, an iteration for exploitation becomes
an iteration for exploration. As stated in [26], the algorithm is
ensured to converge to the optimal solution if gC is nonnegative,
deterministic, and follows the following rules:

gC ∈ [0, 1),
∞∑
C=1

gC = ∞, and
∞∑
C=1
(gC )2 < ∞. (19)

Given (19), the convergence of the proposed parallel Q-
learning algorithm to the optimal policy is formally stated in
Theorem 3 below.

THEOREM 3. Given the learning processes are serializable
and under the conditions of gC in Eq. (19), the parallel Q-
learning algorithm is ensured to converge to the optimal
policy.

Proof. The proof of Theorem 3 is presented in Appendix C.
�

C. Impact of High Mobility on Convergence Time

As mentioned, the proposed parallel Q-learning is partic-
ularly useful in vehicular networks where the system can
simultaneously learn from experiences of multiple vehicles.
Moreover, the high mobility of vehicles is also exploited in
our proposed parallel learning algorithm. In particular, when
a vehicle moves to a new zone, the eNodeB takes an asso-
ciate/handover action for the vehicle based on the information,
e.g., location and RSSI level, sent from the vehicle. The
duration to the next decision epoch can be calculated as
follows:

bC =
I

EC
, (20)

where EC is the speed of the vehicle between the C-th and
(C+1)-th decision epochs. After a period of bC , the vehicle can
collect a new sample of experience at decision epoch (C+1)-th,
i.e., (B8

C+1, 0
8
C+1, A

8
C+1, B

8
C+2). From (20), it is clear that with high

speeds, the time to move to the next decision epoch of the
vehicle will be short. As such, with a given time period, with
higher speeds, the vehicle can collect more experiences. Thus,
the parallel Q-learning algorithm can converge to the optimal
policy faster. In the simulations below, we can observe that the
convergence time (to the optimal association policy) reduces
from 800B to 200B when the velocity increases from 2 m/s to
9 m/s.

D. Complexity and Overhead of Parallel Q-Learning

The proposed parallel Q-learning algorithm is efficient with
low computational complexity and memory complexity. As
mentioned, the state space of our system includes only the
current RSSI level, the current connected beam, and the
vehicle’s velocity. For that, in common mmWave vehicular
networks setting with a few mmBSs, the number of states is
small, and thus the size of the global Q-table is also small.
Hence, the algorithm can obtain the optimal beam association



strategy quickly as the lookup and update table processes are
very fast.

Regarding the computational complexity, our proposed al-
gorithm only performs basic calculations without any complex
functions as in the other reinforcement learning algorithms,
e.g., deep double Q-learning, deep Q-learning, and deep
dueling [22], [23]. These algorithms implement deep neural
networks to approximate the Q-value function to obtain the
optimal policy with complicated mathematical operations, e.g.,
multiply matrices and gradient descent. As a result, they
require longer time to process and higher computing resources
compared to our proposed parallel Q-learning algorithm. In
addition, in this work, we deploy only one Q-table at the
eNodeB to store the Q-values for all state-action pairs instead
of implementing a separated Q-tables on each vehicle with
limited resources. As a result, the computing complexity is
moved to the eNodeB which has sufficient resources to obtain
the optimal policy in a short time.

Finally, our proposed parallel Q-learning algorithm incurs
minimal communication overhead. In particular, the RSSI level
can be inferred by the mmBS through the signals received from
the vehicle. Moreover, the mmBS can always know which
beam the vehicle connected to. These information are sent to
the eNodeB through the backhaul link with high bandwidth.
Furthermore, in intelligent transport systems [35], the location
information of vehicles is frequently reported to the RSU,
i.e., mmBS. Thus, to update event 4B of the SMDP, the
eNodeB can collect the information of each vehicle through
the mmBSs. Therefore, our proposed solution does not add
additional overheads to the current ITS standards.

V. PERFORMANCE EVALUATION

In this section, we investigate the performance of the
proposed algorithm in several scenarios. Specifically, we first
describe the simulation environment and related parameters.
Then, the simulation results are presented.

A. Parameter Setting

We consider a road with a length of 500 meters in the
coverage of an eNodeB. On the considered road, 6 mmBSs are
deployed. Each mmBS is equipped with 3 orthogonal beams.
Each beam is assumed to cover an area (on the considered
road) ranging randomly from 50 meters to 100 meters. The
blocking probability (including both temporary and permanent
blockages) of each beam is generated randomly from 0 to
1. We define 10 RSSI levels for each beam corresponding
to 10 data rates ranging from 0 to 'max = 9 Gbps, i.e.,
A=,: ∈ {0, 1, . . . , 9}. Unless otherwise stated, at each decision
epoch, a vehicle enters the road with probability _ = 0.5.
The handover time is set at 0.5 seconds [9], [31]. I is set
at 5 meters. The vehicle speed is varied from 1 m/s to
9 m/s (about 4 km/h to 32 km/h) in several scenarios to
demonstrate the effectiveness of the proposed solution under
high mobility. During a decision epoch, the vehicle’s speed
remains unchanged. It is important to note that the proposed
parallel Q-learning algorithm can learn without requiring these
parameters in advance. Instead, the algorithm will learn them

by interacting with the environment. For the proposed parallel
Q-learning and Q-learning algorithms, the learning rate and
discount factor are set at 0.1 and 0.9, respectively. Moreover,
for the n-greedy method, the initial value of n is set at 1 and
gradually reduced to 0.01.

We compare our proposed algorithm with three other meth-
ods: (i) MaxRate, (ii) Blockage Aware, and (iii) Upper Bound.
• MaxRate: This scheme first explores all available beams

at the current location. Then, the beam with the highest
RSSI level will be selected to connect. Once the MaxRate
scheme selects the best beam, it will keep connecting to
this beam until the end of the current decision epoch.
This scheme is used to show the performance of non-
adaptive and greedy solutions. As in mmWave systems
the temporal degradation of the channel quality frequently
occurs, the best beam at the current time may become
worse later. Thus, this scheme results in poor system per-
formance in terms of data rate, the number of handovers,
and disconnection probability.

• Blockage Aware: This scheme is assumed to know the
prior knowledge about the blocking probability of all
available beams in the current location. Then, the beam
with the lowest blocking probability will be chosen for
the vehicle to connect. This scheme is used to show
the effects of the high mobility. Specifically, when the
vehicle speed is low, this scheme will achieve a good
system performance in terms of data rate, the number
of handovers, and disconnection probability. However, its
performance becomes worse when the vehicle speed is
high as the high mobility is not considered.

• Upper Bound: Similar to the Blockage Aware scheme,
this scheme is assumed to know the prior knowledge
about the blocking probability of all available beams in
the current location. However, the handover decision is
only made if the data rate achieved is higher than that
of staying in the current beam. Note that in practice, this
data rate is not available in advance and depended on
the channel quality. This scheme is adopted to show the
optimistic upper bound of the system performance.

The evaluation metrics are the average data rate, the dis-
connection probability, and the number of handovers. The
average data rate is defined as the data received (in bits)
by a vehicle running on the road in a second. The number
of handovers is defined as the total number of handovers
that a vehicle needs to do when running on the road. The
disconnection probability is defined as the average probability
that the vehicle cannot communicate with mmBSs. The results
of the proposed solution are obtained by running the parallel
Q-learning algorithm in 20, 000 iterations.

B. Simulation Results

a) Performance Evaluation: We first vary the average
speed of vehicles running on the road and evaluate the system
performance obtained by the parallel Q-learning algorithm in
terms of the average data rate, the disconnection probability,
and the number of handovers as shown in Fig. 3. Obviously,
the average data rate of the vehicle decreases when the vehicle
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Fig. 3: (a) Average throughput (Gbps), (b) average number of handovers, and (c) average disconnection probability vs. average
speed of vehicles.
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Fig. 4: (a) Average throughput (Gbps), (b) average number of handovers, and (c) average disconnection probability vs. average
time for handover.

speed increases as shown in Fig. 3(a). The reason is due to
the effects of mobility on the handover. In particular, in the
case that the vehicle chooses to handover to a new beam
and its speed is high, the vehicle may move to another beam
before the handover is finished. Moreover, at high speeds, the
estimated RSSI level can be less accurate. This results in lower
data rates. It is worth noting that by learning the environment
parameters, our proposed solution achieves higher data rates
than that of the MaxRate scheme and the achieved rate is very
close to the Upper Bound scheme. Moreover, when the vehicle
speed is high (i.e., ≥ 6 m/s), our proposed solution achieves a
higher data rate than that of the Blockage Aware scheme. The
reason is that the Blockage Aware scheme selects the beam
with the lowest blocking probability at a given location without
considering the vehicle speed. However, at high speeds, the
beam with the lowest blocking probability may not be the
best choice as the vehicle may move out of the beam before
completing the handover process, and thus resulting in low
data rates. As can be seen in Fig. 3(b), when the speed
increases from 1 m/s to 6 m/s, our proposed solution chooses
to reduce the number of handovers to avoid the negative effect
of mobility. In contrast, other solutions with fixed policies
cannot learn this information, and thus they do not reduce the
number of handovers. It is worth noting that, when the speed
is higher than 7 m/s (about 25 km/h), the number of handovers
slightly increases for all schemes. This is because at high

speeds, the vehicle moves out the coverage of a beam before
finishing the handover to connect to this beam, thereby it needs
to do the handover again. It is important to note that, at several
locations, the only option is to handover to a new beam. Thus,
the number of handovers slightly increases for our proposed
solution in this case. Finally, as shown in Fig. 3(c), the average
disconnection probabilities of all schemes increase when the
vehicle’s speed increases. The reason is due to the effects of
the high mobility on the handover process. Note that by using
the learning algorithm, our proposed solution achieves lower
disconnection probability than that of the MaxRate scheme
and the probability is very close to that of the Upper Bound
scheme, especially at high speeds.

Next, we fix the average speed of vehicles at 7 m/s (about 25
km/h), which is a typical vehicle urban speed [18] and vary the
time for the handover to show the average data rate, number
of handovers, and disconnection probability obtained by the
proposed parallel Q-learning algorithm as shown in Fig. 4.
Clearly, when the time for the handover increases, the discon-
nection probability increases, and thus the average data rates
of all solution decrease as shown in Fig. 4(a) and Fig. 4(c).
Again, the proposed solution possesses better performance in
terms of data rate and disconnection probability than those of
the MaxRate scheme and close to that of the Upper Bound
solution. The reason is that our proposed solution can learn
and minimize the number of handovers when the time for
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Fig. 5: (a) Average throughput (Gbps), (b) average number of handovers, and (c) average disconnection probability vs. vehicle
arrival probability.

the handover increases. In particular, as shown in Fig. 4(b),
when the time for handover increases from 0.1 seconds to
0.5 seconds [9], the number of handovers of the proposed
solution decreases as our learning algorithm adapts its policy
to minimize the number of the handovers and thus maximize
the data rate for the vehicle (when the environment parameters
are not available in advance). However, when the time for the
handovers is too long (i.e., ≥ 0.5), the number of handovers
increases. Similar to the previous scenario, when the handover
is too long, the vehicle may move out of the target beam,
and thus it needs to do the handover again. Nevertheless, by
taking the advantage of online learning, our proposed solution
obtains the number of handovers close to that of the Upper
Bound scheme. It is worth noting that at high speeds, our
proposed solution performs betters than the Blockage Aware
scheme with prior knowledge about the beam profiles. The
reason is that the Blockage Aware scheme selects a beam based
on its blocking probability without considering the handover
process.

Finally, in Fig. 5, we vary the probability that a vehicle
enters the road at each decision epoch to evaluate the perfor-
mance of the proposed solution. Similar to other scenarios, by
learning the environment parameters, i.e., blocking probability,
vehicle’s speed, and handover time, our proposed solution
achieves better performance than that of the MaxRate and
Blockage Aware schemes in terms of data rate, number of han-
dovers, and disconnection probability. Note that our proposed
solution’s performance is very close to that of the optimistic
upper bound, i.e., Upper Bound scheme.

b) Convergence: In Fig. 6, we evaluate the convergence
rates of the proposed parallel Q-learning and the Q-learning
algorithms. Obviously, the parallel Q-learning algorithm can
obtain the optimal beam association policy in less than 6, 000
iterations while the Q-learning algorithm cannot converge to
the optimal beam association policy after 20, 000 iterations.
This result confirms the analysis in Section IV-B. Specifically,
by learning from multiple vehicles on the road at the same
time, the proposed parallel algorithm has more experiences to
learn and quickly converge to the optimal policy.

Next, in Fig. 7, we compare the convergence rates of the
parallel Q-learning with different numbers of learners. Clearly,
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Fig. 6: Convergence rates of Q-learning and parallel Q-
learning algorithms.
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Fig. 7: Convergence rates of the parallel Q-learning with
different numbers of learners.

the higher number of learners results in better performance.
In particular, when the parallel Q-learning runs with only 2
learners, the performance is the worst. When the number of
learners increases to 10, the performance of the algorithm
is improved. Finally, in the case that we do not limit the
number of learners (i.e., learning from all the vehicles running
on the road), the algorithm achieves the best performance
and quickly convergences to the optimal beam association
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Fig. 8: Convergence time of the algorithms when the average
speed of vehicles is (a) 2 m/s and (b) 9 m/s.

policy. This implies that by leveraging the fact that there are
often numerous vehicles on the road, our proposed parallel
Q-learning algorithm can significantly improve the system
performance compared to conventional methods.

Next, we investigate the convergence time of the proposed
parallel Q-learning and the Q-learning algorithms when the
average speed of vehicles is low (2 m/s) and high (9 m/s) as
shown in Fig. 8(a) and Fig. 8(b), respectively. As discussed in
Section IV-C, increasing the speed of vehicles leads to better
convergence time of the algorithm as vehicles can collect more
experiences for the learning process. As shown in Fig. 8(a),
when the speed of vehicles is 2 m/s, the parallel Q-learning
algorithm requires at least 6, 000 seconds to obtain the optimal
beam association/handover policy. In contrast, when the speed
of vehicles is 9 m/s, the algorithm can obtain the optimal
association policy within 1, 000 seconds as shown in Fig. 8(b).
Meanwhile, the Q-learning algorithm still cannot converge to
the optimal policy after 20, 000 seconds and 4, 500 seconds
when the vehicle speed is 2 m/s and 9 m/s, respectively.
Note that the average data rate (after obtain the optimal beam
association strategy) achieved by the proposed solution in the
case the speed of vehicles is 9 m/s lower than that of the
case when the speed of vehicles is 2 m/s. As mentioned,
this is stemmed from the effects of mobility on the handover
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Fig. 9: Convergence rates of parallel Q-learning and deep
dueling algorithms.

process and estimating the RSSI level as discussed in the above
section. This results in lower data rates.

Finally, in Fig. 9, we compare the convergence rates of the
proposed algorithm and the latest advance in deep reinforce-
ment learning, i.e., deep dueling algorithm. In particular, the
deep dueling reinforcement learning algorithm implements two
flows of hidden layers to separately estimate the advantage and
value functions [22], [23]. Recent works demonstrated that the
deep dueling algorithm is superior to other deep reinforcement
learning algorithms, e.g., deep Q-learning and deep double Q-
learning [22], [23]. As shown in Fig. 9, our proposed solution
can obtain the optimal beam association strategy in less than
6, 000 iterations while the deep dueling cannot converge to the
optimal solution after 20, 000 iterations. The reason is that our
proposed parallel Q-learning algorithm can learn from multiple
vehicles running on the road simultaneously. In contrast, the
deep dueling algorithm only learns from a single vehicle at a
time resulting in poor performance.

VI. CONCLUSION

In this paper, we have developed an optimal beam as-
sociation framework for high mobility mmWave vehicular
networks, aiming to maximize the system performance in
terms of average data rates, number of handovers, and dis-
connection probability of vehicles. The proposed parallel Q-
learning algorithm leverages the inherent feature of vehicular
networks that there are usually multiple vehicles on the road.
By collecting experiences/samples simultaneously from all
vehicles, the algorithm converges to the optimal policy much
faster than the conventional Q-learning and even its latest
deep reinforcement learning framework. Extensive simulations
have proved that our proposed parallel Q-learning algorithm
can increase the average data rate by 57% and reduce the
disconnection probability by 34% compared to the conven-
tional solution. In addition, by learning the RSSI profiles
of beams and blockages on the road, our proposed solution
can achieve the performance close to that of the hypothetical
scheme which requires complete environment information in
advance. We also observed that the high mobility of the
vehicles was actually helpful in speeding up the convergence
of the algorithm to the optimal association policy.



APPENDIX A
THE PROOF OF LEMMA 1

First, we define a sequence of matrices as {�= : = ≥ 0}. If
lim
=→∞

�= (B′ |B) = (B′ |B),∀(B, B′) ∈ S ×S, we have lim
=→∞

�= = �.
Now, we define the Cesaro limit (denoted by C-lim) [21] of
the sequence as follows:

�-lim
#→∞

= lim
#→∞

�0 + �1 + . . . + �= + . . . + �#−1
#

. (21)

Thus, � is the Cesaro limit (of order one) of {�= : = ≥ 0} if

lim
#→∞

1
#

#−1∑
==0

�= = �. (22)

In a short form, we have:

�-lim
#→∞

�# = � (23)

The limiting matrix L is then formulated as follows:

L = �-lim
#→∞

L# . (24)

Let’s denote ; (B′ |B) as the (B′ |B)-th element of L. Thus, for
each B and B′, we have the following:

; (B′ |B) = lim
#→∞

1
#

#∑
==1

;=−1 (B′ |B), (25)

where ;0 (B′ |B) denotes a element of an S ×S identity matrix,
and ;=−1 is a component of L=−1. Given L is aperiodic,
we have lim#→∞ L# equals to L. Thus, the limiting matrix
exists.

APPENDIX B
THE PROOF OF THEOREM 2

In this proof, we first show that the underlying Markov
chain is irreducible. In particular, we will prove that the
learning process can move from a given state to any states
after a finite number of steps. As mentioned, the system
state space S is the combination of the RSSI level, the
connected beam, and the velocity of the current vehicle. At
state B = (;, 1=,: , E, 3), if the vehicle to connect to beam
1=′,:′ and the RSSI level when connect to this beam is ; ′,
the system moves to state B′ = (; ′, 1=′,:′ , E, 3). The new RSSI
level ; ′ can be any of levels in R as the RSSI level depends
on the environmental conditions, e.g., channel conditions, and
the blockage probability. In addition, the vehicle can be able
to connect to all beams when it is moving on the road. When
the vehicle moves out of the considered road, the system will
wait for a new vehicle enters the road and move to a new
state. Moreover, the velocity (i.e., speed and direction) of the
vehicle is not fixed. Thus, from a given state B, the system can
move to any other state B′ ∈ S after a finite number of steps.
In other words, the state space S (which is the combination of
the RSSI level and the connected beam of the current vehicle)
contains only one communicating class, and the underlying
Markov chain is irreducible. As such, the long-term average
date rate R(c) does not depend on the initial state and is
well defined ∀c [25]. As a result, the algorithm can always
converge to the optimal beam association policy regardless of
the initial system state B0.

APPENDIX C
THE PROOF OF THEOREM 3

In this proof, we show that the proposed parallel Q-learning
algorithm is ensured to converge to the optimal policy, i.e.,
QC (B, 0) → Q∗ (B, 0) as C →∞. As mentioned in Section IV-B,
the learning processes in our proposed algorithm are serializ-
able. Thus, the convergence proof of the parallel Q-learning
is similar to that of the Q-learning algorithm.

The key idea of this proof is using the action-replay
process (ARP) (i.e., an artificial controlled Markov decision
process) [26]. This action-relay process is defined based on
the episode sequence and the learning rate. First, we denote
{〈B, C〉} as the state space of the ARP [26]. Here, B is a state in
the actual process, C ≥ 1 denotes the ARP’s level. In addition,
the action space of the ARP is denoted as {0} in which 0 is
a action in the actual process.

Next, at state 〈B, C〉, if action 0 is chosen, the state transition
consequence and the stochastic reward of the ARP can be
formulated as follows:

i∗ =


argmax8{C8 ≤ C}, if (B, 0) has been taken before
decision epoch t,

0, otherwise,
(26)

where C8 represents the 8Cℎ time when performing action 0

given state B. As such, C8∗ is the last time at which action 0 is
taken at state B in the real process before decision epoch C. The
reward equals to Q0 (B, 0) if 8∗ = 0. Moreover, in this case, the
action-replay process is absorbed. Otherwise, we denote the
index of the decision epoch which is taken from the existing
samples from the real process as follows:

ie =



8∗, with probability gC8∗ ,
8∗ − 1, with probability (1 − gC8∗ )gC8∗−1 ,

8∗ − 2, with probability (1 − gC8∗ ) (1 − gC8∗−1 )gC8∗−2 ,
...

0, with probability
∏8∗
8=1 (1 − gC8 ),

(27)
Similar as above, when 84 = 0, the reward is Q0 (B, 0) and the
process is absorbed. Otherwise, taking 84#0 results reward AC84
and a state transition to 〈B′C84 , C84 − 1〉.

Putting the above and Lemma B in [26] together, we
have QC (B, 0) → Q∗�'% (〈B, C〉, 0),∀0, B, and C ≥ 0, in which
QC (B, 0) is the optimal action values of the ARP with state
〈B, C〉 and action 0 [26, Lemma A]. Let’s denote A∗ as the
bound of the reward, and thus A∗ ≥ |AC |,∀C. With loss of
generality, assuming that QC (B, 0) < A∗

(1−W) with A∗ ≥ 1 [26].
Thus, with j > 0, we can find b so that

W b
A∗

1 − W <
j

6
. (28)

By using Lemma B.4 in [26], the comparison of between
the value of performing 01, . . . , 0 b in the real process, i.e.,
Q̄ (B, 01, . . . , 0 b ), with that of taking these actions in the ARP,
i.e., Q̄�'% (〈B, C〉, 01, . . . , 0 b ), is formulated as follows:

|Q̄�'% (< B, C >, 01, . . . , 0 b ) − Q̄(B, 01, . . . , 0 b ) | <
j(1 − W)

6bA∗
2bA∗
1 − W +

2j
3b (b + 1)

b (b + 1)
2

=
2j
3
.

(29)



Based on Lemma B.4 in [26], we can say that taking only b
actions results in a small different of less than j

6 for both the
real process and the action-replay process. In addition, we can
apply (29) to an set of actions in both the action-replay and
the real processes. As such, Q∗

�'%
(〈B, C〉, 0) − Q∗ (B, 0) | < j.

Thus, QC (B, 0) → Q∗ (B, 0) when C →∞ with probability 1.
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