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Abstract—Optimal sensor placement is an important problem
to look at. This problem becomes all the more relevant nowadays
due to advancements in infrastructure monitoring robotic tech-
nologies including underground sensing. While there are multiple
ways to solve optimal sensor placement problems, one of the
most generic methods available is Bayesian Optimization and
its variants. In this paper, we present a simple benchmark-
like formulation for exploiting Gaussian Process uncertainty for
sensor placement to measure a scalar field.

Index Terms—Bayesian Optimization; Gaussian Process; Opti-
mization; Pulsed Eddy Current; Sensor Placement; Scalar Field;
Sensor; Smart Pipes; Spatial Measurement; 2D Environment.

I. INTRODUCTION

Within the task of measuring scalar fields, optimal sensor
placement, or computing subsequent best, or subsequent most
informative location(s) for sensor placement, is an important
question to look at. This question has become especially rel-
evant due to the modern advancements of robotic capabilities
available to support sensing tasks [1], including underground
measurements [2]–[6]. An approach that is classically used to
solve such sensor placement problems is Bayesian Optimiza-
tion and its extensions [7].

However, Bayesian Optimization approaches come with the
burden of computational complexity [7], [8], especially due
to some Gaussian Process (GP) [9] computations that have
to be made. This burden is especially worrisome in real time
computations for robotic deployments. Therefore, it becomes
of interest to assess alternative approaches that can optimize
sensor placement in computationally simpler ways.

When it comes to assessing such alternative approaches
though, one would at some stage have to compare the al-
ternatives against Bayesian Optimization methods. This com-
parison becomes necessary because Bayesian Optimization
approaches, despite their computational burdens, can be argued
to be a powerful benchmark means [7] to solve many a design
of experiments problem, including sensor placement problems.

Having that premise set, with an intention of analyzing
different sensor placement strategies in future, we present in
this paper a simplified yet generic formulation for exploiting
Gaussian Process coupled with the Squared Exponential kernel
[9], describing a benchmark method for sensor placement in a

2D environment. The formulation can be extended to 3D envi-
ronments and higher dimensions as well. We also demonstrate
the performance of the benchmark through a Pulsed Eddy
Current sensing experiment targeted at underground reinforced
concrete sewer inspection [10].

II. PROBLEM FORMULATION

We are given a bounded 2D plane, on which any point can
be given by the coordinate pair (x, y) where x ∈ R and y ∈ R.
The plane can have a ‘k’ number of boundaries. The bound-
aries are known. With respect to those boundaries, the plane
can be written as a region that the coordinates (x, y) satisfy
the inequalities: b1(x, y) ≥ 0, b2(x, y) ≥ 0, ..., bk(x, y) ≥ 0.
Here b1, b2, ..., bk are functions that perform R2 → R, and
these functions can be nonlinear for generality.

Our bounded 2D plane carries a scalar field. Said more
specifically, every point (x, y) in our plane will have a
measurable and static (i.e., non time-varying) scalar quantity
given by g = f(x, y). Here, g ∈ R, and f is a smooth
continuous function such that f : R2 → R. But, the function
f is unknown.

Now, we are given a fixed set Xn containing an ‘n’ number
of coordinates taken from our bounded plane. Xn can be
written as in (1). It must be assumed that the coordinates in
Xn are sufficiently dense so that between any two adjacent
coordinates the function f remains approximately smooth. We
are then asked to measure Gn–the set given in (2) that contains
the scalar values corresponding to the coordinates in Xn.

Xn = {(x1, y1), (x2, y2), ..., (xn, yn)} (1)

Gn = {g1, g2, ..., gn} (2)

We are given one sensor to take measurements.
Measurement-taking will have to be iterative. At every
iteration, the sensor can take a single measurement by
reaching any point (xi, yi) ∈ Xn. We are thus required to
iterate to cover the space taking one measurement at a time.

Given a task like this, typically, we would go and measure
‘g’ values at every given coordinate. However, suppose mea-
suring at all coordinates is considered tedious, and we would
like to do fewer measurements, but still get a good enough



job done. Achieving that objective is the problem we address
in this paper. Our problem can be expressed mathematically
as follows.

Given a fixed set of coordinates Xn, we would like to
identify an optimal subset Xm, where Xm ⊂ Xn and obtain
a corresponding set of measurements Gm, where Gm ⊂ Gn,
such that the underlying unknown continuous scalar function
f that does the mapping g = f(x, y), can be estimated. The
estimate of f must converge under some convergence criteria
we define.

Solving the aforesaid problem essentially addresses a ver-
sion of the optimal sensor placement task in 2D. Moreover,
obtaining a converged estimate of f enables finding the scalar
values at coordinates in the set Xn ∩X ′m through prediction
and without measurement (here, X ′m is the complement set of
Xm). In the subsequent sections, we formulate a solution for
this problem using Gaussian Process (GP) [9]. Our formulation
can also be used as a benchmark to be compared against to
evaluate other methods.

III. METHODOLOGY

This section presents the GP-based formulation to accom-
plish the sensing task described in Section II. An itera-
tive method for GP maximum uncertainty-driven, information
maximization-based, active measurement-taking is proposed.
Examples are available to how GP maximum uncertainty
criteria has been exploited in different contexts [11], [12].

Given any set of prior measurements, this method calculates
the next best, or next most informative point to take a
measurement. The next best point is considered where the
maximum GP uncertainty (explained later) results from the
remaining unmeasured points. Sequential steps to be followed
are summarized herein.

Step 1, Conduct prior measurements: Select a set Xm

(where Xm ⊂ Xn) that contains an ‘m’ number of ‘uniformly’
or ‘evenly’ distributed points across the given region to sense
(note: select the number m such that m/n × 100% ≈ 50%).
Then conduct the measurements corresponding to Xm, and
construct the corresponding set Gm. Also construct the cor-
responding unmeasured coordinate set X∗ where X∗ = Xn ∩
X ′m. Now arrange Xm, Gm and X∗ to be corresponding
matrices as shown in (3), (4) and (5). The notation

[
. . .
]T

henceforth denotes matrix transpose.

Xm =

[
x1 x2 . . . xm
y1 y2 . . . ym

]T
(3)

Gm =
[
g1 g2 . . . gm

]T
(4)

X∗ =

[
x
(1)
∗ x

(2)
∗ . . .

y
(1)
∗ y

(2)
∗ . . .

]T
(5)

Moreover, the notation X
(i)
m and X

(j)
∗ will henceforth

denote any generic ith and jth row of two matrices Xm and
X∗ respectively. X(i)

m and X(j)
∗ will be considered vectors in

R2. This notation is useful for (6).

Step 2, Estimate Hyper-Parameters: The objective of the
second step is to estimate and save the hyper-parameter set
θ(l) = {α(l), η(l), σ(l)}, where θ(l) ∈ R3. The superscript
(l) denotes the number of iterations the measurement-taking
has gone for. The value of (l) will be one when entering
Step 2 soon after completing Step 1, i.e., taking the prior
measurements. On subsequent returns to Step 2 (as described
later), the value of (l) will increment.

This hyper-parameter set in R3 results by considering the
Squared Exponential kernel and Gaussian likelihood in GP
formulation [9] (presenting full GP formulation is not done in
this paper, only vital steps are shown, readers are advised to
refer to works like [9] for complete derivations). Taking the
squared exponential kernel becomes appropriate for our task
due to our underlying condition that the function ‘f ’ is smooth
and continuous (recall from Section II).

To calculate hyper-parameters following GP formulation
[9], we construct matrix Σm such that Σm = K(Xm, Xm) +
σ2I . Here, σ ∈ R is a hyper-parameter to be estimated,
K(Xm, Xm) ∈ Rm×m, and I is an identity matrix of
corresponding size. A generic formulation for Xa ⊂ Xn;
Xb ⊂ Xn; a, b ∈ Z+, and a 6= b becomes K(Xa, Xb) ∈ Ra×b.
A generic element of K(Xa, Xb) is given by K(Xa, Xb)i,j =

k(X
(i)
a , X

(j)
b ). Here, k(X

(i)
a , X

(j)
b ) is the squared exponential

kernel given by (6) where || . . . || denotes the Euclidean Norm
and α, η ∈ R are hyper-parameters to be estimated.

k(X(i)
a , X

(j)
b ) = α2 exp

(
− 1

2η2
||X(i)

a −X
(j)
b ||

2

)
(6)

We then proceed to derive maximum likelihood estimation
formulation [9]. This results in the negative log marginal like-
lihood given by (7) where | ∗ | denotes the matrix determinant.

− log[p(Gm|Xm, θ)] =
1

2
GTmΣ−1m Gm+

1

2
log |Σm|+

m

2
log(2π).

(7)
After expressing − log[p(Gm|Xm, θ)], we can then estimate

hyper-parameters by minimizing the negative log marginal
likelihood as in (8). A way to initialize the hyper-parameters
to perform this optimization is presented in [13].

θ(l) = arg min
θ

(− log[p(Gm|Xm, θ)]) (8)

Step 3, Check Convergence: This step prescribes a con-
vergence, or a stopping criteria for the sensing task. To define
a stopping criteria, in every iteration (l), we make a prediction
on the full coordinate set Xn based on the measurement
sets Xm and Gm available at that iteration. This means by
following GP prediction [9] we perform: G∗n|Gm, Xm, Xn ∼
N (µ∗n,Σ

∗
n), such that µ∗n and Σ∗n are given by (9) and (10).

Then, for the (l)th iteration we calculate γ(l) as shown in
(11) where | ∗ | denotes absolute value. γ(l) here is the
measure of mean percentage value of 2×prediction uncertainty
with respect to prediction mean. As we collect more and
more measurements, i.e., as our Xm set gets larger in every
iteration (l), we would expect γ(l) to decrease. Therefore,
we define the stopping criteria to be γ(l) ≤ γc condition



be satisfied for Nit consecutive iterations. Here, γc will be
some small positive number we define. Similarly, Nit will be
a number of consecutive iterations we define. This means, as
long as γ(l) > γc prevails, the iterative measurement-taking
will continue. It should also be noted that for the way we
calculate γ(l) in (11), we do not wish any µ∗(i)n to lie close to
zero. Therefore, we recommend adding a bias constant to the
measured Gm set prior to doing GP in a way that all values in
Gm become positive and the minimum value in Gm becomes
larger than one.

µ∗n = K(Xn, Xm)Σ−1m Gm (9)

Σ∗n = K(Xn, Xn) + σ2I −K(Xn, Xm)Σ−1m K(Xm, Xn)
(10)

γ(l) = 100%× 2

n

n∑
i=1

√
(Σ∗n)i,i

|µ∗(i)n |
(11)

Step 4, Compute and Perform Next Best Measurement:
This step is performed for as long as the convergence criteria in
Step 3 is not satisfied. To compute the coordinate for the next
best measurement, we make a prediction on the unmeasured
coordinate set X∗ based on the measurement sets Xm and
Gm available at iteration (l). This means by following GP
prediction [9] we perform: G∗|Gm, Xm, X∗ ∼ N (µ∗,Σ∗),
such that µ∗ and Σ∗ are given by (12) and (13). When µ∗
and Σ∗ are computed, we can then determine the coordinate
with highest uncertainty in iteration (l) by solving (14). The
resulting coordinate (x(l), y(l)) is deemed as the next best
point to take a measurement according to our maximum
uncertainty criteria. Once the point (x(l), y(l)) is determined,
the corresponding measurement g(l) is taken. We then add
point (x(l), y(l)) to the matrix Xm and g(l) to the matrix Gm,
and return to Step 2 thereby closing the loop of the algorithm
to continue iterating.

µ∗ = K(X∗, Xm)Σ−1m Gm (12)

Σ∗ = K(X∗, X∗)+σ2I−K(X∗, Xm)Σ−1m K(Xm, X∗) (13)

(x(l), y(l)) = arg max
(x(i),y(i))∈X∗

(Σ∗)i,i (14)

IV. RESULTS AND CONCLUSION

Results from an example where the proposed method was
applied is shown. The example comes from [10]. A Pulsed
Eddy Current (PEC) sensor is used to locate reinforcement
rods (i.e., rebars). This application is related to underground
reinforced concrete sewer infrastructure inspection. The PEC
sensor is allowed to move across a planar surface above the
rebars. Signal intensity is indicative of the sensor moving
above the rebar (see Fig. 1(a)). This exercise has 117 (i.e.,
13 × 9) uniformly placed square grid locations. The sensor
can take a maximum of 117 measurements–one measurement
per grid location. Fig. 1(a) shows the case where all 117
measurements have been taken. Fig. 1(b) shows the measure-
ments completed at the point of convergence by following the
method proposed in this paper. White squares are indicative
of unmeasured points. Fig. 1(c) shows the completed map

by filling the blank spaces of Fig. 1(b) via GP regression.
The effectiveness of the method is evidenced by there being
hardly any visible difference in Fig. 1(c) from Fig. 1(a).
Fig. 1(d) shows the percentage error between the GP pre-
dictions in Fig. 1(c) and the corresponding actual measure-
ments in Fig. 1(a). The maximum percentage error does
not exceed 5%. Fig. 2 shows how the convergence measure
γ(l) has varied along the iterations (l). Since there are 117
maximum allowable measurements in this example, the prior
measurements (i.e., 50%, recall from Step 1) accounted for 59
points. After those measurements, only 40 more measurements
were required (notice from Fig. 2–convergence reached in
the 41st iteration) to reach convergence at the convergence
parameters set to γc = 10% and Nit = 10. Thus can be
demonstrated the capability of the proposed method. Future
work can explore different convergence criteria, different next
best point calculation criteria, and use the proposed method
as a benchmark to be compared against when evaluating other
methods for similar purposes, and also larger data sets [14].

Fig. 1. Experimental results from a PEC sensor measurement task to
locate sewer reinforcement rods (rebars): (a) Reference map with all sensor
measurements; (b) Measurements completed at convergence of the proposed
method (white squares indicate unmeasured points); (c) Measured map from
the proposed method filled with GP predictions on the unmeasured points;
(d) Percentage error between GP predictions and actual measurements of the
unmeasured points.

Fig. 2. The trend of γ(l) reduction along with iterations for the example in
Figure 1.
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