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A new inverse family of the iterative method is interrogated in the present article for simultaneously estimating all distinct and
multiple roots of nonlinear polynomial equations. Convergence analysis proves that the order of convergence of the newly
constructed family of methods is two. %e computer algebra systems CAS-Mathematica is used to determine the lower bound of
convergence order, which justifies the local convergence of the newly developed method. Some nonlinear models from physics,
chemistry, and engineering sciences are considered to demonstrate the performance and efficiency of the newly constructed family
of inverse simultaneous methods in comparison to classical methods in the literature. %e computational time in seconds and
residual error graph of the inverse simultaneous methods are also presented to elaborate their convergence behavior.

1. Introduction

Considering nonlinear polynomial equation of degree n,
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(1)

with arbitrary real or complex coefficient an−1, . . . , a0. Let
ζ1 . . . ζn denote all the simple or complex roots of (1) with
multiplicity σ1 . . . σn. Newton’s method [11] is one of the
most basic and ancient methods that is used to estimate
single roots of (1) at a time as below:
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Iterative method (2) has local quadratic convergence.
Nedzhibov et al. [13] presented corresponding inverse nu-
merical technique of the same convergence order as
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Here, we propose the following family of the optimal
second-order convergence method for finding simple roots
of (1) as
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1
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, (4)

where α ∈ R. Method (4) is optimal and the convergence
order of (4) is 2 if ζ is a simple root of (1) and ∈ � r − ζ. %e
error equation of (4) is obtained using Maple-18:
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or

s
(t)

− ζ � O ∈2􏼐 􏼑. (6)

Corresponding inverse methods of (4) is constructed as
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(7)

If ζ is an exact root of (1), f(ζ) � 0, and the following is
obtained:
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, g(ζ) � ζ(fixed point), (8)

g′(ζ) � 0. (9)

Inverse iterative schemes (7) are second-order conver-
gence as it is easy to prove g′′(ζ)≠ 0.

Besides simple root finding methods
[3–5, 13, 15, 16, 18–20] in literature, there exists another
class of numerical methods which estimate all real and
complex roots of (1) at a time, known as simultaneous
methods. Simultaneous numerical iterative schemes are very
prevalent due to their global convergence properties and its
parallel execution on computers [1, 6, 8–10, 12, 14].

%e most prominent method among simultaneous de-
rivative-free iterative technique is the Weierstrass–Dochive
[17] method (abbreviated as MWM1), which is defined as
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(11)

is Weierstrass’ correction. Method (10) has local quadratic
convergence. For finding all multiple roots of (1), we use the
following correction [17]:
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where σ is the multiplicity of the roots.

2. Construction of the Inverse
Simultaneous Method

Using Weierstrass correction w(r
(t)
i ) � f(r

(t)
i )/􏽑

n

j≠ i
j�1 (r

(t)
i −

r
(t)
j ) in (7), we get a new family of inverse modified
Weierstrass method (abbreviated as MWM2):
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Inverse simultaneous iterative method (13) can also be
written as
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%us, we construct a new derivative-free family of inverse
iterative simultaneous scheme (13), abbreviated as MWM2, for
estimating all distinct roots of (1). To estimate all multiple roots
of (1), we use correction (12) instead of (11) in (7).

2.1. Convergence Framework. In this section, we demonstrate
convergence theorem of inverse iterative scheme MWM2.

Theorem 1. Let ζ1, . . . , ζn be single zero of (1) and for
necessarily close primary distinct guess r

(0)
1 , . . . , r(0)

n of the
zero, respectively; then, MWM2 has local 2nd-order
convergence.

Proof. Let εi � r
(t)
i − ζ i and εi

′ � s
(t)
i − ζ i be the errors in ri

and si respectively. For the simplicity of the calculation, we
omit the iteration index. %en,
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%us, we obtain
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If all the errors are assumed of the same order, i.e.,
|ϵi| � |ϵk| � O(|ϵ|), then
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Hence, it is proved. □

3. Lower Bound of Convergence of MWM1
and MWM2

Computer algebra system, Mathematica, has been used to
find the lower bound of convergence of MWM1 and
MWM2.

Consider

f(r) � r − 91( 􏼁 r − 92( 􏼁 r − 93( 􏼁, (23)

where ϱ1, ϱ2, and ϱ3 are exact zeros of (23). %e first
component of ℵ1(r) (where r � [r1,r2,r3]) of numerical
iterative methods is for finding zeros of (23), r(t+1) � ℵ(r(t)),

simultaneously. We have to express the derivatives of ℵ(r),
i.e., the partial derivatives of ℵ(r) with respect to r are as
follows:
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z
3
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2
2

z
3
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z
3
1ℵ(r)

zr22zr3
,

(24)

and so on.
We obtain the lower bound of convergence order till the

first nonzero element of row is found. %e Mathematica
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notebook codes are used for the following MWM1 and
MWM2:

Weierstrass–Dochive method, MWM1:

ℵ1 r1, r2, r3( 􏼁≕ r1 −
f r1( 􏼁

r1 − r2( 􏼁∗ r1 − r3( 􏼁
, (25)

In[1]≕
D ℵ1 r1, r2, r3􏼂 􏼃, r1􏼂 􏼃

r1⟶ 91, r2⟶ 92, r3⟶ 93􏼈 􏼉
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Out[1]≕ 0,
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ℵ1 r1, r2, r3􏼂 􏼃, r2􏼂 􏼃

r1⟶ 91, r2⟶ 92, r3⟶ 93􏼈 􏼉
,
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ℵ1 r1, r2, r3􏼂 􏼃, r3􏼂 􏼃

r1⟶ 91, r2⟶ 92, r3⟶ 93􏼈 􏼉
,
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D ℵ1 r1, r2, r3􏼂 􏼃, r1, r2􏼂 􏼃

r1⟶ 91, r2⟶ 92, r3⟶ 93􏼈 􏼉
,

Out[4]≔ 0,

In[6]≕ Simplify
D ℵ1 r1, r2, r3􏼂 􏼃, r1, r2􏼂 􏼃􏼂 􏼃

r1⟶ 91, r2⟶ 92, r3⟶ 93􏼈 􏼉
,
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1

91 − 92( 􏼁
.

(26)

Modified inverse family of iterative schemes, MWM2:

ℵ1 r1, r2, r3( 􏼁≕
r1( 􏼁

2 1 +(1 − α)f r1( 􏼁( 􏼁

r1 1 +(1 − α)f r1( 􏼁( 􏼁 + r1 − r2( 􏼁 r1 − r3( 􏼁 1 + f r1( 􏼁( 􏼁
, (27)

In[1]≕D ℵ1 r1, r2, r3􏼂 􏼃, r2􏼂 􏼃/ r1⟶ϱ1, r2⟶ϱ2, r3⟶ϱ3􏼈 􏼉,

Out[1]≕ 0,

In[2]≕D ℵ1 r1, r2, r3􏼂 􏼃, r3􏼂 􏼃/ r1⟶ϱ1, r2⟶ϱ2, r3⟶ϱ3􏼈 􏼉,

Out[2]≕ 0,

In[3]≔ D ℵ1 r1, r2, r3􏼂 􏼃, r3􏼂 􏼃/. r1⟶ϱ1, r2⟶ϱ2, r3⟶ϱ3􏼈 􏼉,

Out[3] � 0,

In[4]≔ Simplify D ℵ1 r1, r2, r3􏼂 􏼃, r1, r1􏼂 􏼃􏼂 􏼃. r1⟶ϱ1, r2⟶ϱ2, r3⟶ϱ3􏼈 􏼉,

Out[4] �
4 + 8∗ α∗ ϱ1
ϱ33

.

(28)

4. Numerical Results

Some engineering problems are considered to demonstrate
the performance and effectiveness of the simultaneous
method, MWM2 and MWM1. For computer calculations,

we use CAS-Maple-18, and the following stopping criteria
for termination of computer are programmed:

e
(t)
i � r

(t+1)
i − r

(t)
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<∈ � 10− 30
, (29)

4 Mathematical Problems in Engineering



where e
(t)
i signifies the absolute error. In Tables 1–5, C-Time

represents computational time in second.

4.1. Engineering Applications. Some engineering applica-
tions are deliberated in this section in order to show the
feasibility of the present work.

Example 1. (see [2]). Considering a physical problem of
beam positioning results in the following nonlinear poly-
nomial equation:

f(r) � r
4

+ 4r
3

− 24r
2

+ 16r + 1,

� (r − 2)
2

r
2

+ 8r + 4􏼐 􏼑.
(30)

%e exact root of (30), ζ1,2, is 2 withmultiplicity 2 and the
remaining other two roots are simple, i.e., ζ3 � −4 − 2

�
3

√

and ζ3 � −4 + 2
�
3

√
. We take the following initial estimates:

r1
(0)

� 1.17,

r2
(0)

� 1.17,

r3
(0)

� −7.4641,

r4
(0)

� −0.5354.

(31)

Table 1 clearly demonstrates the superiority of MWM2
over MWM1 in terms of predicted absolute error and CPU
time for guesstimating all real roots of (30) on the same
number of iterations n � 3.

Example 2. (see [16]). In this engineering application, we
consider a reactor of stirred tank. Items H1 and H2 are fed to
the reactor at rates of ß and q-ß, respectively. Composite
reaction improves in the apparatus as below:

H1 + H2⟶ H3; H3 + H2⟶ H4; H4 + H2⟶ H5; H4

+ H2⟶ H6.

(32)

Douglas et al. [7] first examined this complex control system
and obtained the following nonlinear polynomial equation:

−
2.98∗ (r + 2.25)

(r + 1.45)∗ (r + 2.85)
2 ∗ (r + 4.35)

�
1
Tc

, (33)

where Tc is the gain of the proportional controller. By taking
Tc � 0, we have

f(r) � r
4

+ 11.50r
3

+ 47.49r
2

+ 83.06325r + 51.23266875 � 0.

(34)

%e exact distinct roots of (34) are calculated as
ζ1 � −1.45, ζ2 � −2.85, ζ3 � −2.85, and ζ4 � −4.45, and we
take the following initial guessed values:

r1
(0)

� −1.0, r2
(0)

� −1.1, r3
(0)

� −1.8, r3
(0)

� −3.9. (35)

Table 2 evidently illustrates the supremacy behavior of
MWM2 over MWM1 in terms of the estimated absolute

error and in CPU time on the same number of iterations
n� 7 for guesstimating all real roots of (34).

Example 3. (see [4]). Consider the function

8(4 − r)
2
r
2

(6 − 3r)
2
(2 − r)

− 0.186 � 0, (36)

f(r) � 8r
4

− 62.326r
3

+ 117.956r
2

+ 20.088r − 13.392.

(37)

%e problem describes the fractional alteration of ni-
trogen-hydrogen (NH) feed into ammonia at 250 atm
pressure and 500o C temperature. Since the (37) is of order
four, it has four roots:

Table 1: Residual error for finding all distinct roots.

Method C-Time e
(3)
1 e

(3)
2 e

(3)
3 e

(3)
4 σ(2)

MWM1 1.103 Div Div 1.3e− 27 0.0 2.101
MWM2 0.048 0.0 0.0 0.0 0.0 2.307
Residual error for finding all multiple roots
MWM2 0.312 0.0 0.0 0.0 0.0 2.735

Table 2: Residual error for finding all distinct roots.

Method C-Time e
(7)
1 e

(7)
2 e

(7)
3 e

(7)
4 σ(6)

MWM1 2.119 0.07 0.02 0.1 0.1 2.125
MWM2 0.115 3.5e− 324 2.0e− 319 0.005 0.005 2.968

Table 3: Residual error for finding all distinct roots.

Method C-
Time e

(8)
1 e

(8)
2 e

(8)
3 e

(8)
4 σ(7)

MWM1 1.739 1.1e− 9 Div 3.6e− 13 Div 1.341
MWM2 0.032 2.0e− 317 4.0e− 289 1.6e− 139 4.0e− 289 3.167

Table 4: Residual error for finding all distinct roots.

Method C-Time e
(5)
1 e

(5)
2 e

(5)
3 e

(5)
4 σ(4)

MWM1 0.125 4.7e− 26 1.2e− 28 9.1e− 28 0.2e− 26 2.314
MWM2 0.046 1.3e− 27 3.1e− 30 0.0 0.0 2.753
Residual error for finding all multiple roots at n� 1
MWM2 0.103 0.0 0.0 0.0 0.0

Table 5: Residual error for finding all distinct roots.

Method C-Time e
(8)
1 e

(8)
2 e

(8)
3 σ(7)

MWM1 0.067 0.0 6.4e− 27 6.4e− 27 2.101
MWM2 0.043 0.0 0.0 0.0 2.231
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ζ1 � 0.2777,

ζ2 � 3.9485 + 0.3161i,

ζ3 � −0.3840,

ζ4 � 3.9485 − 0.3161i.

(38)

%e initial approximated value for (27) is taken as

r1
(0)

� 0.4, r2
(0)

� 3.7 + 0.5i, r3
(0)

� −0.4, r4
(0)

� 3.7 − 0.5i. (39)

Table 3 evidently shows the supremacy behavior of
MWM2 over MWM1 in terms of estimated absolute error
and in CPU time on the same number of iterations n � 8 for
guesstimating all real and complex roots of (37). Minuscule
alteration of nitrogen-hydrogen (NH) feed into ammonia
lies between (0,1); therefore, our desire root is ζ1 up to 1900
decimal places:

ζ1 � 1.12956568412579833521973452e − 1912. (40)

Remaining other approximating roots are ζ2
� −1.283 404 526e− 1457-8.93 219 631 521e− 1457i, ζ3
� −8.21 745 235 223 462e− 1091 + 0i, and ζ4 �

−1.2 834 045 268 801e− 1457 + 8.99 321 963152e− 1457i.

Example 4. (see [8]).Consider

f(r) � (r − 0.3 − 0.6i)
100

(r − 0.1 − 0.7i)
200

(r − 0.7 − 0.5i)
300

(r − 0.3 − 0.4i)
400

,

(41)

with multiple exact roots:

ζ1 � 0.3 + 0.6i, ζ2 � 0.1 + 0.7i, ζ3 � 0.7 + 0.5i, ζ4 � 0.3 + 0.4i,

(42)

%e initial estimations have been taken as

r1
(0)

� 0.301 + 0.601i, r2
(0)

� 0.100 + 0.702i, r3
(0)

� 0.702 + 0.489i, r4
(0)

� 0.289 − 0.400i,

(43)

For distinct roots,

f∗(r) � (r − 0.3 − 0.6i)(r − 0.1 − 0.7i)(r − 0.7 − 0.5i)

(r − 0.3 − 0.4i),

(44)

Table 4 evidently shows the supremacy behavior of
MWM2 over MWM1 in terms of estimated absolute error
and in CPU time on the same number of iterations n � 5 for
guesstimating all real and complex roots of (41).

Example 5. (see [5]). %e sourness of a soaked solution of
magnesium-hydroxide (MgOH) in hydroelectric acid (HCl)
is given by

3.64 × 10− 11

H3O
+

􏼂 􏼃
� H3O

+
􏼂 􏼃 + 3.6 × 10− 4

, (45)

Table 6: Residual error for finding all distinct roots.

Method C-Time e
(4)
1 e

(4)
2 e

(4)
3 e

(4)
4 σ(3)

MWM1 0.203 4.1e− 25 3.6e− 30 7.1e− 21 5.6e− 23 2.131
MWM2 0.115 5.0e− 38 4.8e− 37 8.4e− 32 7.9e− 32 2.707

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Number of Examples
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Figure 1: Computational order of convergence [22] of simulta-
neous methods, MWM1 and MWM2.
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Figure 2: Simulation time in second of simultaneous methods,
MWM1 and MWM2, for approximating all roots of polynomial
equations used in Examples 1–6.
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Figure 3: Continued.
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for the cranium ion concentration [H3O
+]. If we set

r � 104[H3O
+], we obtain the following polynomial:

f(r) � r
3

+ 3.6r
2

− 36.4, (46)

with exact roots of (46), ζ1 � 2.4 and ζ2,3 � −3.0 ± 2.3i up to
one decimal places. %e initial estimates have been taken as

(0) r1 � 2.45, r2
(0)

� −3.0261 + 2.3834i, r3
(0)

� −3.0261 − 2.3834i.
(47)

Table 5 evidently illustrates the supremacy behavior of
MWM2 over MWM1 in terms of estimated absolute error
and in CPU time on the same number of iterations n � 8 for
guesstimating all real and complex roots of (46).

Example 6. (see [21]). In general, mechanical engineering, as
well as the majority of other scientists, uses thermodynamics
extensively in their research work. %e following polynomial
is used to relate the zero-pressure specific heat of dry air, Cρ,
to temperature:

Cρ � 1.9520 × 10− 14
r
4

− 9.5838 × 10− 11
r
3

+ 9.7215

× 10− 8
r
2

+ 1.671 × 10− 4
r + 0.99403.

(48)

%e temperature that corresponds to specific heat of
1.2(kJ/kgK) needs to be determined. Putting Cρ � 1.2 in
(48), we have

f(r) � 1.9520 × 10− 14
r
4

− 9.5838 × 10− 11
r
3

+ 9.7215 × 10− 8
r
2

+ 1.671 × 10− 4
r + 0.99403.

(49)

with exact roots ζ1 � 1126.009751, ζ2 � 2536.837119+

910.5010371i, and ζ3 � −1289.950382, 2536.837119−

910.5010371i. %e initial estimations of (49) have been taken
as

r1
(0)

� 1126, r2
(0)

� 2536 + 910i, r3
(0)

� −1289, r4
(0)

� 2536 − 910i.

(50)

Table 6 clearly illustrates the supremacy behavior of
MWM1 over MWM2 in estimated absolute error and in
CPU time on the same number of iterations n � 4 for
guesstimating all real and complex roots of (49).

5. Conclusion

A new derivative-free family of inverse numerical methods
of convergence order 2 for simultaneous estimations of all
distinct and multiple roots of (1) was introduced and dis-
cussed in this paper. Tables 1–5 and Figure 1 clearly show
that computational order of convergence of the proposed
and existing methods are agreed with the theoretical results.
Simulation time, from Figure 2, clearly indicates the su-
premacy of our newly proposed method MWM2 over
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Figure 3: (a-f ) Error graph of MWM1 and MWM2 for nonlinear polynomial equations (30), (34), (37), (41), (46) and (49), respectively.
(a) Residual error graph for Example 1. (b) Residual error graph for Example 2. (c) Residual error graph for Example 3. (d) Residual error
graph for Example 4. (e) Residual error graph for Example 5. (f ) Residual error graph for Example 6.
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existing Weierstrass method MWM1. %e results of nu-
merical test cases from Tables 1–5, CPU time, and residual
error graph from Figure 3 demonstrated the effectiveness
and rapid convergence of our proposed iterative method
MWM2 as compared to MWM1.
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