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We present two new strategies for sequential optimization method (SOM) to deal with the optimization design problems of electro-
magnetic devices. One is a new space reduction strategy; the other is model selection strategy. Meanwhile, radial basis function (RBF)
and compactly supported RBF models are investigated to extend the applied model types for SOM. Thereafter, Monte Carlo method is
employed to demonstrate the efficiency and superiority of the new space reduction strategy. Five commonly used approximate models
are considered for the discussion of model selection strategy. Furthermore, by two TEAM benchmark examples, we can see that SOM
with the proposed new strategies and models can significantly speed the optimization design process, and the efficiency of SOM depends
a little on the types of approximate models.

Index Terms—Approximate models, electromagnetic device, Monte Carlo method, optimization methods, radial basis function (RBF).

I. INTRODUCTION

A PPROXIMATE models have been widely employed as
the surrogates of physical models (e.g., finite element

model) in the optimization design of electromagnetic devices.
The main reason is that the computation cost of direct optimiza-
tion of a physical model is always very expensive. So many
kinds of approximate models have been investigated in this
field [1]. The optimization processes based on these models
are always proved fast. However, the efficiency of this method
highly depends on the experiment design of modeling process,
such as sampling methods and points. Therefore, the accuracy
of this method is still needed to be improved.

To improve the optimization efficiency, we have introduced
sequential optimization method (SOM) to solve such design
problems [2], [3]. Unlike the traditional methods, SOM can op-
timize the approximate models and algorithms in one optimiza-
tion process. It has a good performance in the practical applica-
tions. However, SOM was discussed only for response surface
model and Kriging model in the former study, so two kinds of
radial basis function (RBF) models are first presented in this
work. Meanwhile, given variety of models, it is still a problem
to select the most appropriate model for the device under study.
That is to say, we need to discuss the model selection strategy for
SOM. Furthermore, to improve the optimization efficiency of
SOM and to make full use of the sampled finite element points,
a new and important space reduction strategy is presented in this
work.

II. RBF APPROXIMATE MODELS

RBF model is a determinate parametric model. It can rapidly
replace the finite element model by using a linear combination

Manuscript received December 03, 2009; accepted February 13, 2010. Cur-
rent version published July 21, 2010. Corresponding author: G. Lei (e-mail:
gangleimc@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2010.2043717

of radial symmetric functions to interpolate sample data and re-
construct the response surface.

Given sample points and their responses,
for an input , the response value of RBF model is given by

(1)

where are model parameters, is RBF, and is the
Euclidean norm. Gauss and multiquadric (MQ) RBF are the two
most commonly used RBF, which are also considered in this
work. They have the forms as

(2)

(3)

where is a shape parameter. RBF model can effectively su-
persede the finite element simulation for objective functions
and conditions. However, it is generally globally supported and
“poorly conditioned,” especially when the number of sampling
points increases significantly [4].

Compactly supported RBF (CSRBF) model is a promising
improvement in this aspect. The improvement of CSRBF lies
in the basis function, which is compactly supported and posi-
tive-definite compared to that in RBF. When this model is used,
the evaluation of (1) will not run over the whole set of the sam-
pled points. It only includes the points in the compactly sup-
ported domain, and then the coefficient matrix of model equa-
tions will be sparse. A series of positive-definite CSRBF have
been developed [4]. The following two CSRBF are studied in
this work:

(4)

(5)

where is a norm with respect to the radius of the compactly
supported domain. is a truncated function. If ranges
from 0 to 1, its value is ; otherwise it is 0.
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III. NEW SEQUENTIAL OPTIMIZATION STRATEGY

SOM has been successfully employed to solve the electro-
magnetic design problems. It is composed of coarse optimiza-
tion process and fine optimization process. The main purpose
of the former is to reduce the design space [2]. Space reduction
strategy plays an important role in this process. It has a great
effect on the efficiency of SOM.

The design purpose of the former space reduction strategy is
to minimize the distance between the mean of next design range
and the current optimal result [2], [3]. It is accurate for the dis-
tance minimization, but it has not considered how to effectively
save the number of sampling points. To make the most of the
sample points that are sampled in the last set, we present a new
space reduction strategy in this work.

Suppose is boundary of the th variable in
the th optimization process, . is interval,

is step size, is the number of sample points, and
is sample set. and are the optimal result and corre-
sponding function value, respectively. The new space reduction
strategy is designed with the following two steps.

Reduction step:

(6)

(7)

Correction step:

(8)

(9)

In the above, function is rounded to the nearest
integer of . and , where and

are the reduction factors. From the former study,
and are suitable for most cases [3]. Now, we give a
comparison about the efficiency between the former and new
space reduction strategies.

For example, suppose initialization design space is [0, 1],
is 6, and uniform sampling method is used. Then, the first

sample data . Suppose
the optimal value is 0.35. From the former space reduction
strategy, the next design space is [0.1, 0.6], and the next
sample set . Obviously,
three sample points have been sampled in . In other words,
50% computation cost is saved. Now, if we use new space
reduction strategy, the next sample space is [0.2, 0.6], and

. Obviously, 60% computation
cost is saved.

As another example, suppose the optimal value is 0.3;
from the former strategy, the next sample space is [0.05,
0.55], and . Ob-
viously, no sample points have been sampled. If we use
the new strategy, the next sample space is [0.0, 0.6], and

. Obviously, four
sample points have been sampled in the . In other words,

TABLE I
MEAN SAVING RATES BY TWO STRATEGIES

Fig. 1. Geometry configuration of SMES.

57.14% computation cost is reduced. Thus, the new strategy is
more reasonable.

Table I shows mean saving rates of sample points about the
former and new space reduction strategies with Monte Carlo
method. For each strategy and every sample number
random numbers are generated as the current optimal points by
Monte Carlo method. Then, we can get the mean saving rate for
each case. From Table I, we can see that all saving rates by the
new strategy are more than 50%, which are obviously higher
than those by the former strategy.

To sum up, the starting point of the new space reduction
strategy is clearly different from the former one. The former fo-
cused on the distance minimization, while the sampled points
can be fully utilized in the next modeling process by the new
strategy. Therefore, the cost of finite element analysis can be
saved to a great extent.

IV. EXPERIMENTS

A. TEAM Workshop Problem 22

It is a benchmark problem for the optimization design of su-
perconducting magnetic energy storage (SMES) [1]–[3], [5],
[6]. Fig. 1 shows the design model. There are many ways to
define the objective function for this problem. In this work, it is
defined as , where is mean stray
fields on lines and and is 3 mT. Three constraints are:

,
and , for .

There are two cases about this problem, namely discrete case
(three-parameters problem) and continuous case (eight-param-
eters problem). In the former case, only the dimensions of the
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Fig. 2. Central configuration of die press model.

outer coil are the optimization parameters. More-
over, it should be noted that the second constraint is only defined
for the continuous case, and it is only used in the algorithm sam-
pling process. Thus, the final objective function for two cases is
the same, and it has the form as

(10)

B. TEAM Workshop Problem 25

It is also a benchmark problem for the optimization of die
press model [3], [7], [8]. Fig. 2 is the central geometry configu-
ration of the model. Four parameters should be optimized to en-
sure that the radial magnetic induction on line e–f equals 0.35 T.
The objective function is

(11)

where subscripts p and o mean the calculated and specified
values, respectively. This problem also has a three-parameters
problem. In this case, is fixed at 14 mm.

V. DISCUSSIONS AND RESULTS

In the following design examples, differential evolution al-
gorithm (DEA) is used as the optimization algorithm [9]. The
parameters of SOM and DEA used in this work are the same as
the former study [3]. It should be pointed out that the average
convergence time of one SOM optimization loop process is less
than the time of a finite element point sampling process for two
problems. Thus, the time for algorithm optimization process can
be neglected compared to that of sampling process. That is to
say, we only need to compare the computation costs of finite
element analysis for different methods in the following discus-
sion. The determination strategy of for the two problems
in this work is defined as follows. If , its value is 3; if

, its value is 5; for else cases, it is 4.

A. Discrete Case of SMES

Table II lists optimization results of this case. Four main con-
clusions can be drawn from the table.

1) For the direct optimization with DEA, 2310 finite element
sample points (FESP) are needed to get the optimal result,
and function value is 0.343.

Fig. 3. Convergence history of SOM with different models.

TABLE II
OPTIMIZATION RESULTS OF DISCRETE CASE OF SMES

2) For SOM with two types of RBF models, the result given
by Gauss RBF model is better than that by MQ RBF model.
Both of them are better than that of DEA.

3) For SOM with two types of CSRBF models, the result
given by the CSRBF1 is better than that of CSRBF2. How-
ever, both of them are worse than those of RBF models and
DEA.

4) The result given by Gauss RBF model is the best one in
the listed results. The FESP of CSRBF1 is the least one
in the listed results. Only 122 FESP are sampled for that
case, which is 57.01% compared to that of Gauss RBF
model. Furthermore, all the FESP needed by RBF and
CSRBF models are less than 1/10 compared to that given
by DEA. As Gauss RBF and CSRBF1 are the better ones
in each type of model, we only consider them in the latter
discussion.

Now, we use this problem to discuss the model selection
strategy for SOM. Five types of models are considered here:
response surface model (RSM), moving least square (MLS),
Gauss RBF, CSRBF1, and Kriging models. They are the five
most widely used approximate models for electromagnetic
design problems.

The convergence history of SOM with different models can
be seen in Fig. 3. Here, iterative number of SOM means the
optimization loop number of coarse and fine optimization pro-
cesses. From the figure, we can see that all the results have no
distinct differences, so the type of approximate model has little
effect on the efficiency of SOM for this problem.

As we have pointed out, CSRBF is an improvement of RBF in
the theoretic analysis. However, from Table II and Fig. 3, we can
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TABLE III
OPTIMIZATION RESULTS OF CONTINUOUS CASE OF SMES

see that the efficiencies of two CSRBF models are lower than
the other models for this problem, including two RBF models.
The reason is that the sample points in SOM are very small,
and the “poorly conditioned” of RBF will not appear. Actually,
the efficiency of RBF models is higher than CSRBF models for
SOM. This conclusion can be also affirmed by the following two
examples.

B. Three-Parameters Case of TEAM Workshop Problem 25

From the analysis, we can get the following conclusions.
1) For the direct optimization of DEA, 2420 FESP to get the

optimal result, which is [7.555, 14.721, 14.867], and the
square error is .

2) For SOM with Gauss RBF and CSRBF1 models, the results
are the same; it is [7.613, 14.625, 15.719]. Only 328 FESP
are needed, which is 13.55% compared to that of DEA. The
square error is , which is a little bigger than that
of DEA, but also satisfies the design specifications.

3) For the model selection strategy about this problem, from
the similar analysis, we can also get that model selection
has very little effect on the results of SOM.

C. Continuous Case of SMES

For this case, we first use dimension reduction optimization
method to convert it into a low-dimensional problem [3]. Then,
new SOM strategy is used to educe the results. Table III shows
the optimal solutions. Three main conclusions can be drawn
from the table.

1) For DEA to get the optimal solution, 4720 FESP are
needed, and objective function value is 0.8057.

2) For the SOM with Gauss RBF model, only 1424 FESP
(224 from SOM) are needed. It is about 30.17% com-
pared to that of DEA. The objective function value is a
little bigger than that of DEA. However, the error of is

0.95 MJ (or 0.53%), which is smaller than that given by
DEA (1.25 MJ).

3) For the optimization with CSRBF1 model, the needed
FESP are even less than that of Gauss RBF model. Its
objective function value is also a little bigger than that
of DEA, while the error of energy is 1 MJ, which is
smaller than that given by DEA. Thus, the finite-element
computational efforts can be significantly reduced by the
proposed methods. If we increase the sample points in
the dimension reduction optimization process, we can get
a better solution. Moreover, the dimensions of the inner
coil are obviously different. To get a solution with higher
stability, we may need some other constraints, such as
minimizing the volume.

VI. CONCLUSION

In summary, several types of RBF and CSRBF models are
introduced to extend applied model types of SOM. The new
space reduction strategy can increase the saving rate of sample
points. From the examples, we can see that SOM with them can
produce satisfactory solutions, and can comparably decrease the
total cost. Furthermore, the efficiency of SOM depends a little
on the model types.
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