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Automated annotation and visualisation of
high-resolution spatial proteomic mass
spectrometry imaging data using HIT-MAP
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T. R. Cox 3,7,9✉ & A. C. Grey 1,2,9✉

Spatial proteomics has the potential to significantly advance our understanding of biology,

physiology and medicine. Matrix-assisted laser desorption/ionisation mass spectrometry

imaging (MALDI-MSI) is a powerful tool in the spatial proteomics field, enabling direct

detection and registration of protein abundance and distribution across tissues. MALDI-MSI

preserves spatial distribution and histology allowing unbiased analysis of complex, hetero-

geneous tissues. However, MALDI-MSI faces the challenge of simultaneous peptide quan-

tification and identification. To overcome this, we develop and validate HIT-MAP (High-

resolution Informatics Toolbox in MALDI-MSI Proteomics), an open-source bioinformatics

workflow using peptide mass fingerprint analysis and a dual scoring system to computa-

tionally assign peptide and protein annotations to high mass resolution MSI datasets and

generate customisable spatial distribution maps. HIT-MAP will be a valuable resource for the

spatial proteomics community for analysing newly generated and retrospective datasets,

enabling robust peptide and protein annotation and visualisation in a wide array of normal

and disease contexts.
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B iological tissues are highly compartmentalised due to their
complex and diverse functions1. Organs and tissues are
typically partitioned into histologically distinct, yet func-

tionally co-dependent sub-regions that exhibit diverse cellular
and molecular compositions. Importantly, the unique set of
expressed proteins, specific to a particular cell type, location, or
place in time and/or space, critically underpins tissue and organ
function. Significant changes in these proteomes are typically
observed in almost all disease-states2,3. While proteomic methods
such as liquid-chromatography mass spectrometry (LC–MS)
allow for deep global characterisation of these proteomes, they
typically do so at the expense of spatial information. Given the
heterogeneous nature of the proteome across healthy and dis-
eased tissues4, this loss of spatial information can limit our
understanding of disease mechanisms. Matrix-assisted laser des-
orption/ionisation mass spectrometry imaging (MALDI–MSI) is
gaining recognition in the study of health and disease as a
powerful tool capable of surveying this spatial proteomic com-
plexity in order to unlock insights into physiological and disease
mechanism5–7.

The core strength of MALDI–MSI is the ability to directly ana-
lyse and map the distribution of numerous label-free analytes (such
as peptides) within a specimen down to the single-cell scale8–10.
MALDI–MSI offers greater exploratory capacity over other com-
mon approaches such as multiplexed immunostaining11,12, which
rely on labelling predetermined protein targets, and the availability
of validated antibodies for those proteins. The unbiased nature of
MALDI–MSI allows for the interrogation of whole proteomes,
within the limits of detection/sensitivity, providing a systems-level
insight into tissue and organ expression patterns13. Furthermore,
the integration and co-registration of MALDI–MSI datasets with
other established and/or emerging technology platforms (such as
routine histology and spatial transcriptomics respectively) will sig-
nificantly increase our understanding of health and disease through
combining complementary, orthogonal data types14,15.

However, an issue faced in retaining this crucial spatial infor-
mation, is that MALDI–MSI encounters a technical limitation
associated with determining peptide identity. At present, identi-
fication and quantification of peptides are mutually exclusive,
primarily due to the typically low amounts of each peptide within
a given imaging coordinate. Unlike tandem LC–MS (LC–MS/
MS), which fosters high-throughput simultaneous sequencing
and identification of enzymatically cleaved and fragmented pep-
tide solutions, current MALDI hardware does not possess
such capabilities. Even with the arrival of laser capture
microdissection16 and single-cell LC–MS approaches17, it is still
not possible to map individual peptide and protein profiles back
to whole tissues and organs at the single-cell level given the need
to dissociate tissues. Furthermore, single-cell LC–MS is not able
to map extracellular protein distributions, such as the
matrisome18, reinforcing the need for unbiased global in situ
proteomic platforms such as MALDI–MSI.

Currently MALDI–MSI operators have no high-throughput
approach to quantify and identify peptides, and typically must
choose between the two. Post-acquisition analysis approaches
typically include manually exploring spectra, utilising feature m/z
values alone without identification, or cross-referencing spectral
datasets to orthogonal databases generated via LC–MS/MS per-
formed on matched tissues, all of which are time-consuming,
low-throughput and offer limited functional information.

The rapid proliferation of bioinformatic pipelines available in
the omics fields has greatly enhanced the analysis of big data.
Analytical software development in the MALDI–MSI space has
produced numerous visualisation and spatial analysis programs
such as ImageQuest (ThermoFisher Scientific), High-Definition
Imaging (Waters) and SCiLS Lab (Bruker). However, tools

offering annotation and identification of analytes remain sparse.
One recent contribution to the spatial mass spectrometry field is
Metaspace [https://metaspace2020.eu]19, which was designed to
perform metabolite annotation of high-resolution metabolomic
MALDI–MSI datasets by cross-referencing spectra to large
curated metabolomics databases such as the Human Metabo-
lomics Database [https://hmdb.ca/], as well as LipostarMSI20, a
platform for lipid, drug and metabolite annotation. To our
knowledge, no such similar tool exists for peptide and protein
annotation of MALDI–MSI datasets.

To address this, we developed HIT-MAP (High-resolution
Informatics Toolbox in MALDI mass-spectrometry imaging
Proteomics). HIT-MAP is a platform-independent, freely avail-
able, open-source R based pipeline for the automated annotation
and visualisation of high-resolution proteomic MALDI–MSI
datasets. HIT-MAP integrates common MALDI–MSI file formats
into an executable proteomic workflow for peptide and protein
annotation via a false discover rate (FDR)-controlled peptide
mass fingerprinting (PMF) and protein coverage analysis pipe-
line. This paper presents both the development and use of HIT-
MAP, and its application to the identification, mapping and
validation of peptides and proteins, using a normal bovine lens
and murine brain tissue as proof-of-principle examples, that
would be applicable to a wide scope of applications studying
normal and diseased tissues.

Results
HIT-MAP minimum system requirements. HIT-MAP is an R
package available for download through [https://github.com/
MASHUOA/HiTMaP/].

To run the HIT-MAP workflow, a minimum of a four-core
CPU equipped with 16GB memory is recommended. A full
installation of R (v3.6.2 or later) is also required. The package is
run from the command line and can be executed using macOS,
Linux and Microsoft Windows operating systems, or is available
as a self-contained Docker file containing the necessary run
environment [https://hub.docker.com/r/mashuoa/hitmap]. By
using the BiocParallel21 package, parallel processing can be also
be leveraged in either fork mode or socket mode to significantly
enhance processing speed. A detailed tutorial of HIT-MAP can be
found on Github [https://github.com/MASHUOA/HiTMaP/blob/
master/README.md].

HIT-MAP workflow. The HIT-MAP workflow is illustrated in
(Fig. 1). To begin, HIT-MAP takes as input the commonly uti-
lised MALDI–MSI .imzML file format (Fig. 1a). Both the *.ibd
file, which contains the 2-dimensional spectral data, and the *.
imzML file, which contains the associated metadata22. These files
can be exported from both MALDI–MSI data acquisition soft-
ware (e.g. Bruker’s flexImaging) and analysis software (e.g. Bru-
ker’s SCiLS). It is recommended to export root mean square
normalised spectra, in centroid mode, in order to have reliable
and robust spatial resolution and signal intensity, although other
data normalisation options such as total ion count (TIC) are also
compatible. HIT-MAP utilises the Bioconductor package
Cardinal23 for handling and pre-processing of .imzML data.
Importantly, HIT-MAP can be applied to both newly generated,
and retrospective complex tissue datasets to facilitate the robust
peptide and protein annotation and visualisation in a wide array
of normal and disease contexts.

Signal pre-processing and spatial segmentation. Data pre-
processing options include signal smoothing, signal normalisation,
baseline reduction, peak picking, and peak alignment. These func-
tions were adopted from the Cardinal package. The user can specify
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the method to be used in each pre-processing step or skip step(s) by
setting the corresponding argument to disable. The user can also set
preprocess$force_preprocess to TRUE in order to perform pre-
processing regardless of the status of MSI data, and set preprocess
$use_preprocessRDS to TRUE to skip the pre-processing and use
previously pre-processed data (if available).

To improve m/z feature detection and subsequent protein
annotation, HIT-MAP employs a fully customisable spatial
segmentation approach prior to spectrum feature analysis. Given
the 2-dimensional nature of MALDI–MSI spectra, clustering
segments of MSI imaging data, based on distinct regions of
similar spectra, yields averaged spectra for each region that
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contain a greater number of distinct m/z features. In addition,
m/z features that may be low in abundance due to their limited
spatial distribution will also be enriched with this segmentation
approach.

The inherent variability of MALDI ionisation24 leads to
difficulties in accurately annotating each individual spectrum.
Furthermore, while single spectra will generally have higher
spectral resolution than mean spectra from clustered regions,
single-pixel spectra always contain variability, either induced by
ion intensity or natural fluctuation in isotope abundances that
will change the profile of an isotopic cluster. Thus, combining the
spatially and statistically related pixels into a mean spectrum of
these pixels significantly improves m/z feature detection and
subsequent protein annotation. By striking a balance between
spectral resolution, signal-to-noise ratio and low abundance
feature coverage, HIT-MAP deploys a segmentation approach
prior to the spectrum feature analysis to enhance annotation
sensitivity and accuracy.

Segmentation in HIT-MAP utilises the Cardinal23 package to
perform either K-means spatial clustering or spatial shrunken
centroids clustering in order to segment MALDI–MSI datasets
based on region-specific spectral characteristics (Fig. 1b). Cluster
number can be manually defined using the spectral_segment-
s_per_file argument in the imaging_identification function using
prior knowledge of tissue histology. Of note is that HIT-MAP
outputs its spatial segmentation maps that can in themselves be
qualitatively cross-referenced with known histology (demon-
strated later). Alternatively, this function can be used to reveal the
underlying molecular heterogeneity of individual peptide spectra
across tissue sections in an exploratory setting and has the ability
to identify distinct cellular and molecular compartments based
solely on peptide spectra similarity. This segmentation alone is
likely to provide a powerful approach for the analysis of diseased
tissue states when registered to simple conventional histology
images, where there is limited or no prior knowledge of tissue
organisation.

HIT-MAP also includes the capability for manual segmenta-
tion by the user, through predefining regions of interest (ROI) in
target MALDI–MSI datasets and exporting as individual files. The
SCiLS software (Bruker) offers the simplest ROI selection and
export function whereby *.imzML files for each individual ROI
can be exported and analysed separately with data-driven
segmentation disabled, by setting the segmentation argument to
none. Data converters for various other vendor formats and
information on available tools can be found on the MS-Imaging
website [https://ms-imaging.org/wp/imzml/software-tools/].

After segmentation of a MALDI–MSI dataset, the HIT-
MAP workflow is applied to each segment separately. Mean
spectra are obtained from the pixels belonging to each
segment. The mass features can be further filtered by using
the Threshold argument to ensure their signal-to-noise ratios
are eligible for isotopic envelope-based peptide mass finger-
print matching.

Reference database generation. For each analysis, HIT-MAP
generates a customised local database of digested proteolytic
peptides in silico (reference database) (Fig. 1b). To generate the
reference database for the PMF analysis, HIT-MAP requires a
protein sequence file for the complete proteome of the species
under investigation in FASTA format. These are readily available
from NCBI [https://www.ncbi.nlm.nih.gov/guide/howto/dwn-
genome/]. The FASTA file is then handled by the Bioconductor
package Biostrings25. Alternatively, users may specify a custom-
curated library for reference database generation.

HIT-MAP utilises the Bioconductor package Cleaver26 to
perform an in silico digest of the proteome. Cleaver automatically
contains a list of commonly utilised proteolytic enzymes in
proteomics applications, and hence common enzyme names can
be used as input using the Digestion_site argument. HIT-MAP
also offers the option for users to define non-canonical enzymes,
provided that both the cleavage site and specificity is known.
These may be defined using a regular expression detailing
cleavage specificity, along with any exceptions to the cleavage
rule. The Bioconductor package protViz27 is then used to
translate the proteolytic peptide amino acid formulae into
precursor masses for cross-referencing to the mass spectra.

HIT-MAP’s customisable digestion framework allows users to
tailor reference databases to their need. For example, single or
multiple proteases can be specified from a pre-compiled list and
in silico digestion performed in parallel or sequential (default)
steps. HIT-MAP also offers the option for users to define non-
canonical enzymes providing cleavage site and specificity is
known. For example, collagenase digestion is a common
proteolytic digestion approach used in the analysis of extracellular
matrix28. The ability to select matrix specific enzyme(s) is
designed to complement the emergence of tailored preparation
approaches that are customised to specific research needs as well
as dual digestion approaches already being used. Finally, HIT-
MAP incorporates the ability to specify both fixed and variable
modifications (discussed later), allowing for the inclusion of
specific post-translational modifications of interest to the
researcher.

HIT-MAP also generates a matched decoy database which
facilitates FDR-controlled annotation of analytes during
scoring. There are three decoy options available to configure
using the Decoy_mode argument. Each of these three options
was benchmarked and compared, to then define the most
suitable approach for peptide assignment as described below.
All three are available to the user depending on their
specific needs.

The element option will take a given proteolytic peptide from
the list of potential targets within the reference database and
generate a decoy species via randomly rearranging the elemental
composition with equivalent mass. This provides a randomised
decoy isotopic pattern for a given target peptide. The disadvan-
tages to this approach are that it can be time-consuming and does
not guarantee suitable decoy species in the low mass range.

Fig. 1 Analysis workflow of HIT-MAP. a HIT-MAP utilises as input.imzML and .ibd MALDI imaging datafiles as well as a reference proteome in FASTA
format. Parameters including proteolytic enzyme, error tolerance and MALDI image segmentation number are configured in order to represent
experimental conditions. b [left] Spatial clustering is performed on the MSI dataset producing a mean spectrum to increase the quality of the 2-D mass
spectra. [right] The reference proteome is digested in silico to yield a target database to cross-reference to the MSI data, with a corresponding decoy
database to statistically control peptide annotation. A series of c peptide and d protein scoring systems utilising a false-discovery rate target-decoy
candidate list statistically controls analyte annotation. c Mass features are cross-referenced to the target and decoy databases using a peptide mass
fingerprinting approach for peptide annotation, where competing peptides are competitively score-ranked. d Protein annotation utilises a peptide grouping
strategy that eliminates protein subsets. e A customisable visualisation function spatially clusters peptide ion images of a parent protein, representing the
summary protein spatial distribution across tissues.
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The adducts option takes a target sequence, where the target
candidates contain [H]+, [Na]+ or [K]+ in positive ion mode,
and randomly assigns an equal number of highly improbable
adducts, such as [He], [Ne], [Ar], [Kr], [Xe] and [Rn]. While this
method is effective for annotation of small molecules19, a
potential issue with this method is the possibility of a candidate
peptide with a decoy adduct still matching with high isotopic
pattern fidelity to features within the observed spectrum,
especially while utilising a global database.

Finally, the isotope option takes the atoms H, O, S, C, N and P
creates a reversed isotopic composition for each atom (Fig. 1b, c).
Therefore, this method provides an equal number of decoy
isotopic patterns to compare to the target isotopic patterns, and
also shows robustness against lower-quality spectra. Hence, we
recommend using isotope as the default approach.

Once the reference database has been generated, it is saved and
can be used as input for additional future analyses by setting the
variable use_previous_candidates as TRUE which can reduce
processing time substantially.

Peptide matching and scoring. The analysis pipeline for anno-
tation consists of two sequential peptides (Fig. 1c) and protein-
level scoring processes (Fig. 1d). Each process is customisable
allowing the user control throughout the analysis pipeline, by
using the FDR function, which establishes the statistical threshold
for peptide matching and protein annotation.

HIT-MAP utilises the target-decoy database described
above for an FDR-controlled strategy in order to statistically
control peptide and subsequent protein annotation. In brief,
the peptide reference database is generated and serves as the
target reference database of all potentially observable peptide
species. Within this reference database is a decoy database that
establishes a related list of known false positives with a low
likelihood of matching to analytes within the observed mass
spectra. The combined target-decoy database is cross-
referenced to the experimental mass spectra to yield a
preliminary list of m/z features that are then mapped to
either target or decoy peptides using an exact mass filtering
function. The precision of the exact mass filtering can be
configured using the tolerance argument which defines the
error in parts per million (ppm) for matching the mono-
isotopic peak of a species with the observed peak in the
experimental spectrum. For high-resolution FT-ICR experi-
ments or similar, it is recommended to input the error
determined by the initial instrument calibration of a given
experiment if possible.

The preliminary list of matched m/z features is then scrutinised
using the threshold function, which sets a threshold for relative
peak intensity in order to exclude noise. Next, a peptide mass
fingerprinting analysis in performed, where the rcdk29 and
rcdklibs30 packages simulate a theoretical isotopic pattern for
every target and decoy species that matched to an m/z feature in
the spectrum (Fig. 1c).

The SQRTP method contains two terms as indicated in the
Intensity_Score formula below. The first term counts the matched
peak versus the theoretical peak. Note that peaks below 2.5% of
the most intense theoretical isotopic peak are excluded since low
abundance theoretical peaks overlap with noise in the observed
spectrum and disrupt the scoring. The second term is the square
root mean formula characterising how well intensity profiles
match between the observed and theoretical isotopic peaks. This
results in a scoring algorithm that considers the similarity
between the observed and theoretical isotopic patterns factoring
in matching peak intensity and mass error, to generate a peptide

score using the formula:

Intensity Score ¼ log PeakCountObserved
PeakCountTheoretical

� �

� logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
x¼1ðTheoreticalintensityx�Observedintensityx Þ

∑n
x¼1ðTheoretical intensityxÞ2ðObserved intensityxÞ2

r

ð1Þ

Mass error Score ¼ p norm dist
mean ppm error
ppm tolerance

� �
� 0:5

� �����
����

ð2Þ

Pepscore ¼ Intensity Score�Mass error Score ð3Þ
It is important to note that it is entirely possible for a m/z

feature to map to more than one peptide in the reference
database. Therefore, for each observed m/z feature, associated
peptides are competitively score-ranked based on their assigned
pepscore, allowing for the thresholded elimination of lower-
scoring annotations from being included in the subsequent
protein annotation steps (Fig. 1d). For users who may wish to
evaluate peptide level annotations, this information can be found
as an intermediate text file (peptide_SQRTP_ranked.txt saved to
each spectrum folder) for a particular input datafile.

Protein annotation and scoring. Following the annotation of
m/z features with peptide sequences from the reference database
and peptide scoring, peptides are then assigned to proteins. It is
not possible to conclusively determine peptide sequence based on
an MS1 isotopic pattern comparison alone. Instead, HIT-MAP
uses protein grouping information to determine the most likely
identity of m/z features, by integrating the commonly utilised
strategies for protein grouping31,32. Briefly, where a peptide set
for Protein A is a subset of the peptide set of Protein B, this will
result in Protein B annotation, and Protein A exclusion. However,
proteins that share a single peptide and that does not form a
subset are removed prior to protein scoring due to the increased
statistical power necessary for MALDI–MSI datasets, which may
contain a smaller number of peptides and proteins when com-
pared to larger LC–MS/MS datasets (Fig. 1d).

Proteins then enter the protein scoring system which takes a
target protein (comprising the set of identified target peptides)
and its matched decoy protein (which comprises the set of decoy
peptides) and generates a target-decoy system to statistically
control protein annotation using the predetermined FDR. The
protein score is calculated using the formula:

Proscore ¼ ∑n
x¼1ðPepscorex*logðIntensityxÞÞ

meanðlogðIntensityÞÞ
*Protein coverage*Normalized intensity factor

ð4Þ

Protein_coverage is calculated as the percentage of matched
amino acids within a whole protein sequence. Normalised
intensity factor is calculated by taking the mean intensity among
the peptides of a protein, and normalising by the mean peak
intensity value of all peaks in the spectrum. It is used to overcome
the low-intensity decoy spectrum matches and enhance the
medium to high-intensity peak annotations. The differential
scoring of these two sub-databases allows the user to accurately
identify annotated peptide sequences and therefore protein
identities from their MALDI–MSI datasets.

Peptide ion image and protein cluster image visualisation.
Following protein annotation, the user has the option to output
customisable image maps of both peptide and protein annotation
using the plot_cluster_image_grid function (Fig. 1e). The set of
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peptides for a given parent protein are plotted as well as the m/z
feature from which they originated, with the annotated molecular
formula, peptide sequence and peptide score (Fig. 2a). The pep-
tide sequences are then cross-referenced to the parent protein
sequence and integrated to visualise total protein coverage on the
accompanying plot. HIT-MAP then uses a correlation-based
algorithm to plot the summary protein cluster image, which
normalises the set of peptide ion images (Fig. 2a) from a given
parent protein and integrates them using additive mixing to show
a protein spatial distribution revealed by coincident components
colours (Fig. 2b). This enhances the intensity of regions with a
large spatial overlap of peptide signal. Importantly, HIT-MAP has
been designed to plot all matched peptides for a given protein
while adding the peptide score in the results table for researchers
to assess the relative certainty of each annotated peptide. The
application of this function is demonstrated later.

The cluster image plotting has multiple layouts that are
appropriate for different situations. For a project with several
datafiles, line mode is recommended. In this mode, protein and
peptide images of each individual datafile will be rendered in a
line and then stacked into a grid to provide a summary view of
the project. The grid setting is used to organise images from one
datafile into a matrix with user-defined number of columns. The
default setting of cluster_color_scale variable is blackwhite to
enable the black and white colour scheme in additive mixing
mode, although the user is able to choose other colour schemes as
detailed in the README.md file. In this mode, components are
assigned a grey level only, and the resulting cluster image
therefore only represents the sum of all the components as the
cluster spatial intensity rather than the spatial coincidence
information. The user can also specify the column name that
contains the cluster identifier (default setting is Protein) and
component identifier (default setting is Peptide). Finally, the
output displays the coverage and visualisation of spatial mapping
of each peptide within the annotated protein (Fig. 2a), which can
then be related to the prior biological knowledge of protein
domain structure.

In order to further curate peptide and protein cluster image
output, HIT-MAP implements the ability to perform a post-hoc,
interquartile range outlier analysis within m/z bins to filter low
scoring peptides, based on their assigned peptide score, from the
spatial distribution maps (Supplementary Fig. 1a). This function
may be useful if the user wishes to exclude low(er) scoring
peptides that could exhibit discordant spatial distributions. By
default, HIT-MAP does not implement a stringent spatial

concordance filter. This inclusive approach allows the HIT-
MAP output to be directly assessed by the user to ultimately
interpret the peptide distributions with respect to the tissue-
specific biology, whereby apparent spatially discordant peptide
distributions may be due to known or relevant biology.

Output datafiles. For each analysed dataset, two sub-folders are
created; one containing all of the identification data for the
analysed dataset(s), and the other being a summary folder con-
taining peptide and protein lists as well as the corresponding ion
images. Further details on these sub-folders are described in the
README.md file. Once an initial analysis is completed, partial
re-analysis can be performed by returning to defined points in the
HIT-MAP analysis pipeline. Briefly, the user can set the
PMF_analysis to FALSE to bypass the peptide mass fingerprint
PMF analysis stage. The user can also disable the Protein_fea-
ture_summary for the selected datafiles. For example, to render
the protein cluster images on already generated datafiles,
PMF_analysis is set to FALSE and Protein_feature_summary is
set to TRUE. More information on this can also be found in the
README.md file.

Benchmarking of peptide scoring and protein annotation. We
initially evaluated HIT-MAP’s peptide identification ability using
the commercially available Bruker Peptide Calibration Standard
II mixture (Cat #8222570). The peptide calibration standard II
mixture contains eight standard peptides ranging from ~700-
3500 Da (Table 1). Single spots of 1 µL peptide calibration mix
were spotted onto indium tin oxide (ITO) slides and coated with
α-Cyano-4-hydroxycinnamic acid (CHCA) in ACN+ 0.1% TFA.
Slides were then analysed by MALDI–MSI using a Bruker SolariX
XR 7T FT-ICR. MALDI–MSI datasets were then exported as *.
imzML and *.ibd files from the flexImaging software. The *.
imzML and *.ibd files were imported and run through HIT-MAP.

A reference database was generated by tryptic digestion of the
Bos taurus proteome (Uniprot FASTA format, downloaded 12th
August 2019), which was manually curated to contain the
additional 8 peptide calibrants as distinct protein entries. A m/z
range of 700 to 4000 was defined, yielding a reference database of
7,787,557 candidates. A m/z range above 700 ensures that the
mapped peptide sequences are generally greater than 7 amino
acids in length. An upper threshold of m/z 4000 was selected
since no additional high abundance features are generally found
in the range above this value.
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Fig. 2 Visualisation of HIT-MAP cluster imaging output in the bovine lens. a Example outputs from HIT-MAP visualisation of bovine lens protein arpin,
showing the series of peptide data and peptide ion image for a given parent protein, as well as protein coverage (scale bar= 3mm). b Visualisation of the
integrated clustering of each individual peptide ion image to demonstrate the overall summary spatial distribution of an annotated protein. Intensity scales
represent relative intensity from 0 to 100%. Scale bar= 3mm.
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Of note, Bombesin contains an X amino acid in the published
sequence dataset33 for the calibrant denoting a pyroglutamic acid
within the sequence. HIT-MAP includes the option for
customised amino acid definition using the Substitute_AA
argument. This was configured to use the amino acid definition
function to set X to the molecular formula of pyroglutamic acid.

HIT-MAP analysis of MALDI–MSI datasets obtained from the
peptide calibrant spots confirmed statistically significant target-
decoy separation (Fig. 3a) confirming our scoring system has the
capacity to separate true peptide spectra matched to the in silico
generated reference database from the decoy database. Using an

error tolerance of 5 ppm and minimum signal intensity of 0.1%
for observed spectra, with a standard FDR cut-off of 0.05, 6/8
peptides received a protein score above the FDR cut-off (Protein
Score >1) and were accurately annotated (Supplementary Fig. 1b).

Somatostatin-28 appeared to fall outside the FDR cut-off
indicating that the theoretical spectra differed significantly from
that observed (Supplementary Fig. 1b). Further interrogation
revealed the presence of two cysteine amino acids within
Somatostatin-28, and we hypothesise that a possible disulphide
bond was causing a subtle mass shift leading to it scoring below the
FDR cut-off. Initially, bombesin was not annotated (Supplementary

Table 1 Characteristics and identification parameters of Bruker’s Peptide Calibrant II.

Name Sequence Protein score Modification Missed cleavages [M+H]+ monoisotopic

Bradykinin 1–7 RPPGFSP 2.55 1 757.3992
Angiotensin_II DRVYIHPF 4.51 1 1046.542
Angiotensin_I DRVYIHPFHL 4.74 1 1296.685
Substance_P RPKPQQFFGLM 1.28 2 1347.735
Bombesina XQRLGNQWAVGHLM 1.61 Amide 1 1619.822
ACTH_clip_1–17 SYSMEHFRWGKPVGKKR 2.65 5 2093.086
ACTH_clip_18–39 RPVKVYPNGAEDESAEAFPLEF 2.59 2 2465.198
Somatostatin_28a SANSNPAMAPRERKAGC′KNFFWKTFTSC′ −0.25 Disulfide bond 5 3147.471

aX indicates Pyroglutamic acid, C′C′ indicates disulphide bond.

Fig. 3 Benchmarking of HIT-MAP against the Bruker Peptide Calibrant II. The frequency distribution of a peptide and b protein target-decoy candidate
list scores demonstrates the robust separation of our false-discovery rate (FDR) system accurately identifying 7/8 peptides. c Example of the HIT-MAP
predicted and actual peptide mass fingerprint analysis of angiotensin I from the Bruker Peptide Calibrant. d Tandem MS/MS validation of angiotensin I
identification in Bruker Peptide Calibrant spot. ppm = parts per million.
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Fig. 1b), despite the specific inclusion of pyroglutamic acid as a
custom amino acid. However, we hypothesise that this was due to
the C-terminal amide modification of bombesin which has been
well characterised and leads to a −0.98402 Dalton mass
difference34.

To deal with modifications such as this, HIT-MAP offers a
fixed and variable modification function allowing users to search
for protein modifications expected within their experimental or
biological set-up. Fixed modifications replace a candidate amino
acid in the reference database, while variable modifications create
a complementary database. Of note, users should expect longer
processing times with an increased number of variable
modifications.

To confirm our hypothesis on bombesin, HIT-MAP was re-run
using the fixed modifications, disulphide bond and amide, and up
to 1 missed cleavage. In this setting, bombesin scored above the
protein scoring threshold yielding a total of 7/8 calibration
peptides annotated (Fig. 3b). However, Somatostatin-28 still did
not meet the FDR cut-off, likely due to the fact that disulphide
bond formation only yields a mass shift of 2 Da. In this case, we
presume only a proportion of the somatostatin-28 peptides have
formed disulphide bonds, leading to an overlap in the isotopic
patterns of the two peptide forms and an inability of the mass
analyser to resolve the [M+H]+ (somatostain-28 with no
disulphide bond) and [M+H−2H]+ (somatostatin-28 with a
disulphide bond) peaks during spectrum acquisition. This small
mass shift does not allow sufficient separation of the isotopic peak
patterns within the observed mass spectrum during PMF analysis
and consequently leads to a low score. Accurately resolving small
post-translational mass shifts such as this computationally may
not be possible, however biological approaches, such as
disulphide bond reduction during experimental preparation that
is typically used in LC–MS would overcome this limitation.

In addition to peptide modification, HIT-MAP can account for
the presence of different adducts, either naturally occurring, or
introduced through preparation workflows. In the peptide
calibrant example, only [H]+ adducts were considered, since
[Na]+ adducts were in low abundance. In tissue, the proportion
of peptide signal from [Na]+ adducts may be higher relative to
the [H]+ adducts, depending on the tissue preparation procedure
and natural salt concentrations in different tissues and tissue
regions. However, since [H]+ adducts are still likely to be
considerably more abundant than [Na]+adducts, in this instance,
it would be recommended to first run HIT-MAP in [H]+ adduct
configuration. Based on these results, the user could then run a
second HIT-MAP annotation using a reduced database with
multiple adducts to increase the coverage of targeted ion species
and refine m/z feature assignments.

Peptide mass fingerprint analysis comparing the theoretical
isotopic pattern of target peptides with the isotopic pattern of
candidate peptide calibrants demonstrated equivalent peak
intensities with minor mass defect (Fig. 3c, Supplementary
Fig. 1c), thus facilitating an overall high peptide and subsequent
protein score. The presence and identity of peptide calibrants
were validated by performing MALDI-FT-ICR-MS/MS on m/z
features following their annotation by HIT-MAP (Fig. 3d and
Supplementary Fig. 1c, d), confirming our in silico HIT-MAP
annotations.

HIT-MAP application. To validate HIT-MAP as a robust tool for
high-resolution MALDI–MSI imaging peptide annotation, we
applied it to a previously published MALDI–MSI fresh frozen,
normal bovine lens dataset35.

Figure 4a, b demonstrates the optimisation of HIT-MAP
segmentation steps on the bovine lens dataset. Wang and

colleagues35 had previously performed MALDI–MSI on a
quadrant of a sagittal section of the bovine lens (Fig. 4a) using
a Bruker SolariX 15T FT-ICR mass spectrometer. The sample was
washed to remove soluble proteins and enrich for structural lens
elements prior to imaging. The bovine lens anatomically contains
annular segments of developing and mature fibre cells and an
outer epithelial layer. The bovine lens dataset was computation-
ally segmented into up to 16 clusters. In line with the underlying
biology of lens anatomy, HIT-MAP automatically segmented the
MALDI–MSI data in increasing numbers of concentric segments
with increasing distance from the lens core (Fig. 4b). We
compared a list of performance measures between the differen-
tially segmented lens, to determine the optimal number of
segments for HIT-MAP performance. A key consideration to
note is that increasing segment number also increases down-
stream computation time.

Figure 4c shows the mean mass variance in exact mass filtering
during PMF analysis, and the subsequent mean peptide score as a
function of image segmentation number. We found that while the
mass variance typically declines with increased segmentation,
the mean peptide score plateaus at around 10 segments for this
tissue and there was no significant increase in the number of
unique identified proteins above 4 segments (Fig. 4d, e). Of note,
segmenting based on 4 anatomical segments provided favourable
HIT-MAP performance. The consensus anatomical segmentation
for human lens is four, and three for the bovine lens, and our
findings confirm that 3–4 segments in computational pixel
clustering provided the best performance based on number of
robust protein IDs returned with the most efficient use of
computational resources. Thus in line with the known anatomy
and biology of the lens, we opted for 4 segments in this analysis.
HIT-MAP allows users to either manually define segment
number, or users can perform an a priori PCA segmentation
test to determine the optimal segment number based on protein
identifications. Of note is that another drawback of increasing
segment number is that smaller segments likely do not contain
enough pixels to generate reliable mean spectra for annotation
which could increase false positives.

Next, we deployed the complete HIT-MAP pipeline to the
bovine lens dataset (Fig. 5 and Supplementary Fig. 2). HIT-MAP
parameters were set using an FDR cut-off of 1%, a tolerance of 5
ppm, threshold of 0.5% and n= 4 segments (Fig. 5a). HIT-MAP
successfully annotated a total of 1087 peptides, of which 940
peptides were non-redundant, resulting in a total of 268 protein
annotations passing the scoring criteria. In particular, HIT-MAP
annotated 5 of the most common lens-specific proteins with high
significance scores including: filensin (Fig. 5b, d), phakinin, α-
crystalin (A- and B-chains), and β-crystallin B2 (Supplementary
Fig. 2a–e). HIT-MAP also annotated a number of cytoskeletal
proteins which based on the current understanding of lens
structure and function were expected to be present, including
vimentin (Fig. 5c, e), actin-related protein 8, cortactin, arpin
(Fig. 2), tropomyosin-4 and α1, myosin light chain-3, dynein
regulatory complex subunit 4, and kinesin family member 14.
Meanwhile, visinin like protein-1 and ankyrin repeat domain 45
were not expected (based on prior knowledge), suggesting that
annotation via HIT-MAP can reveal novel tissue biology
(Supplementary Fig. 2f–p).

To validate the HIT-MAP annotations, we cross-referenced
our MALDI–MSI data analysis with the previously published
spatial LC–MS/MS dataset generated via micro-enzymatic digest
and liquid extraction surface analysis (microLESA) from serial
sections (Fig. 6a)35. MicroLESA sampling of the lens section was
originally carried out on 6 predetermined regions of the lens.
Therefore, we performed manual segmentation of the lens
MALDI–MSI datasets to match cross-referencing to micro-
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dissected regions of interest (Supplementary Fig. 3a). The manual
segmentation function of HIT-MAP allows specific ROI mapping
to match the original microLESA regions. Briefly, pixels in the
MALDI–MSI image were converted to x–y coordinates. A manual
segmentation configuration file was used to define the matched
regions based on the relative distance from the lens centre.
Further details on manual segmentation can be found in the
README.md.

To account for differences in dynamic range and sensitivity
between MALDI–MSI and LC–MS/MS platforms, we per-
formed a relative normalisation of peak intensity and peptide
score in order to confidently compare the two datasets
(Supplementary Fig. 3b). We found that peptide score is not
the most critical factor in determining the degree of overlap
between the two platforms (Supplementary Fig. 3b [top right]),
while peptide intensity substantially increases the proportion of
overlapped peptides (Supplementary Fig. 3b [bottom left]).
Using a dual scoring system, integrating relative peptide score
and intensity measures allowed a more direct comparison of the
two platforms (Supplementary Fig. 3b [bottom right]), yielding
a spatial overlap in 87/612 peptides (14.3%) across the 6 ROIs.
This overlap is visualised in Fig. 6b, demonstrating mutually
annotated peptides in the high-intensity region of the LC–MS/
MS dataset.

Importantly, we found a highly statistically significant overlap
in 8 annotated proteins between the two platforms, including
filensin, phakinin, α-crystallin (A- (Fig. 6c, e) and B- chains
(Fig. 6d, f)), β-crystallin B2 and vimentin. Next, we performed a
spatial correlation of the two platforms, the MALDI–MSI
unbiased segmentation and annotation, and the microLESA
captured 6 segments, and found that for the co-annotated lens-
specific crystallins as well as vimentin, we see high fidelity and
mapping of annotated peptides within segments across the two
platforms (Fig. 6g, h and Supplementary Fig. 3c).

By way of further validation, we performed MALDI–MSI on a
coronal (frontal plane) section of the mouse brain to validate the
applicability of HIT-MAP in a more complex tissue type with
clearly defined organisation (Fig. 7). Rodent brain was selected
due to its well-known spatial compartmentalisation of proteins
within the grey and white matter regions. In addition, it has been
used extensively by the MALDI–MSI community as a model
tissue for the development of novel methods, such as detection of
membrane36 and soluble protein37,38, tryptic peptide39–41, and
endogenous peptide42,43 distributions.

MALDI–MSI was performed using a MALDI-FT-ICR mass
spectrometer (Bruker SolariX 15T), operated at 50 μm resolution
to generate 20,222 spectra with a mass resolving power of 60,000
at m/z 1046.542. Data were converted to.imzML format and then

Fig. 4 Optimisation of segmentation analysis. a Diagrammatic representation of the sagittal plane of the bovine lens detailing the 4 major anatomical
regions. b HIT-MAP spatial k-means clustering of a MALDI–MSI lens dataset based on specification of between k= 1− 16 data-driven segments (colours
show individual segments). Note the unbiased annular segmentation in line with lens anatomy. c The median mass variance in exact mass-filtering of
candidate peptides against m/z features within the experimental mass spectrum, and the subsequent median peptide score of m/z features shows
improved peptide scoring and declining ppm error during exact mass filtering with increased segmentation. d The total number of non-redundant peptide
and protein identifications by HIT-MAP with varying segmentation of the lens, and e the total number of non-redundant protein identifications by HIT-MAP
with varying segmentation of the lens—protein IDs are grouped and coloured by their identification frequency across the serial segmentation test.
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Fig. 5 Application of HIT-MAP to a bovine lens FT-ICR mass spectrometry imaging dataset. a Spatial k-means clustering was performed on the bovine
lens into n= 4 unsupervised segments based on prior knowledge of lens biology. b HIT-MAP protein cluster image of Filensin comprising 19 robustly
annotated m/z features. c HIT-MAP protein cluster image of Vimentin comprising 16m/z features. d Individual peptide distributions and protein coverage
for Filensin shown in b (scale bar= 3mm). e Individual peptide distributions and protein coverage for Vimentin shown in c (scale bar= 3mm). Intensity
scales represent relative intensity from 0 to 100%.
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fed into the HIT-MAP annotation pipeline. Initial HIT-MAP
segmentation analysis showed an increase in both peptide and
protein identification number as segment number increased
(Fig. 7a [left and centre]) similar to that observed in the bovine
lens dataset, with stabilisation of protein annotation at 9 segments
(Fig. 7a [right]).

The reference in silico database was generated by tryptic
digestion of Mus musculus proteome (Uniprot FASTA format,
accessed 7th January 2021), and the decoy database was generated
in isotope mode. HIT-MAP parameters were set using an FDR
cut-off of 5%, a tolerance of 5 ppm, a threshold of 0.5%, and K-
means spatial segmentation was performed with 9 segments.
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HIT-MAP robustly annotated 713 peptides correlating to a total
of 392 identified unique proteins which showed varying patterns
of distribution across the tissue section. In particular, myelin basic
protein (Fig. 7c, f) showed exclusive white matter distribution,
consistent with its role as a myelinating protein that forms the
myelin sheath that facilitates saltatory conduction along neuronal
axons. This distribution has been previously reported by two-
photon microscopy of optically cleared, whole mouse brain44, and
also in previous MALDI–MSI work utilising orthogonal tandem
MS/MS for identification39. Another key example was secernin-1
(Fig. 7d, g) which showed clear localisation in the neuronal cell
body-containing grey matter, matching its known localisation as a
cytosolic protein, and its role in exocytosis45. Of note is that
secernin-1 has been reported to accumulate in Alzheimer’s disease
plaques46. Finally, cytochrome c oxidase subunit 6b1 (Fig. 7e, h)
also showed a cortical distribution consistent with the localisation
of cytochrome oxidase to this brain region using immunohisto-
chemical techniques47,48. Additionally, cytochrome c oxidase is
found in the mitochondrial membrane where it plays an essential
role in cellular respiration. Using fluorescent labelling and imaging
approaches, Seager and colleagues49 have shown localisation in
neuronal mitochondria which are known to be sparse in axons
(white matter), and abundant in cell soma and dendrites that
make up the grey matter, consistent with localisation to the
cerebral cortex observed in our MALDI–MSI data.

HIT-MAP also annotated the neuron receptors, GABA
receptor γ3, GABA receptor δ, neuronal acetylcholine receptor
β3 (Supplementary Fig. 4a–c), as well as synaptic vesicle-
associated proteins endophilin-A2, endophilin-B1, syntaxin-1A,
vesicle-associated membrane protein 7 and vesicle-associated
membrane protein 8 (Supplementary Fig. 4d–h) and signalling
proteins protein kinase c eta type and smad nuclear interacting
protein-1 (Supplementary Fig. 4i, j). In addition to these, HIT-
MAP annotated the metabolic proteins cytochrome c oxidase
subunit 6A1 and pyruvate kinase (Supplementary Fig. 4k, l); the
Alzheimer’s disease-associated proteins neutrophilic granule
protein and small EDRK rich factor 2 (Supplementary Fig. 4m,
n); and the extracellular proteins a disintegrin and metallopro-
teinase domain-containing protein 22 (ADAM-22), hyaluronan
and proteoglycan link protein 3, and wnt-2b (Supplementary
Fig. 4o–q).

Together these data support the accurate annotation of
peptides and proteins in the complex tissue of the brain and
validate HIT-MAP as a robust platform for the interrogation of
MSI datasets.

Discussion
This study presents the development and application of an open-
source computational pipeline for automated identification,
annotation and image generation of spatial peptide MALDI mass
spectrometry imaging datasets where corresponding orthogonal
LC–MS data are not available. The source code for HIT-MAP is
freely available from Github [https://github.com/MASHUOA/
HiTMaP/].

The development and deployment of the HIT-MAP pipeline
are demonstrated through analysing a known standard peptide
calibrant mixture, before applying it to two independent real-
world biological sample datasets. As a proof of principle, we use
both a normal bovine lens, and murine brain dataset, although
HIT-MAP could be applied to any normal or disease context. The
annotations and corresponding peptide and protein MALDI
images generated by HIT-MAP have been validated by inter-
rogation of bovine lens peptide identities determined by ortho-
gonal LC–MS/MS analysis, while brain annotations were cross-
referenced to literature.

HIT-MAP uses common MALDI–MSI file formats in an
executable proteomic workflow for peptide and protein annota-
tion via an FDR-controlled segmentation-based PMF and protein
coverage analysis pipeline. A PMF approach has been used for
several reasons. Firstly, while there are examples of combined MS
and MS/MS MALDI–MSI analysis50, MALDI–MSI instru-
mentation generally acquires in either MS or MS/MS mode
because of the pulsatile generation and transmission of ions via
MALDI, the destructive nature of MALDI sampling, and the
relatively low scan speed in the case of FT-ICR mass analysis. The
MS spectra, therefore, contain a spatially resolved proteome,
where validating the spatial distribution of a single peptide by
comparing it to peptides from the same protein, i.e. a PMF, is
useful. The gold standard identification for peptides is via an MS/
MS approach to generate peptide fragmentation spectra. While
concomitant MS/MS MALDI–MSI sampling is possible, the
experimental and instrument time cost to run multiple MS/MS
MALDI–MSI is considerable when tens to hundreds of peptides
are detected in a single MS MALDI–MSI experiment. Addition-
ally, this may not always be possible since it generally requires a
serial section approach, and tissue availability may be limiting in
prospective analysis and not possible in retrospective analysis. A
key strength of HIT-MAP is the ability to retrospectively re-
analyse already generated MALDI–MSI datasets already in the
community, as well as its potential application to archived For-
malin Fixed Paraffin Embedded (FFPE) tissue sections in an
unbiased manner, providing versatility in exploratory analysis
over multiplex immunohistochemistry approaches.

Finally, MS/MS analysis requires sufficient ion intensity to
acquire high-quality peptide fragmentation spectra. Therefore,
low abundance peptides are unlikely to contribute to positive
identification of a protein distribution in MS/MS mode, but
collectively can provide validation of protein spatial distribution
using a PMF approach. While HIT-MAP can correctly annotate
and plot peptide and protein distributions using this PMF
approach, on-tissue MS/MS, even in non-MSI mode, should be
performed where possible as an additional step to validate peptide
identity.

Validation of spatial distribution and identification of HIT-
MAP annotations highlights how it could be used to provide
valuable insight into the underlying biology of the analysed
tissue(s). Using our ocular lens example, the observed distribu-
tions and identifications are consistent with known lens structure

Fig. 6 Orthogonal cross-validation of HIT-MAP. a HIT-MAP output from the bovine lens dataset was cross-referenced by integrating the bovine lens MSI
data with a complementary spatial LC–MS/MS dataset generated from serial sections using liquid micro-enzymatic digest and liquid extraction surface
analysis (microLESA). b Visualisation of co-annotated peptides from both LC–MS and MSI platforms reveals the greatest degree of overlap occurs in the
high-intensity region of the peptide distribution. c HIT-MAP annotation of alpha crystallin A-chain showing individual peptide distributions and protein
coverage (scale bar= 3mm). d HIT-MAP annotation of alpha crystallin B-chain showing individual peptide distributions and protein coverage (scale bar=
3mm). e HIT-MAP protein cluster image of alpha crystallin A-chain and f alpha crystallin B-chain. g, h Correlation of expression of alpha crystallin A- and
B-chains in the microLESA LC–MS regions from35 and MALDI–MSI HIT-MAP analysis showing robust overlap of spatial distribution patterns. The light
blue/red area shows confidence intervals (95%) of the protein level from two analytical systems, which were estimated using a t-based approximation
among the observed peptides. Intensity scales represent relative intensity from 0 to 100%.
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and biology. The lens consists of highly elongated fibre cells that
are retained throughout life and are spatially organised such that
the lens centre is populated by cells that are formed in utero,
while new, young fiber cells are localised to the lens edge and
continuously added throughout life. Due to this intrinsic cell age
gradient, and the cell differentiation events that lens cells undergo

as they age, such as degradation of cell nuclei and endoplasmic
reticulum, protein distributions, and protein post-translational
modifications, are known to change in different lens regions.
These changes are linked to functional changes in different lens
regions, that allow the whole lens to perform its primary function
to focus light on the retina. Consequently, characteristic
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concentric rings of protein localisation are formed, and have been
shown for soluble crystallin proteins by many techniques,
including MALDI–MSI51,52, as well as membrane proteins53.

In the current data, the lens tissue sections were washed
extensively prior to matrix application to prepare them for
intermediate filament peptide and protein detection. Therefore
the predominance of these proteins (i.e. filensin, phakinin,
vimentin), correctly annotated by HIT-MAP and localised in
concentric rings (Fig. 4), is consistent with both the known tissue
preparation, and existing, recently published lens biology35.
Moreover, the annotation and spatial distribution of arpin
(Fig. 2), a cytoskeleton-associated actin-regulating protein, sug-
gests that this protein may be involved in the marked changes to
the lens fibre cell cytoskeleton that are proposed to take place
during lens cell differentiation and aging54.

We do note that occasionally some peptides assigned to a
particular protein show a different distribution to the majority of
other peptides from that protein (see e.g. Figs. 5 and 7f). This
could be due to several reasons. Computationally, this could be
due to the overlap of two or more peptide isotopic envelopes from
different regions. Experimentally, the suppression of a m/z feature
in different tissue regions may explain spatial discordance.
Alternatively, this could be due to interpretable biology. For
example, lens crystallin proteins undergo extensive post-
translational truncation, such that the origin of a tryptic pep-
tide could be from either the full-length or truncated version.
There may therefore be spatial differences between different
tryptic peptides from the different crystallin protein forms,
despite their correct assignment. Since MALDI–MSI offers the
potential for unbiased exploration of protein distribution, strict
spatial filtering of assigned peptides could potentially lead to
inaccurate biological interpretation. Therefore, we have designed
HIT-MAP to initially include and plot all matched peptides that
pass the under-defined, FDR-controlled scoring system irrespec-
tive of their spatial distribution, while simultaneously providing
the calculated peptide score in the results table for researchers to
assess. HIT-MAP users should be aware of the potential dis-
cordance of a small number of annotated peptides, however, HIT-
MAP plots a protein-level spatial distribution image which is
based on weighted scoring of all peptides assigned to protein
identification. For example, in the bovine lens model presented
(Fig. 5), the predominance of the signal is localised to the lens
periphery and cortex as has been shown by previous orthogonal
approaches in the field, while in the brain, myelin basic protein
distribution is predominantly in white matter, consistent with
previous MSI studies39,40.

Together, our results demonstrate the potential utility of HIT-
MAP in the analysis of enzymatically generated peptide MALDI-
MSI spatial mapping studies of biological tissues. Importantly, HIT-
MAP allows researchers to overcome one of the biggest technical
limitations associated with determining peptide identity. At present,
spatial identification and quantification of peptides are mutually
exclusive during MALDI–MSI acquisition. Post-acquisition manual

analysis of spectra is time-consuming and often results in pub-
lications reporting feature m/z values alone without identification.
Alternatively, it requires the additional generation of spectral
datasets from orthogonal databases generated via LC–MS/MS on
matched tissues which may not be possible where the material is
limited, such as in patient biopsies. Furthermore, HIT-MAP oper-
ates independently of the acquisition platform allowing researchers
to revisit and re-analyse retrospective mass spectrometry imaging
datasets to draw new information.

HIT-MAP addresses a current area of unmet need in the mass
spectrometry imaging field, offering a platform-independent,
open-source pipeline for the automated annotation and visuali-
sation of high-resolution proteomic MALDI–MSI datasets, both
newly generated and retrospective, which will be of significant
value to the mass spectrometry imaging community. Further-
more, the ability to integrate MALDI–MSI with other established
(i.e. routine histology) and emerging genome-centric technology
platforms such as spatial transcriptomics, using multi-layered co-
registration approaches will greatly increase the depth of
knowledge generated in understanding functional gene-to-protein
expression patterns in both healthy and diseased contexts.

Methods
MALDI–MSI sample preparation. For validation experiments using peptide
standards, one microliter of Bruker peptide calibrant II (prepared as per manu-
facturer’s instructions) was spotted onto an Indium tin oxide (ITO)-coated glass
slide. After air-drying, the slide was coated with α-Cyano-4-hydroxycinnamic acid
(CHCA, 7 mg/mL) in 50%ACN/0.1% TFA using a TM-sprayer (HTX Technolo-
gies, NC, USA). The sprayer settings were 700 mm/min velocity, 2 mm track
spacing, 8 passes, 0.1 mL/min flow rate. Following air-drying, the sample was
stored in a vacuum desiccator until MALDI–MSI analysis.

Both the bovine lens and mouse brain tissue were purchased from Pel-Freez
Biologicals (Rogers, AR). For tissue imaging sample preparation, full sample
preparation information for the bovine lens data is available in ref. 35. Mouse brain
was sectioned to 10 µm thickness. The section was washed sequentially as follows:
50 mM ammonium formate wash for 1 min twice, dried, water wash for 1 min,
dried, Carnoy’s solution wash for 2 min, dried and 95% ethanol wash for 2 min,
dried. On-tissue digestion was performed using trypsin (15 ng/µL) applied in 10%
ACN in 100 mM ammonium bicarbonate, pH 8 using a TM-Sprayer (HTX
Technologies, Carrboro, NC, USA) modified with a syringe pump at 8 µL/min
(Harvard Apparatus, Holliston, MA, USA). Trypsin was applied in eight passes
with a nozzle velocity of 750 mm/min at 30 °C. The final trypsin concentration
on tissue was 0.64 ng/mm2. Digestion was done in a sealed humidified petri dish at
37 °C with 0.1 mL 100mM ammonium bicarbonate overnight (16–18 h)35. After
air-drying, the slide was coated with α-cyano-4-hydroxycinnamic acid (CHCA,
5 mg/mL) in 90%ACN/0.1% TFA for bovine lens sections or 2,5-dihydroxybenzoic
acid (15 mg/mL DHB) for mouse brain sections using a TM-sprayer (HTX
Technologies, NC, USA). The sprayer settings were 700 mm/min velocity, 2 mm
track spacing, 8 passes, 0.1 mL/min flow rate. Following air-drying, the sample was
stored in a vacuum desiccator until MALDI–MSI analysis.

MALDI–MSI image acquisition. Peptide calibrant spot imaging data were
acquired using a SolariX XR 7T FT-ICR mass spectrometer equipped with a dual
MALDI/ESI source and a dynamically harmonised ParaCell (Bruker Daltonics,
Billerica, MA) and operated using ftmsControl v.2.2. The MALDI source employs a
Smartbeam II Nd:YAG laser system (2 kHz, 355 nm). Data were collected in
positive ion mode from m/z 150−5000 with a resolving power (m/Δm) of 99,000 at
m/z 400. Tandem mass spectrometry was performed using an isolation window of

Fig. 7 Application of HIT-MAP to a murine brain FT-ICR mass spectrometry imaging dataset. a [left] The total number of non-redundant peptide and
protein identifications by HIT-MAP with varying segmentation of the brain. [centre] The median mass variance in exact mass-filtering of candidate
peptides against m/z features within the experimental mass spectrum, and the subsequent median peptide score of m/z features with varying
segmentation of the brain. [right] The total number of unique protein identifications by HIT-MAP with varying segmentation of the brain. Protein IDs are
grouped and coloured by their identification frequency across the serial segmentation test. b Spatial k-means segmentation was performed on the brain
using n= 9 segments. c HIT-MAP protein cluster image of Myelin Basic Protein. d HIT-MAP protein cluster image of Secernin-1. e HIT-MAP protein cluster
image of cytochrome c oxidase subunit 6B1. f Individual peptide distributions and protein coverage for Myelin Basic Protein shown in c (scale bar= 4mm).
g Individual peptide distributions and protein coverage for Secernin-1 shown in d, (scale bar= 4mm). h Individual peptide distributions and protein
coverage for cytochrome c oxidase subunit 6B1 shown in e (scale bar= 4mm). Intensity scales represent relative intensity from 0 to 100%.
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3 or 10 Da to maximise signal without interference from other ions, and the
collision energy was set to 40 V.

Tissue imaging experiments were performed using a Bruker SolariX 15T FT-
ICR mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with a
dual MALDI/ESI source and a dynamically harmonised ParaCell (Bruker
Daltonics, Billerica, MA) and operated using ftmsControl v.2.2. The MALDI source
employs a Smartbeam II Nd:YAG laser system (2 kHz, 355 nm). Data were
collected in positive ion mode from m/z 500–3000 with a resolving power (m/Δm)
of 80,000 at m/z 1046.542 for bovine lens data and m/z 500–3000 with a resolving
power of 60,000 for mouse brain data. A raster step size of 150 μm was used for
lens data and 50 µm was used for brain data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Mass spectrometry data pertaining to the Bruker peptide calibrant are available from the
corresponding authors upon reasonable request. The data pertaining to the lens bovine
tissue and mouse brain tissue mass spectrometry imaging datasets have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository55 with the dataset
identifier PXD025486. All other relevant data supporting the findings are available within
the paper and its Supplementary Information files.

Code availability
HIT-MAP is open source and freely available for download from Github at https://
github.com/MASHUOA/HiTMaP alongside user documentation. HIT-MAP is also
available as a Docker Image at https://hub.docker.com/r/mashuoa/hitmap. The
README file contains additional information on all of the available parameters of HIT-
MAP, including examples of use. Developed using R version 3.6 or above, HIT-MAP is
released as a standard R package. The whole package was built on R using RStudio.
Cardinal23 has been used for .imzML data pre-possessing, image segmentation and ion
image plotting. Cleaver26 and Biostrings25 were used for peptide candidate generation
and protein coverage calculation. protViz27 was used to translate peptide sequence into
formula and calculate parent mass. rcdk29 and rcdklibs30 were used for isotopic pattern
generation. FTICRMS56 and OrgMassSpecR57 was used for high-resolution spectrum
processing and isotopic peak similarity scoring. BiocParallel21 was recruited to perform
parallel processing on different operating systems. colortools58 was used to generate a
colour set for a given number of components. Magick59 was used for output image
handling. Other fundamental generic packages in R were also used to build the HIT-
MAP package including knitr60, dbplyr61, xml262, stringr63, ggplot264, reticulate65,
rJava66, ncdf467, tibble68, purrr69 and rcpp70.
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