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Abstract Users are frequently overwhelmed by their uninterested programs due
to the development of smart TV and the excessive number of programs. For ad-
dressing this issue, various recommendation methods have been introduced to TV
fields. In TV content recommendation, auxiliary information, such as users’ per-
sonality traits and program features, greatly influences their program preferences.
However, existing methods always fail to take auxiliary information into account.
In this paper, aiming at personality program recommendation on smart TV plat-
forms, we propose a novel Deep Factorization Integrated Attention Mechanism
(DFIAM) model, which fully takes advantage of users’ personality traits, program
and interaction features to construct users’ preference representations. DFIAM
consists of two components, FNN component and DMF component. By suitably
exploiting auxiliary information, FNN component devises a feature-interaction
layer to capture the low- and higher-order feature interactions, while DMF com-
ponent has a field-interaction layer to acquire higher-order field interactions. The
embedding layer is divided into two layers , including feature embedding layer and
field embedding layer. The two components share the feature embedding layer to
profile latent representations of user and program features to reduce learning pa-
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rameters and computational complexity. And the field embedding layer calculated
by feature embedding layer is the input of DMF component. Besides, hierarchical
attention networks are applied to self-adapt the influence of each feature and effec-
tively capture more important feature interactions. To evaluate the performance
of the DFIAM model, extensive experiments are conducted on two real-world
datasets from different scenarios. The results of our proposed model have outper-
formed the mainstream neural network-based recommendation models in terms of
RMSE, MAE and R-square.

Keywords Big data · Recommendation system · Neural network · Attention
mechanism · Smart TV recommendation

1 Introduction

Recent decades, with network convergence, the internet and TV broadcasting have
paved the way for video service technologies such as mobile TV and website TV,
which leads to the diversity of TV broadcasting services[1]. Meanwhile, for the
explosive growth of programs with different ways of services, TV viewers face
excessive amounts of contents and change their watching habits in accordance
with the diversification of them. Therefore, it becomes more and more difficult for
TV platforms to satisfy users’ preferences under such situations.

At present, recommender system is developed to solve this problem. It is widely
used in video [14][30], social media [17][31], music [24], and e-commerce [16][25][13],
etc. And it utilizes users’ history behavior to improve the effectiveness of search-
ing and to retrieve interesting items. Similar to recommendation applied in various
areas mentioned above, the algorithmic advances of recommender system are also
suitable for smart TV recommendation, which helps people identify TV contents
of users’ interests among a large set of options available [18][3]. The approaches
of recommender systems can be divided into several categories [23], including col-
laborative filtering (CF), content-based filtering (CBF), hybrid filtering (HF), etc.
So far, many traditional recommender algorithms have made a huge success on
video recommendation tasks on website TV platforms [30], such as YouTube and
Netflix. However, like collaborative filtering [28][7][11], traditional recommenda-
tion algorithms still suffer from some limitations, such as data sparsity. And most
of these existing approaches cannot fully exploit auxiliary information such as per-
sonality trait data (age, gender), program data (category, actors) and interaction
information (location, time) to predict users’ TV content preferences.

Auxiliary information plays an essential role in TV recommendation. Users’
demographic data, program data and interaction data contain various helpful in-
formation, which can bridge users and related TV contents and help predict users’
interests more precisely. For instance, feature Time can impact what to view. Chil-
dren prefer to watch cartoons after school, adults usually watch TV in the evening,
and the aged like to watch TV in the daytime. Furthermore, feature conjunctions
are essential for accurate rating prediction. For example, when watching TV, the
female may prefer movies and entertainment on weekends, while on weekdays is
apt for short shows. If a user has the feature conjunction {female, weekend}, we
would like to recommend a movie to her. What’s more, when users click TV pro-
grams, it does not mean that they want the contents. In addition to predicting
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the user’ preference, indicators of users’ satisfaction, such as the duration of a user
staying, need to be taken into consideration [30].

Based on the analysis above, we propose a novel model Deep Factorization In-
tegrated Attention Mechanism for smart TV Recommendation (DFIAM), which
can take full advantage of auxiliary information and acquire higher-order inter-
actions to get better performance of TV recommendation. The overview of our
method is shown in Figure 1.
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Fig. 1 Architecture overview of our system. The auxiliary information contains user profile,
program profile and interaction data. Our proposed model DFIAM incorporates auxiliary
information into system.

One purpose of our approach is to explore and exploit auxiliary information
into the system. Based on matrix factorization, a method of collaborative filter-
ing, our proposed model can learn the latent representations of users and programs
from user-TV ratings or clicks. However, complex interactions and feature conjunc-
tions cannot be captured by matrix factorization (MF) [12] and its variants, such
as neural collaborative filtering [6] and deep matrix factorization [27]. MF series
methods only estimate the ratings or clicks by the inner product of the learned
latent vectors between users and TVs, which will lead to the limited recommenda-
tion. Therefore, beyond simply users’ and programs’ IDs feature vectors learned
by MF, we introduce factorization machine (FM) [19] method to analyze users
and TV contents by extracting multi-faceted features, including gender, age, oc-
cupation, summary, category and interaction attribution. Besides, FM can capture
second-order feature interactions as well. Then, we adopt a deep learning frame-
work for incorporating the features and acquire higher-order feature interactions.
Furthermore, DFIAM can be divided into two parts, in which users’ preference
and clicking representations can be learned respectively. What’s more, we employ
attention mechanism to estimate the importance of different feature interactions
and field interactions for the two components.
The main contributions of this work are as follows:

(1) We propose a deep neural network architecture model Deep Factorization
Integrated Attention Mechanism for smart TV Recommendation, which devises a
new operation in neural network by introducing attention network unit into the
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union model of MF and FM, in order to incorporate the auxiliary information into
the system and emphasize the weights of relative features and interactions.

(2) DFIAM is a network model with a parallel structure, and feature and field
embedding layers are used during training, reducing learnable parameters and
computational complexity. Meanwhile, the feature embedding vectors and field
embedding vectors from the embedding layers enable feature-interaction and field-
interaction layer to learn feature and field interactions, respectively.

(3) We perform extensive experiments on two real-world datasets, an open
dataset of Movielens and a private dataset of television Company *. The results
show the better effectiveness of the proposed method DFIAM by comparing to
mainstream methods.

The remainder of this paper is organized as follows. Section 2 introduces the
related works to our work. In section 3, we propose model DFIAM in detail, and
we present the experimental results and discussion in section 4. And then Section
5 is the conclusion.

2 Related Work

The matrix factorization [21][12], widely used in recommendation system, is a typ-
ical and effective model of collaborative filtering, which considers users’ behavior
by factorizing the implicit data matrix into low-dimension latent vectors. The core
idea is to map the users’ and programs’ vectors into a latent feature space, whose
element-wise product is on behalf of users’ interest. Nevertheless, MF method
cannot capture complex feature representations. Recently, due to powerful repre-
sentation learning abilities, deep learning methods have been successfully applied
in various areas, such as natural language processing and audio recognition as well
as recommender system. Neural collaborative filtering [6] is proposed to leverage
a multi-layer perceptron to learn user-program implicit feedback. Simultaneously,
Deep matrix factorization [27] model constructs user-program interaction matrix
with explicit ratings. With user vectors and program vectors as input, a deep neu-
ral architecture is used to map the two kinds of vectors into a latent and non-linear
space. However, apparent drawbacks of the above model are that they cannot make
full use of auxiliary information and capture complex feature interactions [10].

To solve the problem, Factorization machine [19] is proposed by Rendle et
al. to tackle more generic information. Besides, the second-order interactions can
be learned between features by their inner product, which factorizes the cross
weights into two latent vectors. Although FM model works well, it still suffers
some limitations. One is that FM fails to consider multiple features in the same
field. Field-aware FM [9], which originates from FM and PITF [20], groups a class
of features into one field. Namely, each feature in FFM has different latent vec-
tors when interacting with different features of different fields. However, like FM,
FFM model is also limited to linear functions and weak in capturing potential
higher-order feature interactions from raw information. To overcome the problem
mentioned above, deep neural networks are introduced into FM model in recent
years. It is found that FMs incorporating deep neural network can acquire better
performance. NFM [5] and FNN [29] regard the second-order interaction as a bi-
interaction vector, which pass through a multi-layer perceptron to extract higher-
order interaction information. Wide&Deep [2], which was proposed by Google, is
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a parallel model fused with deep neural network to get higher-order feature inter-
actions. And DeepFM [4] borrow the idea of Wide&Deep by replacing LR module
with FM module.xDeepFM [12] combines the explicit, implicit higher-order inter-
action module and traditional FM module. Besides, attention mechanism has also
been introduced in recommendation model like Attention-FM [26], IFM [8] and
AutoInt [22] to discriminate the importance of different feature interactions.

3 DFIAM algorithm

When users come into the system without any expressed intentions, recommender
system will extract users’ interests from their historical behavior and then demon-
strate the most preferred programs to them. In this session, We propose an efficient
neural network architecture for smart TV recommender system. The method com-
prises two components, Attention FNN for incorporating auxiliary information and
features interactions to learn users’ click representation, and Attention DMF for
obtaining higher-order field interactions and learning users’ preference representa-
tion. An overview structure of the model is shown in Figure 2.
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Fig. 2 Deep Factorization Integrated Attention Mechanism (DFIAM) Model. Attention FNN
can extract low- and higher-order feature interaction, while Attention DMF obtains field in-
teractions. And the field embedding vectors are the summation of feature embedding vectors
of the same field from feature embedding layer.
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6 Yijie Zhou1,2 et al.

The model we proposed references the parallel structure design of DeepFM
model. Firstly, it is natural to encode categorical features by one-hot or multi-hot
method based on different fields. Then all features pass through a shared em-
bedding layer to obtain the low-dimension dense representation of each sample.
Then, the learned vectors flow into two sub-modules, attention DMF component
and FNN component, respectively. The left sub-module FNN component captures
single second-order feature interactions and their higher-order interaction repre-
sentations, while the right sub-module DMF extracts non-linear and high-order
field interactions, which can reduce parameters and computational complexity.
And the field interactions are developed from feature interactions. For example,
a user’s viewing record can contain some features, such as id, gender, age, pro-
gram name, category, viewing time, etc. In practice, we classify features into three
fields, namely user field, program field and interaction field, which are illustrated
in Table 1. The field interactions can be acquired by field vectors computed from
feature embeddings. Besides, in order to attach different weights to feature and
field interactions, we design an attention unit network for both components. Lastly,
we concatenate interaction embeddings and a linear embedding to feed the last
prediction layer. (Section. 3.4)

Table 1 The classification of fields. According to the properties described, we group all fea-
tures into three fields, including User, Program and Interaction Field.

Field Classification Features

User
demographics age, gender, occupation, salary, family, character

custom pay for TV, activity

Program
TV type movie, TV series, documentary, variety, cartoon, etc.
category history, romance, campus, fantasy, science, war, etc.

cast director, actors

Interaction
action average time spent online, watching time, watching period
others device, location

3.1 Embedding Layer

The auxiliary information can be divided into continuous features and categorical
features, which are very sparse and high-dimension. And auxiliary information is
grouped by different fields. For example, feature {male, age,...} belongs to field
User and feature {history, documentary,...} belongs to field Program. Therefore,
we should encode the features with one-hot method for each field and then concate-
nate the feature vectors as the input vectors to acquire field embedding vectors.
Suppose there are N features and each feature has M values. A feature is repre-
sented as xn = [x1, x2, ..., xM ], and xm ∈ {0, 1}. We group all features into three
fields, containing User, Program and Interaction Field. The step for obtaining field
embedding vectors as follows:

Firstly, since feature representations are high-dimension and sparse, we employ
a feature embedding layer to map them into the same low-dimension space to
acquire dense real-value vectors. We transform each feature xn into vn. Formally,
the dense vector of each feature can be defined as:

vn = Wnxn (1)
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where Wn is the weight of feature embedding layer, which can be optimized with
other parameters. Next, we concentrate the features in the same field together
and apply a field embedding layer to obtain the field embedding vectors. There
are three fields {U, P, I}, denoting User, Program and Interaction Field. Suppose
U = [vU1 , v

U
2 , ..., v

U
u ], P = [vP1 , v

P
2 , ..., v

P
p ] and I = [vI1 , v

I
2 , ..., v

I
i ].It can be defined

as:

eF =

n∑
i=1

vFi x
F
i (2)

where F denotes the field index (User, Program, Interaction), and xFi denotes
the i-th feature value in F field. In this way, we reduce data sparsity and input
dimension and pave the way for further data processing. The embedding layers
are illustrated in Figure 3.
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Fig. 3 The structure of embedding layers, which are divided into feature and field embedding
layer. Field contains User, Program and Interaction. The feature embedding layer input is
one-hot or multi-hot sparse vectors, and the output is low-dimension dense real-value feature
embeddings, which are called feature embedding vectors. The feature embedding vectors of
the same field are concatenated as the input of field embedding layer.

3.2 Attention FNN Component

In this session, after feature extraction for learning user and program modeling,
we present Attention FNN sub-module, which utilizes attention unit under the
fused model of FM with deep framework to learn the correlations of user, program
features and their interactions. Meanwhile, the kernel FM with a deep network
focuses on second- and higher-order interactions between different features. And
attention unit focuses on different contributions of feature interactions to predic-
tion.

When feature embedding vectors from feature embedding layer pass through
feature-interaction layer, which can estimate feature interaction vectors via the
inner product. The vector is expressed as vixi

⊙
vjxj , where xi and vi denote the

i-th feature value and the latent feature vector, respectively.
⊙

is the element-
wise product of two vectors. And then, we employ an attention layer after feature-
interaction layer to assign different weights on interaction vectors, which can be
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8 Yijie Zhou1,2 et al.

defined as:

fattention =

n∑
i=1

n∑
j=i+1

aij(vixi
⊙

vjxj) (3)

where aij is the attention weight for the feature interaction, coming from a feed-
forward network. We regard the network as an activation network. The input of
the network is the second-order feature interaction vectors we extract in feature-
interaction layer. Formally, the attention network can be defined as:

a1ij = Relu(W (vixi
⊙

vjxj) + b) (4)

aij = softmax(a1ij) (5)

where W, b denote the weight matrix and bias of attention network. Then, we use
the softmax function to normalize the attention weights for limiting the parame-
ters to space of [0,1] and the sum of all attention scores is 1. The output of the
attention layer is a vector of K-dimension, which contains all second-order feature
interactions by assigning them different weights and compute the sum fattention

of these vectors. After the attention layer, for obtaining higher-order feature in-
teractions, we design a stack of fully connected layers, which can be able to learn
higher-order feature interactions. Formally, the MLP layer can be defined as:

hFNN−out = f(WT
L (...f(WT

1 fattention + b1)...) + bL) (6)

where L denotes the number of hidden layers, Wi, bi are the weights and bias of the
i-th layer, respectively, f denotes non-linear activation function, such as Sigmoid,
Tanh and ReLU.

3.3 Attention DMF Component

In this part, the sub-module is called Attention DMF module, which focuses on
learning field interactions and users’ preference representation. Specially, we focus
on the field interactions between the field of User, Program and Interaction. The
user field embedding vectors represent the users’ information, and Program field
embedding vectors are on behalf of the program’s general information. Iteration
field embedding vectors denote users’ action representations. Let the conjunction
of User field and Program field indicate users’ long-term taste factors, and the
combination of Program and Interaction field represents the short preferences.
Then we present a multi-layer perceptron fused with attention mechanism based
on MF to capture the non-linear and high-order field interactions by users’ be-
havior. Compared to feature interactions, learning field interactions can reduce
computational complexity and avoid overfitting.

Firstly, we compute field interactions by feature representations obtained from
feature embedding layer. There are three fields {U, P, I}, denoting User, Program
and Interaction Field, respectively. Then the vectors pass through field-interaction
layer, which can estimate field interaction vectors via the inner product. We use
equation(2) to compute the field embedding vectors. And then, the field interac-
tions can be formalized as:

SUP = eU
⊙

eP (7)
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SPI = eU
⊙

eI (8)

SUI = eP
⊙

eI (9)

Where SUP denotes interactions between user features and program features, rep-
resenting users’ long-term taste factor. SPI is regarded as users’ short-term taste
factors, the interactions between program features and interaction features. And
SUI is the interaction of user features and interaction features.

Then, because the attention mechanism can discriminate the importance of
different field interactions, DMF module employs attention unit over the field
interactions. We concatenate the field interactions, which is defined as Z1 =
concat(SUP , SPI , SUI). The framework is formalized as:

gA = g(WT
AZ1 + bA) (10)

hDMF−out = f(WT
L (...f(WT

1 concat(Z1, gA) + b1)...) + bL) (11)

where concat(·) denotes the concatenation operation, g is a softmax function,
WA,bA denote the weights and bias of attention unit network, Wi and bi are the
weights and bias of the i-th hidden layer. For activation function f of the hidden
layer, we can freely choose ReLU, Tanh and Sigmoid. This paper uses ReLU as
the active function for each layer, which is well-suited for sparse data and making
model less likely overfitting.

3.4 Prediction Layer

Finally, we combine the two sub-module and a linear module to predict the user’s
rating score. The output vector hFNN−out from attention FNN module is con-
catenated with the output vector hDMF−out from attention DMF module, which
is regarded as the input vector of the last hidden layer. Formally, with a linear
module, the predicted output can be define as :

ŷ = w0 +

n∑
i=1

wixi + σ(Wpreconcat(hFNN−out, hDMF−out) + bpre) (12)

where Wpre, bpre denote the weights and bias of the last hidden layer, σ denotes
the non-linear activation function, And w0 is the global bias, xi and wi denote the
i-th feature value and i-th feature weights of the linear model, respectively. Lastly,
we apply a sigmoid function to make the last prediction.

Because the prediction result is a rating score, our loss function is a mean
absolute error for the smart TV ranking prediction task, which is defined as follows:

L =
1

M

M∑
i=1

√
(yi − ŷi)2 + ε||θ||2 (13)

where M is the number of user-program interaction records in the training set, θ
is the parameter set of DFIAM, and ε is the regularization parameter. We set a
threshold based on the ratio of the user’s viewing time to the program duration.
In terms of the negative sample selection, we choose program which the threshold
is less than 0.5.
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4 Experiments

In this section, we conduct the experiment on two real-world datasets to evaluate
the effectiveness of our proposed method DFIAM and we intend to answer the
following research questions:
RQ1 How do the key hyper-parameters of DFIAM (embedding size, attention
size, learning rate, dropout) influence its performance?
RQ2 Does the hybrid model of DFIAM outperform mainstream methods for rating
prediction?
RQ3 Is it effective to take advantage of multi-faceted features from the auxiliary
information?
RQ4 What’s the effect of the hierarchical attention layers?
RQ5 How does the sparsity of datasets influence the performance of DFIAM?
RQ6 Is field-level feature interaction beneficial to the performance of DFIAM?

4.1 Experimental Settings

Data description
We conduct our experiment and evaluate the effectiveness of our proposed model
with two real-world datasets. One is an open dataset MovieLens, and the other is
a private dataset from company *. The statistics of the two datasets are given in
Table 2.

Table 2 The description of the two real-world datasets, MoviesLens and Company * Data

Dataset Users Program Interaction Sparsity

MovieLens 6,040 3,706 1,000,209 95.53%
Company* Data 29,217 3,587 317,671 99.69%

MovieLens.The MovieLens datasets are released by GroupLens[3]. These movie
ratings datasets have been widely used in recommendation research. There are sev-
eral versions of these datasets. In our experiment, we use the version of one million
records, which contains 1,000,209 ratings of 6,040 users on 3,706 items, scored in
the [1,5] range. And we normalize it to [0,1] range. Each record contains 24 fea-
tures, including userid, gender, age, programid, category, etc.

Company* Data. Company* Data is a real program dataset with over 10
million samples from a famous television company. The original dataset is huge
but high sparse, and the records lack side information. Therefore, we filter the
dataset and remain only users with at least five records. This result in the data
that only contains 317,671 records of 29,217 users’ watching 3,587 programs. Each
watching record includes 68 features, such as user ID, program ID, age, occupation,
program categories, viewing time, program duration, etc. However, the click of TV
program cannot fully represent users’ preferences. So we regard the ratio of user’s
viewing time to program duration as his/her satisfaction score, and the scores are
in the [0,1] range.
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Evaluation Metrics
For accuracy, we use three metrics for our experiment evaluation: RMSE(Root
Mean Square Error), MAE(Mean Absolute Error) and R2(R-square), which are
widely used for evaluating regression tasks such as recommendation with ratings.
A lower RMSE score, a lower MAE score or a higher R2 score indicate better
performance. We take 80% users’ historical records for training dataset, and the
remaining 20% for testing dataset according to each user of the two datasets.
Baseline
We compare our proposed DFIAM model with the following 6 baseline models.

– MF [12]: This is the original Matrix Factorization which is a common model of
collaborative filtering. And in this part, we rewrote the model using a neural
network architecture.

– NCF [6]: This is a method that fuses deep neural network into original MF
model.

– FM [19]: This is the original FM to learn the second-order interactions auto-
matically. In this part, like MF, we rewrote it with the way of neural network
architecture.

– NFM [5]: It extracts the higher-order feature interactions on a bi- interaction
pooling layer by deep neural network.

– AFM [26]: It learns the importance of feature interactions with an attention
mechanism, which can assign different weights to second-order interactions.

– DeepFM [2]: It extends FM model with a neural framework. The model consists
of a shallow component to extract low-order feature interactions and a deep
component to acquire higher-order interactions.

– xDeepFM [15]: It is a deep model which combines the explicit, implicit higher-
order interaction module with a compressed interaction network.

– AutoInt [22]: It learns higher-order feature combinations with multi-head self-
attentive neural networks.

Parameter Settings
To evaluate our model on Movielens, we reference the parameter settings in Au-
toInt. The embedding size and attention size are set to 16 and the hidden unit
is 32. The deep part consists of four feed-forward layers, and each layer with 100
hidden units. ReLU activation is adopted for each deep layer and the attention
unit network. To prevent overfitting, the dropout is 0.5 for each layer and Adam
for the optimizer.

4.2 Hyper-parameter Investigation (RQ1)

We study the impact of different key hyper-parameters on Company* Data of
DFIAM in this section, including (1) embedding size, attention size and learning
rate; (2) dropout ratio; (3)number of hidden layer.
Embedding size, Attention size and Learning rate
We explore the effect of embedding size, attention size and learning rate. The
embedding size is equal to attention size, which is searched between [16,32,64] and
the learning rate is in [0.01,0.02,0.03]. And then, we have manually tested them
on our implementation of our model to select the best combination. As shown
in Table 3 ,for the Company* Data, the performance is better when embedding
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size, the attention size and leaning rate are [32,32,0.02],respectively. Besides, by
grouped embedding size and attention size, the model has the best performance
when learning rate is at 0.02.

Table 3 Performance comparison with the combination of embedding size, attention size and
learning rate

Parameters
Company* Data

RMSE MAE R2
[16,16,0.01] 0.0934 0.0596 0.8754
[16,16,0.02] 0.0899 0.0577 0.8846
[16,16,0.03] 0.0905 0.0577 0.8832
[32,32,0.01] 0.0864 0.0554 0.8862
[32,32,0.02] 0.0848 0.0542 0.8972
[32,32,0.03] 0.0869 0.0557 0.8923
[64,64,0.01] 0.0866 0.0551 0.8733
[64,64,0.02] 0.0849 0.0534 0.8781
[64,64,0.03] 0.0855 0.0548 0.8764

Dropout Ratio
We then explore whether the dropout is beneficial to our proposed model DFIAM.
We tune the dropout ratio from between {0.1,0.2,...,0.9}. Figure 4 shows the per-
formance of different dropout ratios, which illustrates that the dropout slightly
affects our proposed model’s performance. And we choose the relatively optimal
dropout ratio of 0.5 on Company* Data.

Fig. 4 RMSE, MAE and R-square comparison of dropout ratio.

Number of layers
Table 4 shows that the increasing number of hidden layers improve the model
performance at the very beginning. However, when the number of depth layers is
more than three layers, the performance is a little flat and even degraded, caused
by overfitting.

All in all, We design the deep part with the following parameter settings. The
deep part consists of three hidden layers, and the numbers of neurons for each
layer are 64,32 and 16, respectively. ReLU activation is adopted for each deep
layer and the attention unit network. The dropout is 0.5 for each layer and Adam
for optimizer. What’s more, the embedding size is equal to attention size at 32,
and the learning rate is at 0.02.
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Table 4 Performance comparison with number of hidden layers

Number of Layers
Company* Data

RMSE MAE R2
2 0.0961 0.0613 0.8788
3 0.0848 0.0542 0.8972
4 0.0868 0.0551 0.8965
5 0.0988 0.0612 0.8765

4.3 Performance Comparison(RQ2)

In this section, we compare the performance of DFIAM with the baseline models
on two datasets. Table 5 shows the performance of the compared models and our
proposed model DFIAM. It is obviously seen that our proposed model has the
best performance, achieving 0.1359, 0.1062 and 0.6287 in RMSE, MAE and R2
on MovieLens(0.0848, 0.0542 and 0.8972 on Company * Data). We also have the
following observations:

Table 5 Comparison between the proposed method DFIAM and baselines

Model
MovieLens Company* Data

RMSE MAE R2 RMSE MAE R2
MF 0.1905 0.1546 0.2514 0.2021 0.1454 0.4299

NCF 0.1785 0.1410 0.3607 0.1812 0.1235 0.5682
FM 0.1805 0.1437 0.4059 0.1818 0.1260 0.6425

NFM 0.1785 0.1385 0.3616 0.1790 0.1260 0.5787
AFM 0.1452 0.1133 0.5906 0.1090 0.0768 0.8644

DeepFM 0.1551 0.1218 0.5098 0.1191 0.0820 0.8286
xDeepFM 0.1401 0.1094 0.6070 0.1109 0.0724 0.8227
AutoInt 0.1367 0.1071 0.6191 0.0866 0.0581 0.8915
DFIAM 0.1359 0.1062 0.6287 0.0848 0.0542 0.8972

Firstly, due to the deep neural network, NCF outperforms MF by 6.3% and 10%
in terms of RMSE (8.7% and 15% in terms of MAE) on MovieLens and Company
* Data. Similarly, NFM is also better than FM on two datasets. Therefore, deep
network model improves the performance of the predictive result significantly. Sec-
ondly, FM performs better than MF with 5.2% and 7% in terms of RMSE(10.4%
and 13.3% in terms of MAE) on the two datasets. Comparing MF and FM, We
infer that the second-order feature interactions make outstanding contributions to
the prediction. Besides, learning higher-order interactions is also effective because
DeepFM performs better than FM in terms of RMSE, MAE and R2. Therefore,
learning both low- and higher-order feature interactions can greatly improve the
accuracy of prediction.

Lastly, according to the comparison DFIAM and AFM with other models, the
method with attention mechanism make a remarkable contribution to the better
performance. We conducted the part carefully in Section 4.5.
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4.4 Feature Contribution(RQ3)

The auxiliary information has an essential contribution to our model. In this sec-
tion, we aim to explore the influence of the auxiliary information and validate
the effect of multi-faceted features on the system. Firstly, We divide all auxiliary
features into three groups as mentioned above, which are user group (contain-
ing user’s age, occupation, etc.), program group (containing type and name) and
interaction group (including time, device). Then we test the DFIAM model by re-
moving one feature group each time. And the result is shown in Table 6. It can be
seen that DFIAM with extracted features performs better than without auxiliary
information. Therefore, We observe that all auxiliary features, whether user and
group-profiling, positively contribute to our TV recommendation model. What’s
more, the performance is better when only one group was taken out than all
groups. Therefore we conclude that the auxiliary information greatly contributes
to improving the performance of TV recommendation.

Table 6 Performance of different groups

Field
MovieLens Company * Data

RMSE MAE R2 RMSE MAE R2
Auxiliary data 0.1359 0.1062 0.6287 0.0848 0.0542 0.8972

User-interaction 0.1380 0.1081 0.6190 0.0896 0.0595 0.8946
User-program 0.1364 0.1085 0.6106 0.0868 0.0547 0.8970

Program-interaction 0.1363 0.1063 0.6265 0.0875 0.0557 0.8966
Only User 0.1381 0.1080 0.6183 0.0914 0.0600 0.8894

Only program 0.1370 0.1070 0.6222 0.0895 0.0562 0.8969
Only interaction 0.1392 0.1085 0.6106 0.0902 0.0572 0.8929
No auxiliary data 0.1393 0.1091 0.6099 0.0935 0.0622 0.8853

4.5 Impact of the Attention Network (RQ4)

The attention mechanism of DFIAM plays an essential role in improving the accu-
racy of prediction. In this section, we focus on analyzing the effect of the attention
network on model DFIAM. And We test the DFIAM model on MovieLens and
Company * Data with attention unit and without attention unit. Figure 5 shows
the performance of comparison. DFIAM with attention network (denoted as solid
lines) performs better than without attention (marked as dotted lines) on both
datasets, regardless of RMSE, MAE, or R2. In short, we conclude that attention
score can increase weights of relative feature and field interactions in different
situations to enhance the capacity of TV content recommendation.

4.6 Effects of Data Sparsity (RQ5)

We now explore how the data sparsity influence the performance of our model
DFIAM. Specially, the data sets are generated by filtering users with low watching
frequency,which is set as {5,10,20,30,40,50} on Company* Data and {5,30,40,50,60,70}
on MovieLens with the sparsity of {99.31%, 99.25%, 98.89%, 98.59%, 98.20%,
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Fig. 5 The Comparison of DFIAM with attention unit and without attention unit

97.57%} and {95.53%,95.18%,94.70%,94.23%,,93.77%,93.37%},respectively.The re-
sult is shown in Table 7 , which illustrate that reducing sparsity, to some extent,
is beneficial to improve the performance of our model.

Table 7 Performance of different sparsity

Sparsity
MovieLens

Sparsity
Company* Data

RMSE MAE R2 RMSE MAE R2
95.53% 0.1359 0.1062 0.6287 99.31% 0.0848 0.0542 0.8972
95.18% 0.1351 0.1050 0.6247 99.25% 0.0850 0.0565 0.8929
94.70% 0.1360 0.1053 0.6292 98.89% 0.0832 0.0543 0.8915
94.23% 0.1342 0.1043 0.6350 98.59% 0.0832 0.0527 0.8936
93.77% 0.1331 0.1034 0.6398 98.20% 0.0809 0.0501 0.9032
93.37% 0.1335 0.1037 0.6376 97.57% 0.0807 0.0511 0.9045

4.7 Effect of Field Interactions(RQ6)

In this section, we focus on analyzing the effect of field interactions on our model
DFIAM. Generally, more feature combinations can mine more helpful information
and may have better performance. Therefore, we take advantage of the features
and their combinations. Besides, organizing the feature representations of the same
field can reduce the complexity of our model. To explore the effect of field inter-
actions, we aim to test the model with only feature interactions on MovieLens
and Company* Data. Because our model has two sub-module, we add the field
interactions to each submodule separately. Lastly, we apply field interactions on
both submodules.

As shown in Table 8, the performance of only using feature interactions is
better than others on RMSE, MAE and R2. However, the only feature interaction
is more time-consuming. All in all, we choose the model with field interactions
only applying in attention DMF as our DFIAM model according to effectiveness
and efficiency.
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Table 8 Performance comparison with field interactions. ”Both” in the table means both
submodules apply the field interactions.”Attention DMF” means only this submodule uses
field interaction.

Applying submodule
MovieLens Company* Data

RMSE MAE R2 Time(s) RMSE MAE R2 Time(s)
Both 0.1510 0.1184 0.5436 2986 0.0917 0.0586 0.8787 1933

Attention DMF 0.1359 0.1062 0.6287 3376 0.0848 0.0542 0.8972 2537
Attention FNN 0.1428 0.1117 0.5920 3669 0.0856 0.0514 0.8761 2886

None 0.1298 0.1008 0.6878 4211 0.0798 0.0505 0.9081 3569

5 Conclusion

In this paper, we propose a novel model called Deep Factorization Integrated At-
tention Mechanism(DFIAM) for personalized program recommendation on smart
TV platforms, which aims to take advantage of multi-faceted features from aux-
iliary information, learning lower- and higher-order interactions to improve the
performance. Besides, we integrate the attention mechanism into our model to
assign different weights for feature and field interactions in different situations.
Furthermore, embedding layer is divided into feature embedding layer and field
embedding layer for attention FNN component and attention DMF component, re-
spectively. Lastly, we conducted extensive experiments on two real-world datasets
(MovieLens and Company* Data) and the experimental results demonstrated our
proposed method outperforms mainstream models in smart TV recommendation.

In the future, because the clicks and rates fail to represent users’ preferences
fully, we will explore the multi-task framework, which can integrate users’ different
behavior to predict users’ diverse interests. Moreover, it is interesting to extend
the smart TV recommendation to multi-media recommendation with multi-modal
data, such as the program summary, user review, video and audio, containing rich
semantic information.
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