
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

1

Generative Adversarial Reward Learning for
Generalized Behavior Tendency Inference

Xiaocong Chen, Lina Yao, Member, IEEE, Xianzhi Wang, Member, IEEE, Aixin Sun, Member, IEEE,
Wenjie Zhang, Member, IEEE, Quan Z. Sheng, Member, IEEE

Abstract—Recent advances in reinforcement learning have inspired increasing interest in learning user modeling adaptively through
dynamic interactions, e.g., in reinforcement learning based recommender systems. In most reinforcement learning applications, reward
functions provide the critical guideline for optimization. However, current reinforcement learning-based methods rely on
manually-defined reward functions, which cannot adapt to dynamic, noisy environments. Moreover, they generally use task-specific
reward functions that sacrifice generalization ability. We propose a generative inverse reinforcement learning for user behavioral
preference modeling to address the above issues. Instead of using predefined reward functions, our model can automatically learn the
rewards from user’s actions based on discriminative actor-critic network and Wasserstein GAN. Our model provides a general
approach to characterizing and explaining underlying behavioral tendencies. Our experiments show our method outperforms
state-of-the-art methods in several scenarios, namely traffic signal control, online recommender systems, and scanpath prediction.

Index Terms—Inverse Reinforcement Learning, Behavioral Tendency Modeling, Adversarial Training, Generative Model

F

1 INTRODUCTION

B EHAVIOR modeling provides a footprint about user’s
behaviors and preferences. It is a cornerstone of di-

verse downstream applications that support personalized
services and predictive decision-making, such as human-
robot interactions, recommender systems, and intelligent
transportation systems. Recommender systems generally
use user’s past activities to predict their future interest [1],
[2], [3], and past studies integrate demographic information
with user’s long-term interest on personalized tasks [4],
[5], [6], [7]. In human-robot interaction, a robot learns from
user behaviors to predict user’s activities and provide nec-
essary support [8]. Multimodal probabilistic models [9] and
teacher-student network [10] are often used to predict user’s
intention for traffic prediction or object segmentation.

Traditional methods learn static behavioral tendencies
via modeling user’s historical activities with items as a
feature space [11] or a user-item matrix [12]. In contrast,
reinforcement learning shows advantages in learning user’s
preference or behavioral tendency through dynamic inter-
actions between agent and the environment. It has attracted
lots of research interests in recommendation systems [6],
intention prediction [13], traffic control [14], and human-
robot interaction domains [15]. Reinforcement learning cov-
ers several categories of methods, such as value-based meth-
ods, policy-based methods, and hybrid methods. All these
methods use the accumulated reward during a long term to
indicate user’s activities. The reward function is manually

• X. Chen, L. Yao and W. Zhang are with the School of Computer Science
and Engineering, University of New South Wales, Sydney, NSW, 2052,
Australia.
E-mail: xiaocong.chen@unsw.edu.au

• X. Wang is with School of Computer Science, University of Technology
Sydney, Sydney, NSW, 2007, Australia.

• A. Sun is with Nanyang Technological University, Singapore.
• Q. Sheng is with Department of Computing, Macquarie University,

Sydney, NSW, 2109, Australia.

defined and requires extensive effort to contemplate poten-
tial factors [16], [17].

In general, user’s activities are noisy, occasionally con-
taminated by imperfect user behaviors, and thus may not
always reveal user’s interest or intention. For example, in
online shopping, a user may follow a clear logic to buy items
and randomly add additional items because of promotions
or discounts. This makes it difficult to define an accurate
reward function because the noises also affect the fulfillment
of task goals in reinforcement learning. Another challenge
lies in the common practice of adding task-specific terms
to the reward function to cope with different tasks. Cur-
rent studies usually require manually adjusting the reward
function to model user’s profiles [2], [18], [19]. Manual
adjustment tends to produce imperfect results because it is
unrealistic to consider all reward function possibilities, not
to mention designing reward functions for new tasks.

A better way to determine the reward function is to learn
it automatically through dynamic agent-environment inter-
actions. Inverse reinforcement learning recently emerged
as an appealing solution, which learns reward function
learning from demonstrations in a few scenarios [20]. It faces
two challenges for user behavior modeling. First, it requires
a repeated, computational expensive reinforcement learning
process to apply a learned reward function [21]; second,
given an expert policy, there could be countless reward
functions for choice, making the selection of reward function
difficult and the optimization computationally expensive.
The only recommendation model [22] that adopts improved
inverse reinforcement learning simply skips the repeated
reinforcement learning process. Thus, it is hard to converge
due to the lack of sampling efficiency and training stabil-
ity. Furthermore, the model only works for recommender
systems and lacks generalization ability.

Manually designed reward functions have less feasibility
and generalizability to cope with such challenges. Although

2

[22] employs inverse reinforcement learning to learn the
reward from demonstration, this work still suffers the un-
defined problem due to the nature of the logarithm. To
relieve this, we manipulate the function by adding an extra
learnable term to avoid such a problem. In addition, existing
studies have not considered the absorbing state problem
such that agents will stop learning once the absorbing
states are reached. The major reason is that the agent will
receive zero rewards in absorbing states and may lead to a
suboptimal policy. [13] first uses the inverse reinforcement
learning to conduct the scanpath prediction. However, it
suffers the same problem as [22], i.e., the reward could
be zero in absorbing states and cannot be generalized into
other tasks. [22] relies on GAN to integrate the actor-critic
network and IRL, while GAN still suffers training instability.
Moreover, the sample efficiency is another drawback for
the on-policy actor-critic network. In this paper, we employ
Wasserstein GAN [23] to improve model stability and im-
portance sampling in the replay buffer to transfer it into
off-policy learning with increased sample efficiency.

In this paper, we aim to construct user models directly
from an array of various demonstrations efficiently and
adaptively, based on a generalized inverse reinforcement
learning method. Learning from demonstrations not only
avoids the need for inferring a reward function but also
reduces computational complexity. To this end, we propose
a new model that employs a generative adversarial strategy
to generate candidate reward functions and to approximate
the true reward. We use the new model as a general way of
characterizing and explaining tendencies in user behaviors.
In summary, we make the following contributions:

• We propose a new inverse reinforcement-learning-
based method to capture user’s behavioral tenden-
cies. To the best of our knowledge, this is the first
work to formulate user’s behavioral tendency using
inverse reinforcement learning.

• We design a novel stabilized sample-efficient dis-
criminative actor-critic network with Wasserstein
GAN to implement the proposed framework. Our
framework is off-policy and can reduce interactions
between system and environment to improve effi-
ciency. Besides, we integrate a learnable term into
our reward function to increase the capability of our
method.

• Our extensive experiments demonstrate the general-
ization ability and feasibility of our approach in three
different scenarios. We use visualization to show the
explainability of our method.

2 PROBLEM FORMULATION AND PRELIMINARY

Behavioral tendency refers to user’s preferences at a certain
timestamp and is usually hard to be evaluated directly. The
common way to evaluate behavioral tendencies is to exam-
ine how well the actions taken out of the learned behavioral
tendencies match the real actions taken by the user. It is
similar to reinforcement learning’s decision-making process,
where the agent figures out an optimal policy π such that
each action of it could achieve a good reward.

In this work, we define behavioral tendencies modeling
as an optimal policy-finding problem. Given a set of users

U = {u0, u1, · · · , un}, a set of items O = {o0, o1, · · · , om}
and user’s demographic information D = {d0, d1, · · · , dn}.
We first define the Markov Decision Process (MDP) as a
tuple (S,A,P,R, γ), where S is the state space (i.e., the
combination of the subset of O, subset of U and its cor-
responding D). A is the action space, which includes all
possible agent’s decisions,R is a set of rewards received for
each action a ∈ A, P is a set of state transition probability,
and γ is the discount factor used to balance the future
reward and the current reward. The policy can be defined
as π : S → A—given a state s ∈ S , π will return an
action a ∈ A so as to maximize the reward. However, it
is unrealistic to find a universal reward function for user be-
havioral tendency, which is highly task-dependent. Hence,
we employ Inverse reinforcement learning (IRL) to learn
a policy π from the demonstration from expert policy πE ,
which always results in user’s true behavior. We formulate
the IRL process using a uniform cost function c(s, a) [20]:

minimize
π

max
c∈C

Eπ[c(s, a)]− EπE [c(s, a)] (1)

The cost function class C is restricted to convex sets de-
fined by the linear combination of a few basis functions
{f1, f2, · · · , fk}. Hence, given a state-action pair (s, a), the
corresponding feature vector can be represented as f(s, a) =
[f1(s, a), f2(s, a), · · · , fk(s, a)]. Eπ[c(s, a)] is defined as (on
γ-discounted infinite horizon):

Eπ[c(s, a)] = E[
∞∑
t=0

γtc(st, at)] (2)

According to Eq.(1), the cost function class C is convex
sets, which have two different formats: linear format [24]
and convex format [25], respectively:

Cl =
{∑

i

wifi : ‖w‖2 ≤ 1
}

(3)

Cc =
{∑

i

wifi :
∑
i

wi = 1,∀i s.t. wi ≥ 0
}

(4)

The corresponding objective functions are as follows:

‖Eπ[f(s, a)]− EπE [f(s, a)]‖2 (5)
Eπ[fj(s, a)]− EπE [fj(s, a)] (6)

Eq.(5) is known as feature expectation matching [24],
which aims to minimize the l2 distance between the state-
action pairs that are generated by learned policy π and ex-
pert policy πE . Eq.(6) aims to minimize the function fj such
that the worst-case should achieve a higher value [26]. Since
Eq.(1 suffers the feature ambiguity problem, we introduce
γ-discounted causal entropy [27] (shown below) to relieve
the problem:

H(π) ,Eπ[− log π(a|s)] = Est,at∼π
[
−
∞∑
t=0

γt log π(at|st)
]

(7)

As such, Eq.(1) can be written by using the γ-discounted
causal entropy as:

minimize
π

−H(π)− EπE [c(s, a)] + max
c∈C

Eπ[c(s, a)] (8)

Suppose Π is the policy set. We define the loss func-
tion c(s, a) to ensure the expert policy receives the lowest

3

FC

FC FC

FC

FC

FCFC

FC

GAE GAE

... ...

Expected State-Action PairsLearned State-Action Pairs

...
...

Real World Tasks Expert Action

...

...
...

Our Model

1

2

3

45

6

7

8

FC

FC

FC

FC Softmax

FC

FC

FC

FC Softmax

Policy Action
State Value Fully-Connected

Layer

Urban Mobility
Management

Recommender System

Scanpath Prediction

Environment-System Interaction

Legend

PPO Update

Fig. 1: Overall structure of the proposed framework. The left-hand side provides three example environments from top
to bottom: urban mobility management, recommender system and scanpath prediction. The proposed model will interact
with the environment to achieve the corresponding state representations for the current task. The expert actions will be
achieved simultaneously and feed into our model to participate in the training procedure of the discriminator.

cost while all the other learned policies get higher costs.
Referring to Eq.(8), the maximum causal entropy inverse
reinforcement learning [28] works as follows:

maximize
c∈C

(min
π∈Π
−H(π) + Eπ[c(s, a)])− EπE [c(s, a)] (9)

Then, the policy set Π can be obtained via policy genera-
tion. Policy generation is the problem of matching two occu-
pancy measures and can be solved by training a Generative
Adversarial Network (GAN) [29]. The occupancy measure
ρ for policy π can be defined as:

ρπ(s, a) = π(s|a)
∞∑
t=0

γtP (st = s|π) (10)

We adopts GAIL [21] and make an analogy from the occu-
pancy matching to distribution matching to bridge inverse
reinforcement learning and GAN. A GA regularizer is de-
signed to restrict the entropy function:

ψGA(c(s, a)) =

{
EπE [−c(s, a)− log(1− exp(c(s, a)))] c < 0

∞ c ≥ 0

(11)

The GA regularizer enables us to measure the difference
between the π and πE directly without the reward function:

ψGA(ρπ − ρπE) = max
D∈(0,1)S×A

Eπ[logD(s, a)]

+EπE [log(1−D(s, a))] (12)

The loss function from the discriminator D is defined
as c(s, a) in Eq.(9); it uses negative log loss (commonly used
for binary classification) to distinguish the policies π and πE
via state-action pairs. The optimal of Eq.(12) is equivalence
to the Jensen-Shannon divergence [30]:

DJS(ρπ, ρπE) = DKL(ρπ‖(ρπ + ρπE)/2)+

DKL(ρπE‖(ρπ + ρπE)/2) (13)

Finally, we rewrite inverse reinforcement learning by
substituting the GA regularizer into Eq.(8):

minimize
π

−λH(π) + ψGA(ρπ − ρπE)︸ ︷︷ ︸
DJS(ρπ,ρπE)

(14)

where λ is a factor with λ ≥ 0. Eq.(14) has the same goal
as the GAN, i.e., finding the squared metric between distri-
butions. Eq.(14) can be further extended into the following,
which serves as the objective function for GAIL:

minimize
π

−λH(π) + ψGA(ρπ − ρπE) ≡ min
π

max
D
LD

LD = Eπ[logD(s, a)] + EπE [log(1−D(s, a))]− λH(π)
(15)

We summarized all the notations used in this paper in
Table 1.

3 METHODOLOGY

The overall structure of our proposed method (shown in
Fig. 1) consists of three components: policy and reward

4

TABLE 1: Main notations

Symbols Meaning
U Set of users
O Set of items
R Set of rewards received
D Set of demographic information
| · | Number of unique elements in ·
γ Discount Factor

H(π) γ-discounted casual entropy
E Expectation
ρ Occupancy Measure
St State space at timestamp t
at Action space at timestamp t
π Policy
πE Expert Policy
D Discriminator

DKL KullbackLeibler divergence
DJS Jensen-Shannon divergence
·‖· Divergence

learning, stabilized sample efficient discriminative actor-
critic network, and its optimization. Policy and reward
learning aims to solve the reward bias and the absorbing
state problem by introducing a learnable reward function
and environment feedback. The stabilized actor-critic net-
work aims to improve the training stability and sample
efficiency for the ex sting methods. Optimization refers to
the method to optimize the policy and the algorithms to
train the overall approach.

3.1 Policy and Reward Learning

We consider behavioral tendencies inference as an agent
policy learning problem and an agent policy as the ab-
straction of user’s behavioral tendencies. Policy learning
aims to make the learned policy π and expert policy πE .
We define the occupancy measure ρ in Eq.(10) and solve
policy learning as an occupancy measure based distribution
matching problem [24]. To this end, we define a reward
function below to determine the performance in existing
methods:

r(s, a) = log(D(s, a))− log(1−D(s, a)) (16)

[31] design a dynamic robust disentangled reward function
for the approximation by introducing the future state s′.

r′(s, a) = log(D(s, a, s′))− log(1−D(s, a, s′)) (17)

The reward function defined in Eq.(16) is not robust
for dynamic environments. Although Eq.(17) improves it
by assigning positive and negative rewards for each time
step to empower the agent to fit into different scenarios,
both Eq.(16) and Eq.(17) have the absorbing state problem,
i.e., the agent will receive no reward at the end of each
episode, leading to sub-optimal policies [32]. Specifically, in-
stead of exploring more policies, the reward function r(s, a)
will assign a negative reward bias for the discriminator to
distinguish samples from the generated policies and expert
policies at the beginning of the learning process. Since the
agent aims to avoid the negative penalty, the zero reward
may lead to early stops.

Moreover, the above two reward functions are more
suitable for survival or exploration tasks rather than the goal
of this study. For survival tasks, the reward used on GAIL

is logD(s, a), which is always negative because D(s, a)
(∈ [0, 1]) encourages the agent to end current episode to stop
more negative rewards. For exploration tasks, the reward
function− log(1−D(s, a)) is always positive and may result
in the agent looping in the environment to collect more
rewards.

We add a bias term to the reward function r(s, a), as
defined by either Eq.(16) or Eq.(17) to overcome the reward
bias. In addition, we introduce a new reward given by
environment re for reward shaping. Finally, we have the
following:

rn(s, a) = λi

(
r(s, a) +

∞∑
t=T+1

γt−T r(sa, ·)
)

+ re (18)

where r(sa, ·) is a learnable reward function, which is train-
able during the training process. We also add a dimension
to indicate whether the current state is an absorbing state
or not (denoted by 1 or 0, respectively). Besides, we simply
sample the reward from the replay buffer, considering the
bias term is unstable in practice.

3.2 Stabilized Sample Efficient Discriminative Actor-
Critic Network
The stabilized sample efficient discriminative actor-critic
network aims to enable the agent to learn the policy effi-
ciently. We take a variant of the actor-critic network, advan-
tage actor-critic network [33] as the backbone of our approach.
In this network, the actor uses policy gradient and the
critic’s feedback to update the policy, and the critic uses Q-
learning to evaluate the policy and provides feedback [34].

Given the state space at timestamp t, the environment
determines a state st, which contains user’s recent interest
and demographic information embedded, via the actor-
network [35], [36]. The actor-network feeds the state st to
a network that has four fully-connected layers with ReLU
as the activation function. The final layer of the network
outputs a policy function π, which is parameterized by θ.
Then, the critic network takes two inputs: the trajectory
(st, at), and the current policy πθt from the actor-network.
We concatenate the state-action pair (st, at) and feed it into
a network with four fully-connected layers (with ReLU as
the activation function) and a softmax layer. The output of
the critic-network is a value V (st, at) ∈ IR to be used for
optimization (to be introduced later).

The discriminator D is the key component of our ap-
proach. To build an end-to-end model that better approxi-
mates the expert policy πE , we parameterize the policy with
πθ and clip the discriminator’s output so that D : S × A →
(0, 1) with weight w. The loss function of D is denoted by
LD. Besides, we use Adam [37] to optimize weight w (the
optimization for θ will be introduced later). We consider
the discriminator D as a local cost function provider to
guide the policy update. During the minimization of the
loss function LD, i.e., finding a point (π,D) for it, the policy
will move toward expect-like regions (divided by D) in the
latent space.

Like many other networks, Actor-critic network also
suffers the sample inefficiency problem [38], i.e., the agent
has to conduct sampling from the expert policy distribu-
tion, given the significant number of agent-environment

5

interactions needed to learn the expert policy during the
training process. In this regard, we use an off-policy re-
inforcement learning algorithm (instead of on-policy rein-
forcement learning algorithms) to reduce interactions with
the environment. In particular, we introduce a replay buffer
R to store previous state-action pairs; when training the dis-
criminator, we sample the transition from the replay buffer
R in off-policy learning (instead of sampling trajectories
from a policy directly). We thereby define the loss function
as follows:

LD = ER[logD(s, a)] + EπE [log(1−D(s, a))]− λH(π)
(19)

Eq.(19) matches the occupancy measures between the
expert and the distribution induced by R. Instead of com-
paring the latest trained policy π and expert policy πE , it
comprises a mixture of all policy distributions that appeared
during training. Considering off-policy learning has differ-
ent expectation from on-policy learning, we use importance
sampling on the replay buffer to balance it.

LD = ER
[
ρπθ (s, a)

ρR(s, a)
logD(s, a)

]
+ EπE [log(1−D(s, a))]− λH(π) (20)

Considering GAN has the training instability prob-
lem [39], we employ the Wasserstein GAN [23] to improve
the discriminator’s performance. While a normal GAN min-
imizes JS-Divergence cannot measure the distance between
two distributions, Wasserstein GANs uses the EM-distance
and Kantorovich-Rubinstein duality to resolve the prob-
lem [40].

Eπ[logD(s, a)]− EπE [log(D(s, a))]

+ EπE [(‖∇D(s, a)‖ − 1)2] (21)

We further use gradient penalty to improve the training
for Wasserstein GANs [23], given the gradient penalty can
improve training stability for JS-Divergence-based GANs
[41]. We thereby obtain the final loss function as follows:

LD = ER
[
ρπθ (s, a)

ρR(s, a)
logD(s, a)

]
+ EπE [log(1−D(s, a))]

−λH(π) + EπE [(‖∇D(s, a)‖ − 1)2]
(22)

3.3 Optimization

We conduct a joint training process on the policy network
(i.e., the actor-critic network) and the discriminator. We pa-
rameterize the policy network with policy parameter θ and
update it using trust region policy optimization (TRPO) [42]
based on the discriminator. TRPO introduces a trust region
by restricting the agent’s step size to ensure a new policy is
better than the old one. We formulate the TRPO problem as
follows:

max
θ

1

T

T∑
t=0

[
πθ(at|st)
πθold(at|st)

At

]
subject to Dθold

KL (πθold , πθ) ≤ η (23)

where An is the advantage function calculated by General-
ized Advantage Estimation (GAE) [43]. GAE is described
as follows:

At =
∞∑
l=0

(γλg)
lδVt+l

where δVt+l = −V (st) +
∞∑
l=0

γlrt+l (24)

where rt+l is the test reward for l-step’s at timestamp t, as
defined on Eq.(18). Considering the high computation load
of updating TRPO via optimizing Eq.(23), we update the
policy using a simpler optimization method called Proximal
Policy Optimization (PPO) [44], which has an objective
function below:

E
τ∼πold

[T∑
t=0

min
(πθ(at|st)
πθold(at|st)

At,

clip
(πθ(at|st)
πθold(at|st)

, 1− ε, 1 + ε
)
At
)]

(25)

where ε is the clipping parameter representing the max-
imum percentage of change that can be made by each
update.

The overall training procedure is illustrated in Algorithm
1, which involves the training of both the discriminator and
the actor-critic network. For the discriminator, we use Adma
as the optimizer to find the gradient for Eq.(22) for weight
w at step i:

Eπ[∇w log(Dw(s, a))] + EπE [∇w log(1−Dw(s, a))]

+EπE [(‖∇wD(s, a)‖ − 1)2 (26)

4 EXPERIMENTS

We evaluate the proposed framework and demonstrate
its generalization capability by conducting experiments in
three different environments: Traffic Control, Recommenda-
tion System, and Scanpath Prediction. Our model is imple-
mented in Pytorch [45]. All experiments are conducted on
a server with 6 NVIDIA TITAN X Pascal GPUs, 2 NVIDIA
TITAN RTX with 768 GB memory.

4.1 Urban Mobility Management
In the traffic control scenario, the agent is required to
control cars to conduct a certain task. The objective is to
minimize the total waiting time in the trip.

4.1.1 Simulation of Urban Mobility

Traffic signal control is critical to effective mobility
management in modern cities. To apply our model to
this context, we use the Simulation of Urban MObility
(SUMO) [46] library, a microscopic, space-continuous,
and time-discrete traffic flow simulation tool, to test the
method’s performance. The agent controls traffic signals,
and a car may take three actions facing traffic lights:
go straight, turn left, or turn right, depending on user’s
preference. We design a simple two-way road network

6

1 5 10 15 20
Time Step ('000s)

0

1000

2000

3000

4000

5000

6000

7000

To
ta

l W
ai

tin
g

Ti
m

e
(s

)

Ours
SARSA
Deep Q-Learning
Q-Learning

A2C
Expert
GIRL-RS

(a) Total waiting time

0 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

CT
R

Ours
IRGAN
KGRL
GAUM

PGCR
Expert
GIRL-RS

(b) CTR in Recommendation

0 1 2 3 4 5 6
Number of Fixations Made to Target

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

Human
IRL
BC_LSTM
BC_CNN

Fix
Detector
GIRL-RS

(c) Cumulative probability comparison
for selected baseline methods

Fig. 2: Comparison results. From left to right, the subfigures represent the results in (a) Traffic Control, (b) Recommendation
System, and (c) Scanpath Prediction. Our methods generally outperform baseline methods.

that contains eight traffic lights for testing. We employ
an open-sourced library sumo-rl 1 to enable our agent
can interact with the simulation environment (including
receiving the reward) directly. The number of cars available
in the environment is unlimited; the environment keeps
generating cars until this simulation step ends or the road
reaches its full capacity.

4.1.2 Expert Policy Acquisition

Since there is no official expert policy available for our
customized road network, we use the same strategy as
introduced by [47] to collect a set of imperfect expert
policies from a pre-trained policy network. This policy
network is built upon an actor-critic network, which is
trained by using Deep Deterministic Policy Gradients
(DDPG) [48]. Expert policies are stored via state-action
pairs, which concatenate observed states and expert actions.

4.1.3 Baseline Methods

We evaluate our model against several traditional reinforce-
ment learning methods in this scenario.

• Q-Learning: An off-policy reinforcement learning
method that finds the best action given the current
state.

• Deep Q-learning: A deep Q-learning method that
employs the neural network to extract features.

• SARSA: Stateactionrewardstateaction (SARSA) is an
improved Q-learning method commonly used for
traffic signal control.

• Advantage Actor-Critic Network (A2C) [33]: An
asynchronous method built on an actor-critic net-
work for deep reinforcement learning.

• GIRL-RS [22]: An inverse reinforcement learning for
recommendation. We modify the structure by remov-
ing the recommender to conduct the traffic control
task.

1. https://github.com/LucasAlegre/sumo-rl

Experiments are conducted in exactly the same environment
to ensure a fair comparison. All the baseline methods are
implemented by using PyTorch and are publicly available
2. The reward provided by environment for each simulation
step can defined as:

r =
Nts∑
n=0

s ∗Ncp (27)

where Nts is the number of traffic signals available in the
environment, s is the average car speed in this simulation
step, and Ncp is number of cars passed this traffic signals at
the end of this simulation step. The evaluate metric is the
total waiting time defined below:

t =
1000∑
i=0

Nc∑
c=0

tic (28)

where tic is the time that the car c waits at traffic light i, and
1, 000 is the duration for one simulation step. If car c does
not meet traffic light i, we set tic = 0.

4.1.4 Hyper-parameters Setting and Results

DDPG parameters for the pre-trained model include γ =
0.95, τ = 0.001, the size of the hidden layer 128, the size of
the reply buffer 1, 000, and the number of episode 20, 000.
Parameters for Ornstein-Uhlenbeck Noise include the scale
0.1, µ = 0, θ = 0.15, σ = 0.2. For our method, we set
the number of time steps to 20, 000, the hidden size of the
advantage actor-critic network to 256, the hidden size for
discriminator to 128, the learning rate to 0.003, factor λ to
10−3, mini batch size to 5, and the epoch of PPO to 4. For
the generalized advantage estimation, we set the discount
factor γ to 0.995, λg = 0.97, and ε = 0.2. We also set
λi = 1 for reward shaping and λ = 1 for H(π). The results
in Fig. 2 (a) show our method generally outperforms all
baseline methods.

2. https://github.com/hill-a/stable-baselines

7

Algorithm 1: Training algorithm for our model
input: Expert replay buffer RE , Initialize Policy

Replay Buffer R,Initialize policy parameter θ0,
clipping parameter ε

1 Function Absorbing(τ) is
2 if sT is a absorbing state then
3 {sT , aT , ·, s′T } ← {sT , aT , ·, sa};
4 τ ← τ ∪ {sa, ·, ·, sa};
5 end
6 return τ ;
7 end
8 for τ = {st, at, ·, s′t}Tt=1 ∈ RE do
9 τ ← Absorbing(τ);

10 end
11 R ← ∅ ;
12 for i = 1, 2, · · · do
13 Sampling trajectories τ = {st, at, ·, s′t}Tt=1 ∼ πθi ;
14 R ← R∪ Absorbing(τ) ;
15 for j = 1, · · · , |τ | do
16 {st, at, ·, ·}Bt=1 ∼ R, {s′t, a′t, ·, ·}Bt=1 ∼ RE ;
17 Update the parameter wi by gradient on

Eq.(26) ;
18 end
19 for j = 1, · · · , |τ | do
20 {st, at, ·, ·}Bt=1 ∼ R;
21 for b = 1, · · · , B do
22 r = log(Dwi(sb, ab))− log(1−Dwi(sb, ab))

;
23 Calculate the reshape reward r′ by Eq.(18) ;
24 (sb, ab, ·, s′b)← (sb, ab, r

′, s′b) ;
25 end
26 for k = 0, 1, · · · do
27 Get the trajectories (s, a) on policy

πθ = π(θk) ;
28 Estimate advantage At using Eq.(24);
29 Compute the Policy Update

θk+1 = arg max
θ

Eq.(25)

By taking K step of minibatch SGD (via
Adma)

30 end
31 θi ← θK ;
32 end
33 end

4.2 Recommendation System
In the recommendation scenario, the agent aims to interact
with a dynamic environment to mine user’s interests and
make recommendations to users.

4.2.1 VirtualTB

We use an open-source online recommendation platform,
VirtualTB [49], to test the performance of the proposed
methods in a recommendation system. VirtualTB is a dy-
namic environment built on OpenAI Gym3 to test our

3. https://gym.openai.com/

Algorithm 2: PPO Update
input: Initialize policy parameter θ0, clipping

parameter ε
1 for k = 0, 1, · · · do
2 Get the trajectories (s, a) on policy πθ = π(θk) ;
3 Estimate advantage At using Eq.(24);
4 Compute the Policy Update

θk+1 = arg max
θ

Eq.(25)

By taking K step of minibatch SGD (via Adma)
5 end
6 θi ← θK ;

method’s feasibility on recommendation tasks. VirtualTB
employs a customized agent to interact with it and achieves
the corresponding rewards. It can also generate several
customers with different preferences during the agent-
environment interaction. In VirtualTB, each customer has
11 static attributes encoded into an 88-dimensional space
with binary values as the demographic information. The
customers have multiple dynamic interests, which are en-
coded into a 3-dimensional space and may change over
the interaction process. Each item has several attributes
(e.g., price and sales volume), which are encoded into a 27-
dimensional space. We use CTR as the evaluation metric
because the gym environment can only provide rewards as
feedback. CTR is defined as follows:

CTR =
repisode

10 ∗Nstep
(29)

where repisode is the reward that the agent receives at each
episode. At each episode, the agent may take Nstep steps
and receive a maximum reward of 10 per step.

4.2.2 Baseline Methods

We evaluate our model against five state-of-the-art methods
covering methods based on deep Q-learning, policy gradi-
ent, and actor-critic networks.

• IRecGAN [50]: An online recommendation method
that employs reinforcement learning and GAN.

• PGCR [51]: A policy-Gradient-based method for con-
textual recommendation.

• GAUM [52]: A deep Q-learning based method that
employs GAN and cascade Q-learning for recom-
mendation.

• KGRL [35]: An Actor-Critic-based method for inter-
active recommendation, a variant of online recom-
mendation.

• GIRL-RS [22]: An inverse reinforcement learning
based method for online recommendation.

Note that GAUM and PGCR are not designed for online
recommendation, and KGRL requires a knowledge graph—
which is unavailable to the gym environment—as the side
information. Hence, we only keep the network structure
of those networks when testing them on the VirtualTB

8

platform.

4.2.3 Hyper-parameters Setting and Results

The hyper-parameters are set in a similar way as in the
traffic signals control. We set the number of episodes to
200, 000 for both the pre-trained policy network and our
method. To ease comparison, we configure each iteration
to contain 100 episodes. The results in Fig. 2 (b) show
our method outperform all state-of-the-art methods. KGRL’s
poor performance may be partially caused by its reliance on
knowledge graph, which is unavailable in our experiments.

4.3 Scanpath Prediction

Scanpath prediction is a type of goal-directed human
intention prediction problem [13]. Take the last task in Fig. 1
for example. Given a few objects, a user may first look at
item 1, then follows the item numbers annotated in the
figure, and finally reaches item 8. The task aims to predict
user’s intention (i.e., item 8), given the start item (i.e., item
1).

4.3.1 Experimental Setup

We follow the same experimental setup as [13] and conduct
all experiments on a public COCO-18 Search dataset4. We
replace the fully-connected layer in the actor-network with
CNN to achieve the best performance of our method on
images. The critic-network has a new structure with two
CNN layers followed by two fully-connected layers. The
discriminator contains all CNN layers with a softmax layer
as output. We also resize the input image from the original
size of 1680 × 1050 into 320 × 512 and construct the state
by using the contextual beliefs calculated from a Panoptic-
FPN with a backbone network (ResNet-50-FPN) pretrained
on COCO2017. We use probability mismatch and scanpath
ratio as the main evaluation metrics. Probability mismatch
is defined as the sum of the absolute differences between
the human and model cumulative probability of target
fixation [13]; Scanpath ratio is calculated as the ratio of
Euclidean distance between the initial fixation location and
the center of the target to the summed Euclidean distances
between fixations to the target.

4.3.2 Baseline Methods

We compare our method with several baseline methods,
including simple CNN based methods, behavior-cloning
based methods, and inverse reinforcement-learning-based
method. Experiments are conducted under the same condi-
tions to ensure fairness.

• Detector: A CNN-based architecture to predict the
location of a target item.

4. https://saliency.tuebingen.ai/datasets/COCO-
Search18/index new.html

• Fixation heuristics [13]: A method similar to Detector
but using the fixation to predict the location of a
target item.

• BC-CNN [53]: A behavior-cloning method that uses
CNN as the basic layer structure.

• BC-LSTM [54]: A behavior-cloning method that uses
LSTM as the basic layer structure.

• IRL [13]: A state-of-the-art inverse reinforcement-
learning-based method for scanpath prediction.

• GIRL-RS [22]: A generative inverse reinforcement
learning method of recommendation. We remove
the recommender and replace it by the prediction
components as [13] did.

4.3.3 Performance Comparison

The hyper-parameters settings are the same as those used
for the recommendation task. We also use the same evalu-
ation metrics as used in [13] to evaluate the performance:
cumulative probability, probability mismatch, and scanpath
ratio. The results in Fig. 2(c) show the cumulative proba-
bility of the gaze landing on the target after the first six
fixations. We report the probability mismatch and scanpath
ratio in table 2.

TABLE 2: Results comparison for selected methods on prob-
ability mismatch and scanpath ratio

Probability Mismatch ↓ Scanpath Ratio↑
Human n.a. 0.862
Detector 1.166 0.687
BC-CNN 1.328 0.706
BC-LSTM 3.497 0.406
Fixation 3.046 0.545

IRL 0.987 0.862
GIRL-RS 0.990 0.870

Ours 0.961 0.881

4.4 Evaluation on Explainability

Explainability plays a crucial role in understanding the
decision-making process. By visualizing the learned reward
map, we show in this experiment that our model can
provide a certain level of interpretability. We evaluate the
explanability for our model in the scanpath prediction sce-
nario. Fig. 4 shows that the reward maps recovered by the
our model depend heavily on the category of the search
target. In the first image, the highest reward is assigned to
the piazza when drinking beers. Similarly, the searching of
road signal on the road, the stop signal get almost all of the
reward while the car get only a few.

4.5 Ablation Study

We test using three different optimization strategies (DDPG,
Adaptive KL Penalty Coefficient and Twin Delayed DDPG)
to update the policy parameter θ. (TD3) [55]. The Adaptive
KL Penalty Coefficient is defined as:

L(θ) = Et
[πθ′(at|st)
πθ(at|st)

At − βKL[πθ(·|st), πθ′(·|st)]
]

(30)

9

1 5 10 15 20
Time Step ('000s)

0

1000

2000

3000

4000

5000

6000

To
ta

l W
ai

tin
g

Ti
m

e
(s

)

Ours
TD3

Adaptive KL Penalty
DDPG

(a) Traffic

1 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CT
R

Ours
DDPG

Adaptive KL Penalty
TD3

(b) Recommendation

0 1 2 3 4 5 6
Number of Fixations Made to Target

0.0

0.2

0.4

0.6

0.8

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Ours
TD3

Adaptive KL Penalty
DDPG

(c) Scanpath Prediction

1 5 10 15 20
Time Step ('000s)

0

1000

2000

3000

4000

5000

6000

To
ta

l W
ai

tin
g

Ti
m

e
(s

)

Ours
Ours-R

Ours-E

(d) Traffic

1 250 500 750 1000 1250 1500 1750 2000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CT
R

Ours
Ours-R

Ours-E

(e) Recommendation

0 1 2 3 4 5
Number of Fixations Made to Target

0.0

0.2

0.4

0.6

0.8

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Ours
Ours-R

Ours-E

(f) Scanpath Prediction

Fig. 3: Results of ablation study for those three selected environments.

TABLE 3: CTR for Different Parameter Settings for GAE and PPO

GAE: λg
0.94 0.95 0.96 0.97 0.98 0.99

PPO: ε

0.05 0.630 ± 0.063 0.632 ± 0.064 0.633 ± 0.062 0.630 ± 0.059 0.626 ± 0.060 0.629 ± 0.059
0.10 0.632 ± 0.062 0.635 ± 0.060 0.636 ± 0.061 0.636 ± 0.058 0.634 ± 0.061 0.633 ± 0.060
0.15 0.633 ± 0.060 0.635 ± 0.061 0.639 ± 0.061 0.640 ± 0.057 0.639 ± 0.059 0.638 ± 0.061
0.20 0.634 ± 0.060 0.636 ± 0.060 0.641 ± 0.063 0.643 ± 0.061 0.643 ± 0.063 0.641 ± 0.058
0.25 0.631 ± 0.061 0.635 ± 0.059 0.636 ± 0.060 0.637 ± 0.060 0.636 ± 0.061 0.634 ± 0.059
0.30 0.630 ± 0.059 0.631 ± 0.061 0.632 ± 0.060 0.630 ± 0.059 0.630 ± 0.058 0.629 ± 0.050

where the β will be adjust dynamically by the following,

{
β ← β/2 d < dtarget ∗ 1.5

β ← β ∗ 2 d >= dtarget ∗ 1.5
(31)

where d = Et[KL[πθold(·|st), πθ(·|st)]]

We empirically choose coefficient 1.5 and 2 and select total
waiting time, CTR, and cumulative probability as the eval-
uation metrics to compare the three optimization strategies
for traffic signal control, recommendation system, and scan-
path prediction, respectively. The results (shown in Fig. 3)
show our optimization method achieve a similar result as
TD3 on all the three tasks but is better than TD3 on the
recommendation task. Hence, we conduct a further step
about the parameter selection about PPO and GAE, which
can be found in Table 3.

Moreover, we investigate the effect of the proposed
stabilized approach and sample efficiency. We report those
results on Figure 4, where Our-S represents the proposed
method without the stabilized training and Our-R repre-
sents the proposed method without the way we used to
increase the sample efficiency.

5 RELATED WORK

User behavior tendency modeling has been an active topic
in research, and most previous efforts have been focusing
on feature engineering rather than an end-to-end learning
structure. Kim et al. [7] considers long-term interest as a
reasonable representation of general interest and acknowl-
edges its importance for personalization services. On this
basis, Liu et al. [56] propose a framework that considers
both long-term and short-term interest for user behavior
modeling. Rather than establishing static models, Chung et
al. [57] models long-term and short-term user profile scores
to model user behaviors incrementally. Recently, Song et
al. [58] propose to jointly model long-term and short-term
user interest for recommendation based on deep learning
methods. Pi et al. [59] further propose a MIMN model for se-
quential user behavior modeling. Despite good performance
on their respective tasks, all the above methods are task-
specific and lack generalization ability.

Reinforcement learning is widely used for user behav-
ior modeling in recommendation systems. Zheng et al. [2]
adopt deep Q-learning to build up user profiles during
the interaction process in a music recommendation system.
Zou et al. [60] improve the Q-learning structure to stabilize

10

1

2

(a) Piazza

1
2

3

4

(b) Stop

1

2

3

4

5

6

(c) Piano

Fig. 4: Reward maps learned by the our model for three
different search targets which are piazza, stop signal and
piano respectively in the context of Scanpath Prediction. The
number means user’s vision trajectory for searching target
item which is the largest number refers to. For example, in
(a) 2 represents piazza, in (b) 4 represents to stop sign and
in (c), 6 represents to the piano. In addition, the hotmap
represent the highest reward area which will be awarded to
agent.

the reward function and make the recommendation robust.
[35], [61], [62] apply reinforcement learning for extracting
user’s interest from a knowledge graph. Liu et al. [36]
embed user’s information into a latent space and conduct
recommendation via deep reinforcement learning. Different
from those mentioned works, Pan et al. [51] applies the pol-
icy gradient directly to optimize the recommendation policy.
Chen et al. [52] integrates GAN into the reinforcement learn-
ing framework so as to enrich the latent space with user’s
side information to improve the recommendation accuracy.
Shang et al. [63] consider the environment co-founder fac-
tors and propose a multi-agent based reinforcement learning
method for recommendation. All the above studies require
defining accurate reward functions, which are hard to obtain
in the real world.

Inverse reinforcement learning emerges where reward
functions cannot be defined [20]. Lee et al. [64] firstly
use inverse reinforcement learning to learn user’s behavior
styles. However, general inverse reinforcement learning is
computationally expensive. Ho et al. [21] propose a genera-
tive reinforcement learning approach to improve efficiency.
Fu et al. [31] further extend the idea to a general form to
obtain a more stable reward function. Kostrikov et al. [32]
find a generative method may suffer instability in training,
which can be relieved by using EM-distance instead of
JS-divergence. Yang et al. [13] first introduce the inverse
reinforcement learning into the scanpath prediction and
demonstrate the superior performance. IRL demonstrates a
huge potential and is widely used in robot learning as it can
empower the agent to learn from demonstration in different
environments and tasks without dramatic exploration about
the environment or being familiar with the tasks. Chen et
al. [22] expand this idea into recommender systems and
show the feasibility of IRL in recommendation tasks.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method based on advantage
actor-critic network with inverse reinforcement learning to
overcome the adverse impact caused by inaccurate reward
functions for user behavior modeling. In particular, we use
the Wasserstein GAN instead of GAN to increase train-
ing stability and a replay buffer for off-policy learning
to increase sample efficiency. A comparison with several
state-of-the-art methods in three different scenarios (namely
traffic signal control, recommendation system, and scanpath
prediction) demonstrate our method’s feasibility and su-
perior performance to baseline methods. This work poses
a promising direction towards applying inverse reinforce-
ment learning to real life. It demonstrates the feasibility of
generalized behavior modeling in several scenarios, such as
recommender systems and traffic light control, which could
be of importance in smart cities and related applications.

Although experience replay can boost sample efficiency
by switching the sampling process from the environment
to replay buffer, it may not be ideal as some tasks (e.g.,
recommendation) may have giant state and action spaces.
Moreover, not every experience is useful even if it comes
from demonstration because expert demonstrations are ran-
domly sampled from replay buffer and may be orthogonal
with the current state, which leads to adverse actions. Possi-
ble solutions include state-aware experience replay methods
and prioritized experience replay based methods [65]. An-
other point for potential improvement is with Wasserstein
GAN, as the Lipschitz constraint is hard to enforce and may
lead to a model convergence issue.

REFERENCES

[1] J. Hong, E.-H. Suh, J. Kim, and S. Kim, “Context-aware system for
proactive personalized service based on context history,” Expert
Systems with Applications, vol. 36, no. 4, pp. 7448–7457, 2009.

[2] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie,
and Z. Li, “Drn: A deep reinforcement learning framework for
news recommendation,” in Proceedings of the 2018 World Wide Web
Conference, 2018, pp. 167–176.

[3] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM
Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[4] L. Hu, L. Cao, S. Wang, G. Xu, J. Cao, and Z. Gu, “Diversify-
ing personalized recommendation with user-session context.” in
IJCAI, 2017, pp. 1858–1864.

[5] X. Xu, F. Dong, Y. Li, S. He, and X. Li, “Contextual-bandit based
personalized recommendation with time-varying user interests.”
in AAAI, 2020, pp. 6518–6525.

[6] X. Wang, Y. Wang, D. Hsu, and Y. Wang, “Exploration in in-
teractive personalized music recommendation: a reinforcement
learning approach,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 11, no. 1, pp. 1–22,
2014.

[7] H. R. Kim and P. K. Chan, “Learning implicit user interest hi-
erarchy for context in personalization,” in Proceedings of the 8th
international conference on Intelligent user interfaces, 2003, pp. 101–
108.

[8] T. B. Sheridan, “Human–robot interaction: status and challenges,”
Human factors, vol. 58, no. 4, pp. 525–532, 2016.

[9] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone, “Mul-
timodal probabilistic model-based planning for human-robot in-
teraction,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–9.

[10] M. Siam, C. Jiang, S. Lu, L. Petrich, M. Gamal, M. Elhoseiny, and
M. Jagersand, “Video object segmentation using teacher-student
adaptation in a human robot interaction (hri) setting,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 50–56.

11

[11] S. Seko, T. Yagi, M. Motegi, and S. Muto, “Group recommendation
using feature space representing behavioral tendency and power
balance among members,” in Proceedings of the fifth ACM conference
on Recommender systems, 2011, pp. 101–108.

[12] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future
challenges,” ACM Computing Surveys (CSUR), vol. 47, no. 1, pp.
1–45, 2014.

[13] Z. Yang, L. Huang, Y. Chen, Z. Wei, S. Ahn, G. Zelinsky, D. Sama-
ras, and M. Hoai, “Predicting goal-directed human attention using
inverse reinforcement learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
193–202.

[14] A. L. Bazzan, “Opportunities for multiagent systems and multia-
gent reinforcement learning in traffic control,” Autonomous Agents
and Multi-Agent Systems, vol. 18, no. 3, p. 342, 2009.

[15] H. Liu, Y. Zhang, W. Si, X. Xie, Y. Zhu, and S.-C. Zhu, “Interactive
robot knowledge patching using augmented reality,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1947–1954.

[16] X. Chen, L. Yao, J. McAuley, G. Zhou, and X. Wang, “A survey of
deep reinforcement learning in recommender systems: A system-
atic review and future directions,” arXiv preprint arXiv:2109.03540,
2021.

[17] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “Deep reinforcement learning: A brief survey,” IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[18] S.-Y. Chen, Y. Yu, Q. Da, J. Tan, H.-K. Huang, and H.-H. Tang,
“Stabilizing reinforcement learning in dynamic environment with
application to online recommendation,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018, pp. 1187–1196.

[19] H. Chen, X. Dai, H. Cai, W. Zhang, X. Wang, R. Tang, Y. Zhang,
and Y. Yu, “Large-scale interactive recommendation with tree-
structured policy gradient,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 3312–3320.

[20] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in Icml, vol. 1, 2000, p. 2.

[21] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
in Advances in neural information processing systems, 2016, pp. 4565–
4573.

[22] X. Chen, L. Yao, A. Sun, X. Wang, X. Xu, and L. Zhu, “Generative
inverse deep reinforcement learning for online recommendation,”
arXiv preprint arXiv:2011.02248, 2020.

[23] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in Advances
in neural information processing systems, 2017, pp. 5767–5777.

[24] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse re-
inforcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[25] U. Syed, M. Bowling, and R. E. Schapire, “Apprenticeship learning
using linear programming,” in Proceedings of the 25th international
conference on Machine learning, 2008, pp. 1032–1039.

[26] U. Syed and R. E. Schapire, “A game-theoretic approach to ap-
prenticeship learning,” in Advances in neural information processing
systems, 2008, pp. 1449–1456.

[27] M. Bloem and N. Bambos, “Infinite time horizon maximum causal
entropy inverse reinforcement learning,” in 53rd IEEE Conference
on Decision and Control. IEEE, 2014, pp. 4911–4916.

[28] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Modeling interaction
via the principle of maximum causal entropy,” 2010.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Advances in neural information processing systems, 2014, pp.
2672–2680.

[30] X. Nguyen, M. J. Wainwright, M. I. Jordan et al., “On surrogate
loss functions and f-divergences,” The Annals of Statistics, vol. 37,
no. 2, pp. 876–904, 2009.

[31] J. Fu, K. Luo, and S. Levine, “Learning robust rewards
with adverserial inverse reinforcement learning,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rkHywl-A-

[32] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson,
“Discriminator-actor-critic: Addressing sample inefficiency and
reward bias in adversarial imitation learning,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=Hk4fpoA5Km

[33] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine learn-
ing, 2016, pp. 1928–1937.

[34] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in
Advances in neural information processing systems, 2000, pp. 1008–
1014.

[35] X. Chen, C. Huang, L. Yao, X. Wang, W. Liu, and W. Zhang,
“Knowledge-guided deep reinforcement learning for interactive
recommendation,” arXiv preprint arXiv:2004.08068, 2020.

[36] F. Liu, H. Guo, X. Li, R. Tang, Y. Ye, and X. He, “End-to-end deep
reinforcement learning based recommendation with supervised
embedding,” in Proceedings of the 13th International Conference on
Web Search and Data Mining, 2020, pp. 384–392.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[38] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience
replay,” arXiv preprint arXiv:1611.01224, 2016.

[39] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[40] C. Villani, Optimal transport: old and new. Springer Science &
Business Media, 2008, vol. 338.

[41] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet,
“Are gans created equal? a large-scale study,” in Advances in neural
information processing systems, 2018, pp. 700–709.

[42] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[43] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage esti-
mation,” arXiv preprint arXiv:1506.02438, 2015.

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in neural information processing systems, 2019, pp. 8026–
8037.

[46] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann,
Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel,
P. Wagner, and E. Wießner, “Microscopic traffic simulation
using sumo,” in The 21st IEEE International Conference on
Intelligent Transportation Systems. IEEE, 2018. [Online]. Available:
https://elib.dlr.de/124092/

[47] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell,
“Reinforcement learning from imperfect demonstrations,” 2018.
[Online]. Available: https://openreview.net/forum?id=BJJ9bz-0-

[48] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[49] J.-C. Shi, Y. Yu, Q. Da, S.-Y. Chen, and A.-X. Zeng, “Virtual-taobao:
Virtualizing real-world online retail environment for reinforce-
ment learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 4902–4909.

[50] X. Bai, J. Guan, and H. Wang, “A model-based reinforcement
learning with adversarial training for online recommendation,” in
Advances in Neural Information Processing Systems, 2019, pp. 10 735–
10 746.

[51] F. Pan, Q. Cai, P. Tang, F. Zhuang, and Q. He, “Policy gradients for
contextual recommendations,” in The World Wide Web Conference,
2019, pp. 1421–1431.

[52] X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song, “Generative
adversarial user model for reinforcement learning based recom-
mendation system,” in International Conference on Machine Learning,
2019, pp. 1052–1061.

[53] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learn-
ing affordance for direct perception in autonomous driving,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 2722–2730.

[54] N. Ballas, L. Yao, C. Pal, and A. Courville, “Delving deeper into
convolutional networks for learning video representations,” arXiv
preprint arXiv:1511.06432, 2015.

[55] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing func-
tion approximation error in actor-critic methods,” arXiv preprint
arXiv:1802.09477, 2018.

12

[56] H. Liu and M. Zamanian, “Framework for selecting and delivering
advertisements over a network based on combined short-term and
long-term user behavioral interests,” Mar. 15 2007, uS Patent App.
11/225,238.

[57] C. Y. Chung, A. Gupta, J. M. Koran, L.-J. Lin, and H. Yin, “Incre-
mental update of long-term and short-term user profile scores in
a behavioral targeting system,” Mar. 8 2011, uS Patent 7,904,448.

[58] Y. Song, A. M. Elkahky, and X. He, “Multi-rate deep learning for
temporal recommendation,” in Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information
Retrieval, 2016, pp. 909–912.

[59] Q. Pi, W. Bian, G. Zhou, X. Zhu, and K. Gai, “Practice on
long sequential user behavior modeling for click-through rate
prediction,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp. 2671–
2679.

[60] L. Zou, L. Xia, P. Du, Z. Zhang, T. Bai, W. Liu, J.-Y. Nie, and D. Yin,
“Pseudo dyna-q: A reinforcement learning framework for inter-
active recommendation,” in Proceedings of the 13th International
Conference on Web Search and Data Mining, 2020, pp. 816–824.

[61] K. Zhao, X. Wang, Y. Zhang, L. Zhao, Z. Liu, C. Xing, and X. Xie,
“Leveraging demonstrations for reinforcement recommendation
reasoning over knowledge graphs,” in Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2020, pp. 239–248.

[62] P. Wang, Y. Fan, L. Xia, W. X. Zhao, S. Niu, and J. Huang, “Kerl:
A knowledge-guided reinforcement learning model for sequential
recommendation,” in Proceedings of the 43rd International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
2020, pp. 209–218.

[63] W. Shang, Y. Yu, Q. Li, Z. Qin, Y. Meng, and J. Ye, “Environ-
ment reconstruction with hidden confounders for reinforcement
learning based recommendation,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 566–576.

[64] S. J. Lee and Z. Popović, “Learning behavior styles with inverse re-
inforcement learning,” ACM transactions on graphics (TOG), vol. 29,
no. 4, pp. 1–7, 2010.

[65] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” arXiv preprint arXiv:1511.05952, 2015.

Xiaocong Chen is a PhD student with School of
Computer Science and Engineering, The Univer-
sity of New South Wales (UNSW), Australia. His
research interests are deep learning application
and recommender system.

Lina Yao received the masters and PhD degrees
from School of Computer Science, University of
Adelaide, in 2014. She is currently an Associate
Professor with School of Computer Science and
Engineering, The University of New South Wales
(UNSW), Australia. Her research interest lies in
machine learning and data mining, and applica-
tions to Internet of Things, information filtering
and recommending, human activity recognition
and brain computer interface. She is a member
of the IEEE and the ACM.

Xianzhi Wang received the Ph.D. degree from
Harbin Institute of Technology. He is a Lecturer
with School of Computer Science, University of
Technology Sydney, Australia. His research in-
terests include Internet of Things, artificial in-
telligence, information fusion, and recommender
systems. He was a member of the IEEE and
ACM.

Aixin Sun received the BASc (First Class Hon-
ours) and PhD degrees in computer engineering
from the School of Computer Science and Engi-
neering, Nanyang Technological University, Sin-
gapore, in 2001 and 2004, respectively. He is an
associate professor in the School of Computer
Science and Engineering, Nanyang Technologi-
cal University, Singapore. His research areas in-
clude text mining, social computing, multimedia,
and digital libraries.

Wenjie Zhang received the PhD degree in com-
puter science and engineering from the Univer-
sity of New South Wales, in 2010. She is cur-
rently an associate professor and ARC DECRA
(Australian Research Council Discovery Early
Career Researcher Award) fellow in the School
of Computer Science and Engineering, the Uni-
versity of New South Wales, Australia. Since
2008, she has published over 150 research pa-
pers and over 100 papers are published in top
venues such as SIGMOD, VLDB, ICDE, WWW,

SIGIR, TODS, VLDBJ and TKDE.

Quan Z. Sheng received the Ph.D. degree in
computer science from the University of New
South Wales (UNSW). He is currently a Full
Professor and the Head of the Department of
Computing, Macquarie University. He has more
than 390 publications as edited books and pro-
ceedings, refereed book chapters, and refereed
technical papers in journals and conferences,
including ACM Computing Surveys, ACM TOIT,
ACM TOMM, ACM TKDD, VLDB Journal, Com-
puter (Oxford), IEEE Transactions on Parallel

and Distributed Systems, TKDE, DAPD, IEEE Transactions on Services
Computing, WWWJ, IEEE Computer, IEEE Internet Computing, Com-
munications of the ACM, VLDB, ICDE, ICDM, CIKM, EDBT, WWW,
ICSE, ICSOC, ICWS, and CAiSE. He is a member of ACM.

