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Abstract

Damage detection in wood materials has numerous applications in different industries, such as

construction and forestry. Wood is generally a complex medium due to its orthotropic and

random properties, which increases the difficulty of non-destructive damage testing. However,

machine learning algorithms can be employed to overcome this problem. In this paper, hole-

defect classification problems of two common types of wood materials, namely hard (marbau)

and soft (pine) wood, are studied using a naive Bayes classification technique. To this end,

the results of contact ultrasonic tests conducted on these types of woods in different directions,

i.e. tangential and radial to the growth rings of wood, were investigated. The various states of

the intact, small defect, and large defect of each type of wood were considered in the testing

regime. It is known that contact ultrasonic tests are highly sensitive to different aspects of the

test, such as the amount of couplant gel applied to surfaces, the amount of pressure applied

to the transducer and receiver, and misalignment of the transducer and receiver. Therefore, 50

replicates of each test were implemented. First, an advanced signal decomposition algorithm

termed Variational Mode Decomposition (VMD) was exploited to derive some features from

the recorded ultrasonic signals. Then, the derived features were used in a set of classification

problems using a naive Bayes classifier to classify the damage state of the specimens. Different

types of naive Bayes classifiers, namely Gaussian and kernel, along with combinations of different

types of features were employed to improve the results, ultimately achieving nearly 100% 10-fold

cross-validation accuracy in all cases individually. However, when cases from different types of

wood and direction of the tests were mixed, 93.6% 10-fold cross-validation accuracy was achieved

for the classification problem based on the health state of the cases, using kernel naive Bayes

classifier and a mixture of two types of features.
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1. Introduction

Wood is an effective material for construction due to its good heat and electrical insulation,

workability, among other useful properties [1, 2]. For instance, in Australia, more than 80% of

power utility poles, roughly more than 5 million poles in total, are made from wood [3, 4].

Wood may be described as an orthotropic material, which means that its mechanical prop-

erties vary in different directions [5]. Therefore, independent mechanical properties are usually

expected in three mutually perpendicular axes, i.e. longitudinal (parallel to the fiber/grain),

radial (normal to the growth rings), and tangential (tangent to the growth rings) [6]. However,

this diversity of mechanical properties can vary from one type of wood to another due to the

change of the microfibril angle [7]. These mechanical properties can be identified using different

techniques, such as static tests [8], near-infrared (NIR) spectroscopy [9], image processing [10],

and acoustic measurements [11].

However, wood materials may deteriorate during production and/or while in-service. The

former can happen when standing trees are not pruned and, therefore, undergo a process of nat-

ural self-pruning. The latter occurs due to either biological (such as decay, fungi, and termites)

or physical (climatic such as rain and sun) processes [12]. Therefore, detection techniques for

assessing wood quality in different industries have attracted more research interest. This in-

cludes wood damage monitoring for mechanised harvesting [13], damage detection of in-service

wooden poles [3, 14, 15, 16, 17], preservation of wooden architectural heritage [18, 19, 20], as

well as forest quality assessment, which is an important research field in forestry [21, 22].

Over the past decade, many different non-destructive damage testing (NDT) techniques

have been developed for wood material assessment. These techniques generally have two key

components: 1) a sensing technology used for conducting a nondestructive damage testing on

wood structures, and 2) a damage detection or classification strategy to derive information about

the health condition of the wood materials from the recorded signals.

Different sensing technologies have also been employed to this end, such as ultrasonics [23],

radiography [24] and thermography [25]. Among these, ultrasonic testing seems to be the most

promising and widely used approach since it is less intrusive and less expensive [26] compared to

other methods. Moreover, ultrasonic waves are highly sensitive to wood mechanical properties

and defects [27].

Ultrasonic techniques have been widely used for the evaluation of wood materials [28, 29, 30,

31, 32, 33]. Among such studies, the evaluation of mechanical properties of wood with artificial

deterioration has received great interest from researchers [12, 29, 34, 35]. Ultrasonic devices

can be classified into two main categories: contact and non-contact devices. The non-contact
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ultrasonic devices include electromagnet ultrasonics (EU) [36], laser ultrasonics (LU) [37], and

air-coupled ultrasonics (ACU) [38, 39, 40, 41]. Although the use of non-contact ultrasonics for

NDT has been reported widely in the literature, there are some limitations in terms of their

application. For instance, EU devices do not perform well in non-conductive mediums, and

LU devices are relatively expensive. It is known that ACU devices are effective when used for

evaluation of low density materials, like paper, wood, and carbon-reinforced composites due to

the smaller impedance difference between such materials and air [40]. However, the quality of

ACU signals is usually poor, thus further demanding more advanced signal processing techniques

to process signals obtained from ACU tests [39]. Therefore, the application of contact ultrasonic

devices still seems promising despite some existing challenges. For instance, a couplant gel needs

to be employed to fill the gap between the transducer/receiver and surface of the wooden section

to ensure proper transmissibility of the ultrasonic waves into the wood material. Also, any

misalignment or vibration of the transmitter or receiver can affect the quality of measurements.

This work demonstrates the possibility of using contact ultrasonics for damage evaluation

of wood materials, namely soft (pine) and hard (marbau) timbers. Damage was artificially

introduced to the specimens in both radial and tangential directions to the growth rings of

wood. Two types of hole damage were drilled into the specimens to synthesise small and large

defects. A contact ultrasonic device was used for 50 replicate tests on each specimen. An

advanced signal processing approach termed Variational Mode Decomposition (VMD) was then

used to derive some features from the recorded signals. These features were subsequently fed

into a naive Bayes classifier to solve some supervised damage classification problems. As such,

further organisation of this paper is as follows:

In Chapter 2, the procedure of the experimental tests are explained. Then, Chapter 3

presents the theory of VMD and how it can be used to derive features from the recorded ultra-

sonic signals. Since VMD is a parametric decomposition algorithm, the procedure of specifying

an appropriate value to each parameter for the purpose of this paper is explained. In Chapter

4, the theory of the naive Bayes classifier is described. Chapter 5 provides a detailed discussion

of the obtained results from solving the classification problems using different types of features.

Finally, some concluding remarks and perspectives for future work are drawn in Chapter 6.

2. Experimental set-up and measurements

The two types of wood materials studied in this study include soft (pine) and hard (merbau)

wood. A total of six specimens of each type was selected for testing, where the size of each

specimen was 300 × 90 × 90 mm3. The testing procedure was performed on each specimen in
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Table 1: The number of test samples collected from different types of ultrasonic tests.

Radial test (tangential defect)

Defect type Softwood Hardwood

Intact 300 300

Small tangential defect 150 150

Large tangential defect 150 150

Tangential test (radial defect)

Defect type Softwood Hardwood

Intact 300 300

Small radial defect 150 150

Large radial defect 150 150

three phases: (1) intact, (2) small defect, and (3) large defect states of the specimens. In phase

(1), all six specimens of each type were initially tested in both radial and tangential directions. In

phase (2), a 6-mm small hole (roughly 7% of the cross section of specimens) was drilled through

the tangential direction of three out of six specimens to simulate a small defect, and then the

specimens were tested along their radial direction (perpendicular to the line of defect) (Figure

1c). For the remaining three specimens, a small hole was drilled with the same size through

their radial direction and tested through their tangential direction (Figure 1d). In phase (3), for

all defective specimens from stage (2), a larger 13-mm hole (roughly 14% of the cross section of

specimens) was drilled, and the same procedure of testing in phase (3) was repeated.

The testing device was a Pundit PL200, as shown in Figure 1b. According to the device

manual [42], 54-kHZ ultrasonic transducers are more suitable, than other alternatives such as

250-kHz transducers, for testing wood materials. Therefore, the 54-kHz transducer was employed

to transmit a sinc-like probing P-wave (compression wave). The sampling frequency was set at

10 MHz on the device at the receiver side to provide enough resolution in the frequency domain.

The readers are referred to [43] for further details. In order to ensure a proper contact, a

couplant gel (Proceq Ultraschall-Koppelpaste) was used to fill the gap between the surface of

the transducer and receiver and the specimens. However, there were uncertainties regarding the

amount of the gel to-be used and the amount of pressure to-be applied to the transducer and

receiver by hand. To address this issue, 50 replicates of each ultrasonic test were conducted in

each case. Table 1 shows the number of tests conducted on the specimens of different types and

health conditions. Next, we explain how some damage sensitive features (DSFs) can be derived

from each measurement using an advanced signal decomposition technique, called Variational
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(a) Schematic of test (b) Ultrasonic device (Pundit PL 200)

90 mm

90 mm

(c) Radial test (B-B)

90 mm

90 mm

(d) Tangential test (B-B)

Figure 1: Ultrasonic test experimental set-up [43].

Mode Decomposition (VMD).

3. Feature extraction using Variational Mode Decomposition

The raw recorded ultrasonic signals need to be preprocessed to derive some DSFs to be fed

into the classification problems. To that end, VMD was used considering the fact that wood is

a random medium and there are many nonlinear effects in the recorded ultrasonic signals due

to the interaction between the ultrasonic waves and the wood grains. A discussion on the basic

theories of VMD is subsequently provided to clarify its application for feature extraction.

VMD is an advanced signal decomposition algorithm that is used to decompose a non-linear

non-stationary signal into its oscillatory modes, which are termed Intrinsic Mode Functions
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Figure 2: The general scheme of the VMD applied to a signal S(t) under the constraint of S(t) = Σk uk(t).

(IMF) [44]. Each IMF is a frequency and/or amplitude modulated signal in the form of

uk(t) = Ak(t) cos(φk(t)) (1)

where Ak(t) and φk(t) are the time-dependent amplitude and phase of the kth IMF, respec-

tively. VMD is a variational optimisation problem, which decomposes a given signal S(t) into K

IMFs {uk} = {u1, u2, ..., uK}, the sum of which constructs the original signal minus some noise,

depending on the settings. Each IMF is narrow-band and, therefore, can be considered mono-

component. As such, the instantaneous frequency of an IMF varies slightly around its center

frequency ωk where k ∈ {1, 2, . . . ,K}. The aforementioned variational optimisation problem of

VMD is written as:

min
{uk} & {ωk}

∑
k

∥∥∥∥∂t (δ(t) +
j

πt
∗ uk(t)

)
e−jωkt

∥∥∥∥2; s.t. S(t) =
∑
k

uk(t) (2)

where, in (2), ∗ is the convolution operator, and j is the imaginary unit. Figure 2 shows the

overall scheme of the VMD that leads to obtaining (2). The solution to the above minimisa-

tion problem is the saddle point of the augmented Lagrangian in a sequence of iterative sub-

optimizations called the alternate direction method of multipliers (ADMM) [44]. As such, VMD

is a parametric decomposition algorithm, meaning that some parameters need to be specified

prior to decomposition. These include:

1. The number of IMFS K, which determines how many modes the signal will be decom-

posed into. Later, this paper will demonstrate that the number of decomposition plays an

important role in the classification problem.
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2. The quadratic penalty term α, which is a denoising factor. The larger the α, the less the

amount of the noise admitted to the decomposition process. As such, for a large α, the

exact reconstruction is not possible due to the denoising effect.

3. Time step τ , which determines how quickly the Lagrangian multiplier accumulates the

reconstruction error. In case the exact reconstruction is intended, one can set τ to a small

number like 0.1, as suggested by the proposers of VMD [45]. Otherwise, one can set τ to

zero when the reconstruction is not strictly enforced, but is encouraged in least-squares

sense. Since a lowpass filter is used for denoising in this paper, τ is set to 0.1. Therefore,

regardless of the value of α, denoising will not occur during the decomposition process,

although, in this paper, a small value of α = 10 was considered.

4. The tolerance parameter ε, which controls the convergence of the algorithm, is set to

10−5 in this paper. Selecting a smaller value, say ε = 10−7, only increased the time

of decomposition while not having any further improvement effect on the decomposition

results.

5. Initialisation center frequency of IMFs init, which initialises {ωk} and can be either zero

(init = 0), uniform (init = 1), or random (init = 2). It has been reported that the way of

initialising center frequencies has little effect on the decomposition results [46]. Therefore,

in this paper, the initial guess for ω is specified to zero, i.e. init = 0.

6. Deriving a DC component DC, which determines whether or not the first mode is set and

kept at DC (zero frequency). Since the center frequency of IMFS is taken as features in this

paper, it is important that DC be set to zero (false) due to the fact that no DC component

(an IMF with zero center frequency) should be extracted from ultrasonic signals.1

Herein, all signals were first normalized and passed through a low-pass filter, then decom-

posed into K IMFs. The center frequency of IMFs were taken as the features in this work. The

naive Bayes classifier was used to solve the classification problem using the derived features based

on the labeled training sets. Further details will be discussed, following a brief presentation of

the background theory of the naive Bayes classification technique.

4. Feature classification using naive Bayes Classifier

Naive Bayes is a Bayesian classifier that assigns the most likely class C to a given exam-

ple described by its features X = (x1, x2, . . . , xn), assuming that features are independent for

1Note that the naive Bayes classifier fits a probability distribution to each feature across all observations.

However, having identical zero center frequencies (features) will contradict this.
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a given class. This assumption can be stated as P (X| C) =
∏n

j=1 P (xj | C). Despite this

unrealistic assumption, the resulting classifier is remarkably successful in practice. However,

this assumption is compatible with the features derived from VMD as it decomposes a signal

into some quasi-orthogonal components. Therefore, relatively independent center frequencies

are derived for the components. The basic theory of the naive Bayes classification technique is

subsequently discussed.

Consider X to be vector of features, where each feature xi takes a value in its domain Di.

Therefore, the set of all feature vectors can be shown as Ω = D1 ×D2 × · · · ×Dn. Take m as

the number of classes and C as an unobserved random variable denoting the class to which each

feature X is assigned. As such, C can take a value in {0, 1, 2, . . . ,m− 1}. Accordingly, function

g : Ω −→ {0, 1, 2, . . . ,m − 1} is a concept to be learned, where g(X) = C. There can be two

types of concepts: deterministic and undeterministic. As such, deterministic g is a noise-free

concept that always assigns the same class to a given feature, although it can be noisy in general

and, therefore, random.

By applying the Bayes rule, one can obtain a posteriori probability of a class C = i given

X as:

P (C = i|X) =
P (X| C = i) P (C = i)

P (X)
. (3)

where P (C = i) and P (C = i|X) are a priori and a posteriori probabilities of the ith class given

the set of features X, respectively. P (X| C = i) is the likelihood of feature vector X representing

the ith class, and P (X) is the probability of predictors regardless of the hypothesis and is

identical for all classes. Therefore, according to the law of total probability, the denominator of

(3) is effectively identical for all hypotheses and can be ignored. As such, the Bayes discriminant

function f∗i (X) for a given class i ∈ {0, 1, 2, . . . ,m− 1} is defined as:

f∗i (X) = P (X| C = i) P (C = i) (4)

The Bayes classifier for a particular class i is then the discriminant function h∗(x) that maximizes

(4); and therefore:

h∗(X) = arg max
i

P (X| C = i) P (C = i) (5)

which finds the maximum a posteriori probability (MAP) for given X. Since the direct es-

timation of P (X| C = i) in (5) is usually hard, the naive Bayes classifier benefits from the

assumption that the features are independent. As such, the naive Bayes classifier NB(x) is

defined by discriminant functions fNB
i as:

fNB
i (X) =

n∏
j=1

P (xj | C = i) P (C = i) (6)

8



Different probability distribution functions can be used to represent the distribution of predictors

(features), the most common of which is the Gaussian distribution function. In this work, we

applied two types of naive Bayes classifiers, namely Gaussian and kernel naive Bayes. To this

end, we first started with the Gaussian naive Bayes classifier to try to achieve the best results

for all cases. We further demonstrate why the simple naive Bayes may not be applicable to some

cases, and therefore, the kernel naive Bayes should be used instead.

Further details about the background theory of the naive Bayes classification technique can

be found in [47].

5. Experimental results and discussions

5.1. Using center frequency of IMFs as feature

All signals were passed through a lowpass filter with a cutoff frequency of 300 kHz which

is an order of magnitude above the transmitted pulse frequency, i.e. 54 kHz. The signals then

were normalized prior to decomposition as follows:

S(t) =
S(t)− µ

max−min
(7)

where µ, max, and min represent the mean, maximum and minimum values of the signal S(t),

respectively, and S(t) is the normalized signal. The ultrasonic signals were then decomposed into

different numbers of IMFs, where the center frequencies of all IMFs are considered as DSFs. As

such, K DSFs (center frequencies) can be derived by decomposing the signal into K IMFs. We

hypothesize that over-decomposing the signal will produce IMFs with closer center frequencies,

which will subsequently make the task of classification difficult. On the other hand, under-

decomposing the signals will cause loss of information about the damage state of the specimens.

Therefore, different numbers of decomposition and, thus, different numbers of features were

used to obtain the optimum number of decomposition for each classification problem. Since the

signals were passed through a lowpass filter prior to decomposition, the effect of the quadratic

penalty term was neglected by setting τ = 0.1. Furthermore, the tolerance parameter ε was

set to 10−5 in this study. Figure 3 shows an example of a filtered and normalized ultrasonic

signal decomposed into three IMFs along with their center frequencies. Figure 4 shows the

Welch power spectral density (PSD) (see pwelch in Matlab) of the IMFs corresponding to this

decomposition. It has been mentioned in several researches that VMD, unlike EMD, does not

suffer from the mode mixing phenomenon [48, 49]. However, the PSD plots of the obtained IMFs

show some level of mode mixing in the obtained IMFs. However, applying the center frequency

of IMFs as features can reduce the adverse effect of mode mixing on the classification problem.
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(b) IMF1, ω1 = 0.0063
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(d) IMF3, ω3 = 0.0854

Figure 3: An example of filtered and normalised ultrasonic signal decomposed into three IMFs along with their

center frequencies.

The derived features were then fed into a Gaussian naive Bayes classifier for classification

in the Matlab’s machine learning and deep learning toolbox [50]. To that end, four different

classification tasks were ran based on the prior knowledge about the type of wood and direction

through which the tests were conducted. The tasks include: (1) soft wood in the radial direction,

(2) soft wood in the tangential direction, (3) hard wood in the radial direction, and (4) hard wood

in the tangential direction. Therefore, regarding the number of the tests conducted on each case

(Table 1), there were 600 samples for each classification problem with 300 tests conducted on

intact specimens, 150 tests conducted on specimens with small defects, and 150 tests conducted

on specimens with large defects. Therefore, a priori probability was assigned to each class

considering the proportional number of tests conducted for that class, specifically 0.5, 0.25,

and 0.25 for intact, small damage, and large damage categories, respectively. A 10-fold cross-

validation test was then ran on each classification problem.

Figure 5 displays the accuracy achieved for each classification task using different numbers
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Figure 4: Welch power spectral density of the original signal and its decomposed IMFS.

of decomposition (features). As can be seen from the figure, different results were obtained for

different cases as the number of decomposition increased.

Regarding the accuracy obtained for marbau (hard wood) tested in the radial direction (Mr),

the best result of 83.33% accuracy was obtained using six features (Figure 5a). As previously

hypothesized, the accuracy decreased when fewer or more features were used. However, as for

marbau tested in the tangential direction (Mt), the results are counter-intuitive as the trend

completely reversed. Specifically, the best result, 100% accuracy, was achieved using only two

(or three) features, plunged when using more features (up to seven), and then increased again

thereafter (Figure 5b). Regarding the pine samples tested in the radial direction (Pr), the best

result, 99.5% accuracy, was achieved using three (or four) features (Figure 5c). Likewise, the

accuracy decreased using fewer or more features (decomposition). A similar trend can be seen

in the Figure 5d regarding the accuracy results obtained for the pine samples tested in the

tangential direction (Pt) where the best result of 71.17 % accuracy was achieved using three

features (decomposition).
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Figure 5: Calculated accuracy of classification problem run on each task after 10-fold cross-validation using center

frequency of IMFs as features.

The results suggest that the best accuracy was achieved for Mt followed by Pr at 100%

and 99.5%, respectively. However, the results of classification tasks ran on Mr and Pt are

not satisfactory. Accordingly, the worst result was obtained for Pt at 71.17 % accuracy. The

penultimate worst result was obtained for the classification task ran on Mr at 83.33 % accuracy.

Therefore, we then shifted our attention on improving the results of classification problems of

Mr and Pt.

Since a 10-fold cross-validation classification task was ran on each case, the confusion matrix

obtained for each fold of cross-validation conducted on Mr and Pt is presented (Figures 6 and 7)

to show how the classifier performs on each fold for these cases. Note that there are 60 data, 1
10

of the entire dataset, used in each fold of cross-validation. While the classifier does not confuse

any of the intact or small defect classes with other classes regarding Mr, it is clear that the

classifier struggles with differentiating between the large defect class and other classes. As for

Pt, however, the classifier confuses all classes with all others, whereby the worst results were
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obtained for the large damage and the best results for the intact class. Therefore, we conclude

that the classifier does not perform well using only the suggested features for these cases. Next,

we propose new set of features to be extracted from ultrasonic signals using VMD, which were

further employed in a classification problem regarding Mr and Pt.

5.2. New features for Mr and Pt

We propose two new features to be used for training classification tasks regarding Mr and

Pt. The first feature is based on the idea proposed in [43]. As such, the maximum eigenvalue of

the covariance matrix corresponding to the decomposed IMFs is used as a feature in here. Note

that Empirical Mode Decomposition (EMD) was used in [43]. However, we exploit VMD in this

paper.

Let VK×N be the matrix of all IMFs stacked up in rows, where K is the number of IMFs and

N is the length of each IMF equal to the number of elements in the original signal.2 The proposed

feature is then calculated as max(eig(V ×V ′)). It was shown in [43] that this quantity is highly

sensitive to damage in marbau wood but not in pine samples.3 Therefore, we hypothesize that

this feature will contribute to achieving better results when used for the damage classification

of Mr using the Gaussian naive Bayes classifier. To test our hypothesis, the proposed feature

was first used with the center frequencies of the best results from the previous section, i.e. 6

decompositions for Mr and 3 decompositions for Pt.

After applying 10-fold cross-validation on Mr cases, 100% accuracy was achieved using the

new feature along with the optimum number of decompositions from the previous section, i.e.

6. However, as for Pt, only 67.83% accuracy was achieved, which is slightly less accurate than

the previous results, i.e. 71.17%. This motivated us to apply the proposed feature with different

numbers of decompositions regarding Pt.

Figure 8 reveals the accuracy obtained after 10-fold cross-validation applied to the classifica-

tion problem regarding Pt using different numbers of decompositions (center frequencies) along

with the new feature. As can be seen from the graph, the best result of 73.83% accuracy was

obtained using 5 decompositions. However, no further improvement was achieved by increasing

the number of decomposition (features). This demands a new set of features to be defined and

employed for classifying Pt cases. As follows, we define a new set of features to be employed to

this end.

2Note that the algorithm of EMD decomposes a signal into matrix VN×K , where N is equal to the length of

the original signal and K is the number of IMFs.
3Note that no classification problem was solved in [43].
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Figure 6: Confusion chart of classification problem run on each fold of 10-fold cross-validation regarding Mr.
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Figure 7: Confusion chart of classification problem run on each fold of 10-fold cross-validation regarding Pt.
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Figure 8: Accuracy obtained after 10-fold cross-validation applied to the classification problem using eigenvalue

feature along with center frequencies of different number of IMFs regarding signal Pt.

Consider an ultrasonic signal decomposed into K IMFs. Then, the root mean square of

instantaneous frequency (RMSIF) of each IMF is taken as a feature. To that end, the Gabor

analytical signal corresponding to an IMF is first constructed as follows [51]:

ua(t) = u(t) + jû(t), (8)

where u(t) and û(t) are the original IMF and its Hilbert transform [52], respectively. Next, the

instantaneous frequency of IMF at time instant t is calculated as follows:

ω(t) =
d

dt

(
tan−1

(
ˆu(t)

u(t)

))
, (9)

The RMSIF is then calculated as:

RMSIF(t) =

√∑n
i=1 ω(t)2

n
, (10)

For K decomposition, K RMSIF is obtained. We then employed these new features both in-

dividually and with the previous ones, i.e. the center frequencies of all IMFs, for solving the

classification problem regarding Pt. As shown in Figure 9, regardless of the number of decom-

position, a mixture of features almost always resulted in better outcomes than using each type

of feature individually. Accordingly, the best result of 80.33% accuracy was obtained when

using 3 decompositions. RMSIF performed marginally better than mixed features only when 4

decompositions were used. It can also be seen from the graph that using RMSIF individually

performed better than center frequency features when the number of features was equal or less

than 7. However, using a greater number of decomposition, i.e. greater than 7, and center

frequency features alone improved the accuracy.
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Figure 9: Accuracy obtained after 10-fold cross-validation applied to the classification problem using RMSIF,

center frequency features and a mixture of them regarding Pt.

Since the results thus far are not completely satisfactory, we then examined the mixed feature

space of the center frequency and RMSIF features to understand why the Gaussian naive Bayes

is not able to classify Pt cases well. To that end, PCA was used to reduce the dimension of the

feature space for visualisation purpose.

Figure 10 shows the landscape of the first principal component (PC1) versus the second prin-

cipal component (PC2) corresponding to the mixed feature space of RMSIF and center frequency

features along with their Gaussian contours when the optimum number of 3 decompositions (6

features in total) was used. Figure 11 shows the scree plot corresponding to the application of

the PCA to the mixed feature space. As such, PC1 and PC2 collectively capture 88.27% of the

variance in the dataset. As can be seen from Figure 10, the reduced feature space regarding

small and intact damage cases exhibited the greatest variability along the second principal axis,

whereby the observations were relatively concentrated in a confined region. However, the obser-

vations regarding the large damage cases show the greatest variability along the first principal

axis, where data points are concentrated in two separate regions with a gap between them. As

such, using Gaussian distribution to work out the likelihood of these observations does not seem

to be a good choice, which will consequently increase the difficulty of differentiating between

the large damage cases and other cases, i.e. intact and small damage cases. As such, there is

a considerable number of large damage cases confused with intact and or small damage cases.

This suggests that a more complicated model needs to be considered for fitting the features to

solve the classification problem. As such, the kernel naive Bayes model was used to address this

issue.
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Figure 10: The landscape of the first principal component versus second principal component along with their

Gaussian contours corresponding to the mixed feature space of RMSIF and center frequencies of three decompo-

sition of Pt ultrasonic signals.

5.3. Using kernel naive Bayes

So far, we have employed Gaussian naive Bayes, which uses Gaussian distribution model

for the training set to calculate the likelihood of each feature in a given class. However, we

have been only able to achieve 80.33% accuracy regarding the classification problem of Pt.

We demonstrated in the previous section that Gaussian naive Bayes is not a good model for

calculating the Bayesian a posteriori likelihood of the features regarding Pt, especially for the

large damage cases. As such, in this section, we employed kernel naive Bayes to address this

issue. To this end, the default of the normal kernel in Matlab was employed. Also, the width

for each class and predictor is selected by the classifier, automatically [50].

Figure 12 shows the accuracy results achieved after applying 10-fold cross-validation to the

dataset corresponding to Pt using the kernel naive Bayes classifier. As can be seen from the

figure, 100% accuracy was achieved using 3 decompositions when a mixture of center frequencies

and RMSIF features were used. The accuracy level dropped at 4 decompositions and then

increased to 94.33% accuracy using 5 decompositions. However, as it is evident from the graph,

the general trend of accuracy decreases when using a larger number of decomposition thereafter.

This indicates that the kernel naive Bayes always performs better only when using the center

frequency features and always performs worse using RMSIF features alone. However, even using

RMSIF features alone, kernel naive Bayes can achieve an accuracy of 85.33%, which is still

slightly better than 80.33% accuracy obtained by the Gaussian naive Bayes.
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Figure 11: The scree plot of the application of the PCA to the mixed feature space of RMSIF regarding Pt cases

with the optimum number of the decomposition, i.e. 3.

5.4. Classification of mixed specimens based on their health state

So far, we have been studying each model individually to explore the nature of the wood

material in the classification problems of this paper, and in order to find the best settings that

work for even the hardest case, i.e. Pt. However, it is not always possible to have a priori

knowledge about the type of the wood or the direction of the ultrasonic test with respect to the

growth rings of wood. Therefore, in this section, all the specimens are mixed to classify them

based on their health state only. As such, we solve the classification problem regardless of the

type of the wood and the direction of the ultrasonic test.

There are thus 1200 cases of healthy specimens, 600 cases of small defects specimens, and

600 cases of large defects specimens, as can be seen from Table 1. The following settings are

selected based on the results obtained so far:

1. The number of three decompositions is selected in the VMD settings as the optimum

number of decomposition. As such, the center frequency and RMSIF features were used

either individually or combined to solve the classification problem of this section.

2. Both Gaussian and kernel naive Bayes were used to solve the problem for the purpose of

comparison.

Table 2 shows the obtained results. As can be seen from the table, the best result of 93.6%

10-fold cross-validation accuracy was obtained when combined features were used in the kernel

naive Bayes classifier. It can be noted that the penultimate best accuracy result was achieved

at 85.8% when the mixed features were used in the Gaussian naive Bayes classifier, indicating

that the selection of the type of features has a more significant effect on the penultimate best

19



2 3 4 5 6 7 8 9 10 11 12

Number of decomposition

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Mixed features

RMS
IF

 features

Center frequency features

Figure 12: Accuracy obtained after 10-fold cross-validation applied to the classification problem using RMSIF,

center frequency and a mixture of them using kernel naive Bayes.

Table 2: 10-fold cross-validation accuracy percentage of different naive Bayes classifiers using each of the center

frequencies and RMSIF classifiers and a mixture of both.

Classifier Center frequencies RMSIF Mixed

Gaussian 73.3% 78% 85.8%

Kernel 83.4% 83.3% 93.6%

results than the type of the employed classifier in here. The worst accuracy result of 73.3% was

achieved when the center frequency features were used in the Gaussian naive Bayes classifier.

6. Conclusions

A systematic classification problem of classifying hole-defects in two types of wood materials,

i.e. marbau (hard wood) and pine (soft wood), has been presented and discussed. To that

end, four different classification problems were solved based on the type of wood and direction

through which the ultrasonic tests were conducted. First, VMD was used to decompose the

ultrasonic signals into different numbers of IMFs, and the center frequencies of all IMFs were

taken as features. Since VMD is a parametric decomposition algorithm, it is important that

some parameters be set properly prior to decomposition. As such, it has been discussed how

each parameter should be set for the purpose of this paper.

The results of the 10-fold cross-validation on each classification problem indicate that nearly

100% accuracy was obtained for Mt (100%) and Pr (99.5%) using the Gaussian naive Bayes
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classifier. However, since the results were not as satisfactory for Mr and Pt, a new set of features

was derived using VMD and then employed in the classification problems, as discussed in Section

5.2. The results were considerably improved using the Gaussian naive Bayes classifier, which

achieved 100% accuracy on Mr cases. Although the results improved in the case of Pt, an

accuracy of more than 80.33% could not be obtained.

The Gaussian naive Bayes classifier uses a normal distribution model for the entire training

set to calculate a posteriori Bayesian. Since, it was found that this classifier fails to achieve

perfect results regarding Pt using the proposed features, we employed kernel naive Bayes classifier

to address this issue. The results show that 100% accuracy can be achieved after employing the

kernel naive Bayes using either the center frequency features alone or with the RMSIF features.

Next, the classification problem of the wood specimens regardless of the type of wood and

the direction of the ultrasonic test with respect to the growth rings of wood was solved. 93.6%

10-fold cross-validation accuracy was achieved following choosing the settings distinguished best

from solving the hardest classification problem of Pt cases. As such, we conclude that a mixture

of center frequencies and RMSIF features along with the kernel naive Bayes classifier are the

best settings for solving the classification problem of wood specimens based on their health

state only. The number of three decompositions is also recommended as the optimum number

of decompositions. Moreover, the complementary RMSIF features have helped with avoiding

bias in the training process of the machine learning algorithm. Based on the obtained results,

the authors recommend that the number of decompositions should not exceed six, as it may

bring about losing information due to the over-decomposition of the signals.

The possibility of using naive Bayes classifiers for supervised classification of contact ultra-

sonic test results, conducted on different types of wooden specimens with artificial defects, has

been investigated in this paper. Accordingly, in order to facilitate obtaining accurate labels to

be assigned to each test result, artificial defects were implemented on the specimens. These

sorts of damage have been studied by other researchers as well (for example see [12, 23, 53]).

The main reason for studying wood hole-defects is that these sorts of damage are aimed to

mimic defects that are often seen in standing trees when the trees are not pruned in time. It

is, however, possible to label specimens based on other types of imperfections such as those

caused by fungi and termite attacks, and weathering. To this end, other techniques such as

using a Resistograph [54] needs to be employed to make it possible to label the obtained dataset

more accurately. Since the results of the current study are quite promising, future work can be

dedicated to solving such a more realistic problem.
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