Modeling of Complex Modes with Wave-Based Scaling

C. Nerse \bullet and S. Wang \bullet

1 Introduction ⁴

1 Introduction

In the literature, complex modes are subject of applications that range from

composites to rotating machineries [1, 2]. Complex modes have been shown to

exhibit wave characteristics, and its compositio In the literature, complex modes are subject of applications that range from $\frac{1}{2}$ composites to rotating machineries $[1, 2]$. Complex modes have been shown to 6 exhibit wave characteristics, and its composition with respect to traveling wave and 7 standing wave was introduced [3]. Complex modes that result from non-uniform α distribution of damping have been studied. Eigensolution and sensitivity analyses ⁹ were undertaken to estimate the variation with respect to system parameters. For 10 lightly damped systems, approximation methods were developed to obtain the ¹¹ complex eigenvectors from undamped modal parameters [\[4\]](#page-4-0). These advancements ¹² have widened the perspective in which we view the complex modes. In a more recent 13 work, a new approach was proposed to model complex modes with a waveguide, for ¹⁴ a simple non-proportional damping configuration [5]. It was shown that complex ¹⁵ modes can be estimated without solving the eigenvalue problem. Complex modes ¹⁶ can be scaled such that the imaginary part is minimized. This scaling technique was ¹⁷ used to produce performance indices with respect to damping non-proportionality ¹⁸ [6]. In this study, we show a wave-based scaling method on a non-proportionally ¹⁹ damped system. It extends a previously made observation corresponding to a ²⁰ complex mode formation scheme [7]. It was shown that the difference between a ²¹ complex mode and a real normal mode can be expressed by propagating patterns that ²² behave like waves. Thereby, these patterns are refracted as they cross an intersection 23 that divides damping medium. This relationship is described Snell's law. In this ²⁴ work we show that a beam structure that has a partially applied constrained layer ²⁵ damping has complex modes that behave according to the predictions. Case studies ²⁶

C. Nerse \cdot S. Wang (\boxtimes)

School of Mechanical Engineering, Gwangju Institute of Science and Technology, Gwangjugwangyeogshi, Republic of Korea e-mail: [can@gist.ac.kr;](mailto:can@gist.ac.kr) smwang@gist.ac.kr

[©] Springer Nature Switzerland AG 2020

S. Oberst et al. (eds.), *Vibration Engineering for a Sustainable Future*, https://doi.org/10.1007/978-3-030-46466-0_4

were conducted with respect to different damping configurations. In Sect. [2,](#page-1-0) we 27 outline the theory of the method. Then, in Sect. [3,](#page-1-1) we show a comparison of the ²⁸ numerical and experimental results and give our conclusions.

2 Methods 30

Similar to a light beam that gets refracted at the boundary of two media, it can be ³¹ argued that the complex mode featuring wave characteristics can also be represented ³² with a similar perspective. In this regard, consider a structure with simply supported 33 boundary conditions. Analytically, the deflection patterns for a real normal mode ³⁴ of beam can be expressed by a sine function, where *m* corresponds to the spatial ³⁵ wavenumber on *x* coordinate and L_x is the length of the beam, as shown in Eq. (1): 36

$$
W_m(x) = \sin\left(\frac{m\pi x}{L_x}\right) \tag{1}
$$

similar to a ugin ocania may ages terhaced at the boundary of two means, it can be
argued that the complex mode featuring wave characteristics can also be represented
with a similar perspective. In this regard, consider a When the system is proportionally damped, these deflection patterns retain the same 37 shape. However, if the damping is non-uniformly distributed, as in the case of ³⁸ partially applied damping layer on a plate, the mode shapes are complex-valued. ³⁹ It is argued that the difference between a complex mode and the respective normal ⁴⁰ mode can be described propagating wave-like patterns as shown in Fig. [1.](#page-2-0) When the ⁴¹ system is proportionally damped, the net sum of the patterns is zero, while, when ⁴² the system is non-proportionally damped, we observe refraction at the individual ⁴³ intersections of damping. For a typical non-proportional damping configuration, ⁴⁴ the summation of patterns is a non-zero variation. Thereby, they contribute to the ⁴⁵ imaginary part of the complex mode. ⁴⁶

As shown in Fig. 1c, the left propagating pattern is refracted at the damping 47 intersections. This relationship is governed by Snell's law: 48

$$
\frac{\sin(\theta_2)}{\sin(\theta_1)} = \frac{k_{m,1}}{k_{m,2}} = \frac{d_1}{d_2}
$$
 (2)

where d_1 and d_2 correspond to the refractive indices of damping regions D_1 and D_2 , 49 respectively. 50

3 Results and Discussion 51

To verify the numerical predictions, an experimental setup was prepared. A steel ⁵² beam of 3 mm thickness was clamped at both ends. Shaker excitation was used ⁵³ at an end node to excite the beam, and uniaxial accelerometers were attached. ⁵⁴ Measurement nodes were selected so that they are equally spaced. Figure [2](#page-2-1) shows 55 the dimensions of the setup and locations of the transducers. Note that in the method ⁵⁶

Fig. 1 Overview of the complex mode formation framework. (**a**) (x–y) section view of beam structure with a non-proportional damping patch. (**b**) Propagating patterns from the boundaries of the structure, blue dash line: left propagating pattern, red solid line: right propagating pattern. (**c**) Refraction of the propagating pattern at a damping intersection

Fig. 2 Experimental setup showing the exciter and transducer locations

section we described the boundary conditions to be simply supported. Simply sup- 57 ported boundary conditions are the most simplistic form for analytical solution [\[8\]](#page-4-4). ⁵⁸ However, in an experiment setup, it is not easy to achieve it. Therefore, generally, 59

Fig. 3 Comparison of the imaginary values of the normalized first mode with respect to numerical approximation and the experiment. Blue solid line: method, black dash line: experiment

clamped boundary conditions are used. Comparing both boundary conditions, it ⁶⁰ was shown that although the modal frequencies are higher for clamped boundary 61 condition due to increase in overall stiffness, the mode shapes are very similar to ϵ_2 that of simply supported boundary condition $[8, 9]$ $[8, 9]$ $[8, 9]$. Hence, in the experiments we 63 used clamped boundary conditions. 64

Partial damping treatment was applied by attaching three layers of 3M damping 65 foil $[10]$ on the bottom surface of the beam (see Fig. 2). We have tested three ϵ different cases, i.e., $Q1$, $Q2$, and $H1$, that refer to quarter or half size of the beam 67 in the longitudinal direction. The complex modes that were obtained from the ⁶⁸ experiments are compared to the numerical predictions in Fig. [3.](#page-3-3)

approximation and the experiment. Blue solid line: method, black dash line: experiment
camped boundary conditions are used. Comparing both boundary conditions, it
was shown that although the modal frequencies are higher f It is observed that the overall trend is similar between numerical predictions τ_0 and the experiment, especially for Q1 and H1 configurations. This has valu- $\frac{1}{71}$ able implications for practical applications. One such benefit can be attained for ⁷² benchmarking of the existent method, such that for cases where finite element ⁷³ modeling is not feasible an experimental procedure can be done for verification. ⁷⁴ In addition, in industrial applications where damping treatments are used for noise ⁷⁵ and vibration control, such approximation method can be utilized for preliminary ⁷⁶ decisions regarding the optimum location for the damping layer attachment. In the ⁷⁷ future studies, the present method can also be implemented into structural-acoustic ⁷⁸ coupling problems. 79

Acknowledgments This study was supported by a National Research Foundation of Korea (NRF) ⁸⁰ Grant funded by the Korean government (NRF-2017R1A2A1A05001326).

References 82

Unconstrained Layer Damping Treatments. J. Sound Vib. **102**(2), 203–216 (1985) ⁸⁶ 3. Feeny, B.F.: A complex orthogonal decomposition for wave motion analysis. J. Sound Vib. 87 **310**, 77–90 (2008) ⁸⁸

- 4. Adhikari, S.: Rates of change of eigenvalues and eigenvectors in damped dynamic system. 89 AIAA J. **37**, 1452–1458 (1999) ⁹⁰
- 5. Unruh, O.: Parametric study of sound radiation properties of complex vibration patterns in 91 rectangular plates using an analytical model. Acta Acust United Acust. **101**, 701–712 (2015) ⁹²
- 6. Liu, K., Kujath, M.R., Zheng, W.: Quantification of non-proportionality of damping in discrete 93 vibratory systems. Comput. Struct. **77**, 557–569 (2000) ⁹⁴
- 7. Nerse, C., Wang, S.: On the formation of complex modes in non-proportionally damped 95 systems. J. Sound Vib. **463**, 114978 (2019) ⁹⁶
- 8. Leissa, A.: Vibrations of plates. Acoust. Soc. Am. **13**(10), (1993) ⁹⁷
- Various types of attachments with arbitrary distributions. Shock. Vib. 20, 369–383 (2013)
10. 3M damping foil 2552, 3M company (2012)
10. All damping foil 2552, 3M company (2012) 9. Xiao, H., Sheng, M., et al.: The study on free vibration of elastically restrained beams carrying 98 various types of attachments with arbitrary distributions. Shock. Vib. **20**, 369–383 (2013) ⁹⁹
	- 10. 3M damping foil 2552, 3M company (2012) 100