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1 Introduction 4

In the literature, complex modes are subject of applications that range from 5

composites to rotating machineries [1, 2]. Complex modes have been shown to 6

exhibit wave characteristics, and its composition with respect to traveling wave and 7

standing wave was introduced [3]. Complex modes that result from non-uniform 8

distribution of damping have been studied. Eigensolution and sensitivity analyses 9

were undertaken to estimate the variation with respect to system parameters. For 10

lightly damped systems, approximation methods were developed to obtain the 11

complex eigenvectors from undamped modal parameters [4]. These advancements 12

have widened the perspective in which we view the complex modes. In a more recent 13

work, a new approach was proposed to model complex modes with a waveguide, for 14

a simple non-proportional damping configuration [5]. It was shown that complex 15

modes can be estimated without solving the eigenvalue problem. Complex modes 16

can be scaled such that the imaginary part is minimized. This scaling technique was 17

used to produce performance indices with respect to damping non-proportionality 18

[6]. In this study, we show a wave-based scaling method on a non-proportionally 19

damped system. It extends a previously made observation corresponding to a 20

complex mode formation scheme [7]. It was shown that the difference between a 21

complex mode and a real normal mode can be expressed by propagating patterns that 22

behave like waves. Thereby, these patterns are refracted as they cross an intersection 23

that divides damping medium. This relationship is described Snell’s law. In this 24

work we show that a beam structure that has a partially applied constrained layer 25

damping has complex modes that behave according to the predictions. Case studies 26

C. Nerse · S. Wang (�)
School of Mechanical Engineering, Gwangju Institute of Science and Technology,
Gwangjugwangyeogshi, Republic of Korea
e-mail: can@gist.ac.kr; smwang@gist.ac.kr

© Springer Nature Switzerland AG 2020
S. Oberst et al. (eds.), Vibration Engineering for a Sustainable Future,
https://doi.org/10.1007/978-3-030-46466-0_4

https://orcid.org/0000-0003-4003-6262
https://orcid.org/0000-0002-8457-9966
mailto:can@gist.ac.kr
mailto:smwang@gist.ac.kr
https://doi.org/10.1007/978-3-030-46466-0_4


UNCORRECTED
PROOF

C. Nerse and S. Wang

were conducted with respect to different damping configurations. In Sect. 2, we 27

outline the theory of the method. Then, in Sect. 3, we show a comparison of the 28

numerical and experimental results and give our conclusions. 29

2 Methods 30

Similar to a light beam that gets refracted at the boundary of two media, it can be 31

argued that the complex mode featuring wave characteristics can also be represented 32

with a similar perspective. In this regard, consider a structure with simply supported 33

boundary conditions. Analytically, the deflection patterns for a real normal mode 34

of beam can be expressed by a sine function, where m corresponds to the spatial 35

wavenumber on x coordinate and Lx is the length of the beam, as shown in Eq. (1): 36

Wm(x) = sin (mπx/Lx) (1)

When the system is proportionally damped, these deflection patterns retain the same 37

shape. However, if the damping is non-uniformly distributed, as in the case of 38

partially applied damping layer on a plate, the mode shapes are complex-valued. 39

It is argued that the difference between a complex mode and the respective normal 40

mode can be described propagating wave-like patterns as shown in Fig. 1. When the 41

system is proportionally damped, the net sum of the patterns is zero, while, when 42

the system is non-proportionally damped, we observe refraction at the individual 43

intersections of damping. For a typical non-proportional damping configuration, 44

the summation of patterns is a non-zero variation. Thereby, they contribute to the 45

imaginary part of the complex mode. 46

As shown in Fig. 1c, the left propagating pattern is refracted at the damping 47

intersections. This relationship is governed by Snell’s law: 48

sin (θ2)

sin (θ1)
= km,1

km,2
= d1

d2
(2)

where d1 and d2 correspond to the refractive indices of damping regions D1 and D2, 49

respectively. 50

3 Results and Discussion 51

To verify the numerical predictions, an experimental setup was prepared. A steel 52

beam of 3 mm thickness was clamped at both ends. Shaker excitation was used 53

at an end node to excite the beam, and uniaxial accelerometers were attached. 54

Measurement nodes were selected so that they are equally spaced. Figure 2 shows 55

the dimensions of the setup and locations of the transducers. Note that in the method 56
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Fig. 1 Overview of the complex mode formation framework. (a) (x–y) section view of beam
structure with a non-proportional damping patch. (b) Propagating patterns from the boundaries
of the structure, blue dash line: left propagating pattern, red solid line: right propagating pattern.
(c) Refraction of the propagating pattern at a damping intersection

Fig. 2 Experimental setup showing the exciter and transducer locations

section we described the boundary conditions to be simply supported. Simply sup- 57

ported boundary conditions are the most simplistic form for analytical solution [8]. 58

However, in an experiment setup, it is not easy to achieve it. Therefore, generally, 59
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Fig. 3 Comparison of the imaginary values of the normalized first mode with respect to numerical
approximation and the experiment. Blue solid line: method, black dash line: experiment

clamped boundary conditions are used. Comparing both boundary conditions, it 60

was shown that although the modal frequencies are higher for clamped boundary 61

condition due to increase in overall stiffness, the mode shapes are very similar to 62

that of simply supported boundary condition [8, 9]. Hence, in the experiments we 63

used clamped boundary conditions. 64

Partial damping treatment was applied by attaching three layers of 3M damping 65

foil [10] on the bottom surface of the beam (see Fig. 2). We have tested three 66

different cases, i.e., Q1, Q2, and H1, that refer to quarter or half size of the beam 67

in the longitudinal direction. The complex modes that were obtained from the 68

experiments are compared to the numerical predictions in Fig. 3. 69

It is observed that the overall trend is similar between numerical predictions 70

and the experiment, especially for Q1 and H1 configurations. This has valu- 71

able implications for practical applications. One such benefit can be attained for 72

benchmarking of the existent method, such that for cases where finite element 73

modeling is not feasible an experimental procedure can be done for verification. 74

In addition, in industrial applications where damping treatments are used for noise 75

and vibration control, such approximation method can be utilized for preliminary 76

decisions regarding the optimum location for the damping layer attachment. In the 77

future studies, the present method can also be implemented into structural-acoustic 78

coupling problems. 79
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