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Abstract

The modern industrial sector generates enormous

amounts of high‐dimensional heterogeneous data daily.

However, mostly the vectored data (rank‐one tensor)

have been considered for anomaly detection, whereas the

data in real‐life is high dimensional. The expressive

power of methods based on vector data is restrictive as

they may destroy the structural information embedded in

data and lead to the curse‐of‐dimensionality and over-

fitting. In this paper, we present a novel anomaly detec-

tion approach for large‐scale tensor data. We first present

novel one‐class support tensor machines (OCSTM) with

bounded loss function. We further extend it by leveraging

the randomness to design a scalable approach that can

also be used for large‐scale anomaly detection. To solve

the corresponding optimization of the objective function,

we utilize half‐quadratic optimization followed by solving

it like a traditional OCSTM optimization at each itera-

tion. We demonstrate the proposed randomized OCSTM

with bounded hinge loss through experiments on 14

benchmark data sets. Experimental results demonstrate

the effectiveness of the proposed approach against

anomalies and a significant reduction in the computa-

tional complexity.
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1 | INTRODUCTION

Anomalies are rare events; however, are serious and threatening. For example, anomalous
transactions indicate stolen credit cards. Hence, accurate identification of anomalous behavior
is very important and has been widely used in several application areas, such as financial
forecasting,1 health‐care,2 intrusion detection,3,4 industrial damage,5,6 sensor networks,7 robot
behavior,8 astronomical data,9 fraud detection,10 and fault diagnosis.11,12 Synonymously,
anomaly detection is also termed as novelty, adverse behavior or deviation detection and
exception mining. Recently, one‐class support tensor machine (OCSTM) has shown itself to be
very effective approach for unsupervised outliers detection for high‐dimensional data. Unlike
one‐class support vector machine (OCSVM), direct classification of tensorial data is able to
preserve higher‐order correlation; thus it has significantly outperformed traditional OCSTM
methods both in terms of computational (space and time) and accuracy. However, traditional
OCSTM is still sensitive in dealing outliers as well as not suitable for larger data sets.

To further improve the effectiveness of OCSTM in the presence of anomalies and overcome
the computational challenge, recent work considers improving the robustness of loss function
against outliers. Structure‐preserving kernel mapping of features is utilized for nonlinear
tensor.13,14 To reduce the computational performance for larger data, nonlinear randomized
projection is utilized15; however, experiments on large‐scale corrupted data showed the sen-
sitivity against outliers. Sparse representations‐based tensor decomposition is also used to
improve the challenges mentioned above, and it showed significant improvement.16,17 Al-
though recent support tensor machine (STM) variants showed significantly better performance
than traditional STM, however, are still not efficient in the case of anomalous rich data. It may
be due to the unsoundness of hinge loss that causes the large loss in the presence of outliers
which results in deviation of the decision boundary.18,19

Recently, many works have focused on the development of nonconvex methods with rescaled
hinge loss to decrease the impact of outliers. However, there is no work done for the advancement
of OCSTM. Furthermore, the computational complexity of traditional support tensor machines is
high and increases with training samples. Thus, it limits the application of STM for larger data
sets. This study presents an efficient approach by introducing a scalable algorithm for the larger
data set. Instead of using traditional hinge loss, we introduced hinge loss by bounding it and
utilized randomized linear projection that not only helps improve the performance in the presence
of outliers but also reduces the run time significantly. Extensive experiments on the benchmark
data set showed that the bounding the loss function and addition of randomized linear kernel
considerably improve the performance for outliers rich data and reduce the run time significantly
compared with benchmark methods. We can describe the key contributions as

• Novel OCSTM by bounding the hinge loss and randomized projection, hence the proposed
method is nonconvex, bounded, and monotonic, which considerably reduces the effect of the
outliers.

• Considered randomized nonlinear feature set,20 which eliminates the need to deal with
larger kernel matrices required for larger data, improving space and time complexity.

• The objective function is nonconvex and challenging to optimize; thus, we presented half‐
quadratic optimization to solve it.

• Performed run time as well as asymptotic analysis to validate the computational performance.
• Extensive experiment on 14 benchmark data sets showed significant improvement in the
detection of outliers with significantly better computational performance.



2 | PRELIMINARIES AND NOTATIONS

First, we describe the basic notations used throughout this paper followed by introducing some
preliminary knowledge of tensor algebra. Vector, scalar, matrix, and tensor are represented by
lowercase bold letters (e.g., x), lowercase letters (e.g., x), uppercase bold letters (e.g., X ), and
calligraphic uppercase letter (e.g.,  ), respectively. For example, let  x x x x= [ , , , …, ]N1 2 3 be the
M N× tensor that consists of n training subjects such that  ⋯ I I× × M1 (means  is the real
Mth‐order tensor and numbers N N N, , …, M1 2 are called the dimensions of the tensor). y {1, −1}i

are the class labels. Table 1 lists the basic symbols used throughout this paper.

Definition 1 (Tensor). Just as vectors (are n‐dimensional represented by one‐dimensional
array), a tensor  ⋯ I I× × M1 is a multidimensional array of real numbers that is a higher‐
order generalization of vectors (first‐order tensors) and matrices (second‐order tensors). Tensor
is a geometric object that maps in a multilinear manner geometric vectors, scalars, and other
tensors to a resulting tensor. Let x x= [ , …, ]N1 be the M N× tensor consisting of n training
subjects such that  ⋯ I I× × M1 (means  is real Mth‐order tensor and numbers I I, …, M1

are called the dimensions of the tensor). Their elements are represented by indices ranging
from 1 to N , that is, an element of tensor is denoted by xi n1, …,

where  n N1 and  i I1 n n.

Definition 2 (Tensor product). The outer/tensor product of two tensors  ⋯ I I× × P1

and  ⋯ I I′ × × ′M1 can be represented as

  x z( ) =i i i i i i i i, …, , ′,…, ′ , …, ′, …, ′P M P M1 1 1 1 (1)

for all the values indices.

Definition 3 (Inner produce of tensor). The inner produce/scalar product of two same‐
size tensors (   ⋯, I I× × M1 ) is the sum of products of their entries

TABLE 1 Notations

Notations Description

X Boldface uppercase letter represents a matrix

x Scalar is represented by a lowercase letter

 Tensor is represented by a calligraphic letter

x Boldface lowercase letter represents a vector

 Rank of tensor

yi corresponding class labels y {1, −1}i

M[1 : ] Set of integers ranging from 1 to M

  , Inner product of tensors

  ( , ) Kernel function

 Tensor product

vec ( ) Column stacking operation

δ Denotes delta function



  ⋯   x z, = .
i

I
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i i

=1 =1M
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M M

1

1

1, …, 1, …, (2)

Definition 4 (Rank‐one tensor). An Mth‐order tensor  is the first‐order tensor if it is
the product of N vectors ui

Ii, where  i M1

 ⋯  u u u= = .i M

n

N
n

=1
(3)

The rank R of the Mth‐order tensor can be determined by the minimum number of rank‐
one tensors that produce  in the linear combination. Instead of the whole tensor, storage of
component vectors u u, …, M1 reduces the storage elements significantly, however, in real‐world
applications, rank‐one tensor is rare.

Definition 5 (Tensor factorization). A tensor decomposition represents an h‐way tensor
 as an h third‐order tensor. It can be factorized if it can be decomposed as a rank‐one
tensor of length R.

 ⋯  x x= .
r

R

r r
M

=1

1
(4)

Definition 6 (Frobenius norm‐tensor). The Frobenius norm  ⋯ n n× × d1 can be
defined as

     = , .F (5)

Definition 7 (Randomized nonlinear projection). Suppose ϕ is the feature map ⟶

such that dot product in  can be computed using the kernel function

  x x ϕ ϕ( , ′) = ( ), ( ′) ,

whereas  is mapped from input M to the feature space H through nonlinear projection
function  ⟶ϕ ( ) = M .

2.1 | One‐class support tensor machines

Consider input samples in the data set D y= { , }i i i
N
=1 are the Mth‐order tensors ⋯i I I× × M1

with y {1, 0}i corresponding class labels for i N= 1, 2, …, . OCSTMs can be formulated using
quadratic optimization as




 
Nv

ζ pmin
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2
+

1
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p ζ
F
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N

i
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=1
(6)



   ϕ b p ζs.t. ( , ( ) + ) − ,i i

 ζ i N0, = 1, …, ,i

where  tensor is the weight of separating hyperplane, v (0, 1] is the regularizer that con-
trols the fraction of anomalies and fraction of support vectors. Let ϕ is the mapping function
that maps the data set into Hilbert space H and can be formulated as  ⟶ ϕ ϕ: ( )

⋯H H H× × × M1 2 ′. ζi are the slack variables that allow some of the data points on the other side of
the hyperplane. By applying the Lagrange multiplier and solving Equation (6), we arrive at the
following quadratic problem:

   α αmin
1

2
( , )

α α i j

i j i j
, …, ,N1

(7)

  α i
Nv

αs.t. 0 −
1

, = 1.
i

i

We can write the decision function for tensor as

   





f sgn α p( ) =

1

2
( , ) − .

i

N

i i j (8)

The solution equation (8) is characterized by parameter v that sets lower bound on the
number of training samples used as support vectors and upper bound on the fraction of
anomalies. Using the Karush–Kuhn–Tucker optimality condition, the input tensor data can be
classified based on its projection below, above, or on the hyperplane boundary in the feature
space based on the support tensors.

3 | THE PROBLEM

Traditional hinge loss function (Equation 6) is unbounded that causes larger loss in the presence of
outliers. Furthermore, methods based on it work well for small data sets; however, are not scalable
and computationally complex for larger data sets. Thus, it limits the applicability of OCSTM for
outliers detection for the larger data set, especially when the data set is heavily corrupted. Unlike
traditional hinge loss, bounding it could help decrease the loss in the presence of anomalies.
Similarly, the nonlinear randomized feature map using random projection can be used to overcome
the computational and space complexity challenge. Thus, this paper aims to develop a robust
support tensor machine (R1STM‐BH) for anomaly detection at a large scale.

4 | RANDOMIZED KERNEL BOUNDED ONE ‐CLASS STM

While OCSTM has shown itself a practical approach for detecting anomalous behavior of
data to some extent, their ability to deal with large‐scale corrupt data is still limited. The
traditional hinge loss of STM results in large loss due to the existence of outliers. In addition



to this, finding the support vectors is computationally complex thus is not efficient for
larger data sets. Unlike the traditional OCSTM loss function and search in high‐
dimensional space, this study presents STM by bounding the loss function and using the
randomized set of features that result in significant improvement for outliers detection
while considerably reducing the computational time. We first describe the support tensor
machines by bounding the hinge loss followed by the utilization of nonlinear randomized
features.

4.1 | Bounding loss function

To best segregate the data from outliers with maximal margin, OCSTM finds optimal hyper-
plane in high‐dimensional data space. However, the unboundedness of loss function causes
immense loss due to the existence of outliers, thus, considerably impacting the performance. By
limiting the hinge loss, we can overcome the influence of outliers. We can rewrite the objective
function of OCSTM (given in Equation 6) as

 


 J p
vN

pmax ( , ) =
1
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1
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(9)

  
 

  p

i N

subject to . ( ) − ℵ ,

ℵ 0 = 1, …, ,
i i

i

where pℵ = max{0, − }i i is the hinge loss with   ϕ= ( )i i .
Note that the traditional hinge loss function shown in Equation (9) is unbounded that can

increase the loss due to the outliers. The traditional OCSTM (Equation 10) can be rewritten in
bounded form (Equation 11) as

 


 J p p
vN

max ( , ) =
1

2
− +

1
℘

p
F

i

N

i
,

2

=1
(10)

  
 

  p

i N

subject to . ( ) − ℵ ,

ℵ 0 = 1, …, ,
i i

i

[ ]β e℘ = 1 − ,i
η− ℵi (11)

where η 0 and β =
e

1

1− η− are the scale constant and normalization constant, respectively.
η controls the upper bound and β ensures that ℘ = 1i . When η = 0 the hinge loss (℘)
degenerates to traditional (ℵ), thus, we can say that traditional STM (Equation 9) is a special
case of R1STM‐BH (10).

Equation (9) shows that the proposed objective is also nonconvex and monotonic. By
simplifying Equations (9) and (10), we can rewrite the objective function as

 


  J p
β

vN
e pmax ( , ) = + −

1

2
.

p i

N
ηζ

, =1

−
2
2

i (12)



4.2 | Optimization

The proposed objection function in Equation (12) is nonconvex, which makes it difficult to
optimize and traditional optimization methods cannot be directly applied. Hence, we devised
half‐quadratic optimization.

 u u u u u( ) = − log(− ) + , < 0. (13)

By conjugate function theory, the above equation can be rewritten

e η u g u= sup ℵ − ( ).η

u

− ℵ

<0
(14)

We can achieve the supermum of e η− ℵ at u e= − < 0η− ℵ .
Now, we can rewrite Equation (12) as

 


  J p
β

vN
η u g u pmax ( , ) = sup { ℵ − ( )} + −

1

2
,

p i

N

u
i i i F

, =1 <0

2

i

(15)
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β
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η u g u p Wmax ( , ) = sup ℵ − ( ) + −

1

2
,

p u i

N

i i i F
, <0 =1

2
(16)




  { }J p
β

vN
η u g u p Wmax ( , ) = sup ℵ − ( ) + −

1

2
.

p u i

N

i i i F
, <0 =1

2
(17)

We can simplify Equation (16) as

 


  J u p
β

vN
η u g u pmax ( , , ) = ℵ − ( )} + −

1

2
.

u p i

N

i i i F
, , =1

2
(18)

Iteratively solving Equation (17) using alternating methods to compute , u, and p.
Finally, we can write Equation (16) as

 


  J p
β

vN
η u pmax ( , ) = ℵ + −

1

2
.

p i

N

i i F
, =1

2
(19)

We can rewrite Equation (19) as

 


 J p
β

vN
η u pmin ( , ) =

1

2
+ ℵ − .

p
o F

i

N

i i
,

2

=1
(20)

We can apply the Lagrange multiplier to solve Equation (20). By applying the Lagrange
multiplier on the above optimization problem, we get



    α αmin
1

2
( , )

α i

N

j

N

i j i j

=1 =1
(21)

 αs.t. = 1i
N

i=1 and  α s0 i vN i
1 for i N= 1, …, , where k is the kernel matrix and

α α α= [ , …, ]N
T

1 is the vector of Lagrange multipliers.

We can compute the weight tensor as

  α ϕ= ( ).
i

N

i i

=1
(22)

Finally, we can define the decision function as

f x sgn wϕ x p( ) = ( ( ) − ), (23)







f x sgn α x x p( ) = ( , ) − .

i

N

i i

=1
(24)

The quadratic problem in Equation (24) is characterized by the parameter v that sets the
lower and upper bounds on the fraction of anomalies and number of training subjects used as
support vectors, respectively, thus it limits the loss due to the outliers.

To apply the kernel methods for tensor data, it has been converted into vectors or matrices,21–23

which results in high dimensionality, overfitting, and destroying the structural information em-
bedded in the tensor data. Thus, kernel learning is essential for tensor data to keep the structural
information embedded in the tensor data by sets of essential structural features and design kernel
on such sets. CANDECOMP/PARAFAC (CP) factorization has been employed to tensor to foster
the use of kernel methods by extracting a structure‐preserving kernel in tensor product feature
space.13 It provides an excellent approximation to the original tensor data. More specifically, in this
way, each tensor can be represented as a sum of rank‐one tensors in its original space, following by
mapping them to tensor product features space for kernel learning.

Let    X= r
R

n
M

r
m

=1 =1 be the CP factorization of tensor  such that  ⋯ I I× × M1 . The
kernel of two same‐size tensors can be written as     x y( , ) = ( , )m

M m m
=1 . Tensor data can

be factorized in the feature space, similar to the original space. Feature space mapping on rank
R = 1 feature mapping of a tensor can be defined as

 ⟶ ⋯ϕ ϕ: ( ) ,m m H H× × M1 (25)

⟶  ϕ x ϕ x: ( ).
m

M
n

m

M
m

=1

( )

=1

( ) (26)

The CP factorization of tensor in the feature space is similar to the original space. The CP
factorization of tensor   ⋯and I I× × m1 is given as

   x y= and = .
m

N
m

n

M
m

=1

( )

=1

( ) (27)



The kernel function of two same‐size tensors  and  can be written as

    x y( , ) = ( , ).
m

M
m m

=1

( ) ( ) (28)

The feature mapping of tensors  and  can be derived as

⟶    ϕ x ϕ x: ( ).
r

R

m

M
m

r

R

m

M
m

=1 =1

( )

=1 =1

( ) (29)

This transformation corresponds to mapping the tensor data to high‐dimensional tensorial
feature space and performing the factorization in the high‐dimensional space. Then the kernel
in the high‐dimensional space is the standard inner product of the tensor data in that feature
space.13 We can directly drive the naive tensor products kernels as

        





 ( )ϕ x ϕ y x y( ), ( ) , .
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R

m

M
m

r

R

m

M
m

i

R

j

R

m

M

i
m

j
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=1 =1 =1 =1 =1 =1 =1
(30)

Although the objective function limits the effect of outliers, its computational com-
plexity increases quadratically with the increase in the number of training samples. This
issue can be solved using the linear kernel; however, it introduces biases to the origin.
Another alternative is the radial basis function (RBF) kernel; however, it results in high
computational complexity for high‐dimensional kernels, making it inefficient for the larger
data set. The use of randomization such as linear random projection showed itself a sub-
stitute to overcome the computational burden of kernel matrix construction.24 Thus, to deal
with the challenge above of computational and space complexity, we proposed to use
randomized nonlinear projections that serve as a good approximation of the nonlinear
kernel (Table 2).

4.3 | Randomized feature embedding

The complexity of the proposed OCSTM (objective function in Equation 9) grows quad-
ratically with the increase in training samples. Thus, the proposed objective function is not
efficient for larger data sets. To solve this, we presented the embedding of nonlinear ran-
domized features into robust OCSTMs. Randomized projection is a prevalent approach to
deal with overfitting and curse‐of‐dimensionality. We can randomly sample the parameters
from a data‐independent distribution and construct a d‐dimensional randomized feature
map. Thus, we applied OCSVMs with bounded loss function on the randomized nonlinear
projection,15 which reduces the computational complexity by eliminating the need for large
kernel matrices for larger data sets. Consequently, reducing the space and computational
complexity considerably while outperforming anomaly detection performance compared
with conventional nonlinear machines. Here, our aim is to find the optimal f x( ) (fitting
function) to minimize REmp.



 f
N

c f y y( ) = min
1

( ( ), ) such that = 1,
i

N

i i i
=1

(31)

where c f y( ( ), )i i is the bounded hinge loss which penalizes the deviation between predictive
and label values.

f ( ) can be computed through minimization of regularized risk as

   R f R f f[ ( )] = [ ( )] +
1

2
( ) ,FReg Emp

2
(32)

where  f x( )
1

2 2
2, R f x[ ( )]Emp , and R f x[ ( )]Reg are the regularizer, empirical risk, and regularizer

risk (average loss), respectively. We can compute the empirical risk as

 R f
N

L f y[ ( )] =
1

( ( ), ),
i

N

i iEmp

−1

B (33)

where L f y( ( ), )i iB is the bounded hinge loss (described in Section 4.2) which penalizes the
deviation between prediction and labels.

We can solve the fitting function by generating d‐dimensional features and randomized
sampling si d from independent distribution

   Z n( ) = [( , , … ) ],d1 2

where  s x b s x b= [cos( , + ), …, cos( , + )]i i
T

i i
T

N i1 and e s y b s y b= [cos( , + ), …, cos( , + )]j j
T

j j
T

N j1

are the Fourier‐based random features.

TABLE 2 OCSTM‐BH Algorithm

Input: Train‐set: iiN=1

where Xj m n× ; j N= 1, …, ,

Kernel function   ( ,i j

Scale constant Tmax , η,

Trade‐off parameter τ

Output: margin parameter p

Lagrange multiplier α

Step‐I: Initialization of parameters

Auxiliary variable ∋u u < 0M
i , T = 0

While T  Tmax do

Step‐II: Calculate p and αT+1 by solving Equation (21),

Step‐III: Calculate u e= −T η+1 − ℵ.

Step‐IV: Increase T by 1 and repeat step II to step III until it converges.

end while

Step‐VI: Return p and α



Now, replacing the nonlinear kernels with randomized features kernel by unitizing the
randomized rank‐one tensor and CP factorization. We can rewrite the kernel in Equation
(30) as
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(34)

Equation (34) randomized kernels,




  ( )
N

α z y α βmin
1

, s.t. ,
α i

T
i id (35)

where β is a regularization constant.
Thus, utilizing nonlinear randomized features, the above formalization remarkably sim-

plifies the computation. Theorem 1 justifies this claim.

Theorem 1. Let D is the distribution on Ω and ϕ x s( ; ) 1. Let  =

f x α s ϕ x s ds α s βD s{ ( ) = ( ) ( ; ) : ( ) ( )}
δ

. Let l be the L‐Lipschitz loss function and
λ > 0. Draw s s, …, i1 iid from distribution D. We can write f x α ϕ x s{ *( ) = ( ; )j

i
j j=1

minimizes the empirical risk

















E l f x y E l f x y O
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d δ
[ ( *( ), )] − min [ ( ( ), )] + log

1
D

f F
D (36)

with a probability of at least δ1 − 2 .

4.4 | Convergence

As we have used half‐quadratic optimization to transform the objective function to traditional
OCSTM, thus, the R1STM‐BH objective function can be related to traditional one‐class STM.
The convergence theorem can be described as

Theorem 2. For a given input   N M× , the kernel matrix   x x= ( , )i j i j, and its
approximation ̂ using d random features, the following condition holds:

   E
N N

d

N N

d
ˆ −

3 log
+

2 log
.

2

(37)

Proof.   ˆ :
d i

d
i i

T1
=1 is N N× kernel matrix ∋  [ ˆ ] = where  ˆ =

d i
d i1
=1 . Since,

d (randomized features) are sampled based on independent and identical distribution, X
is constant. Individual error matrices can be written as

 E = ˆ − ,



E E E E i d= s.t. [ ] = 0 , = 1, …, ,
i

d

i i i

=1

(38)

whereas

 
E

d
=

ˆ −
.i

i( )

As we have utilized the bounded loss function, there exists a constant B such that  Z B2 .
In this experiment, we are considering bounded hinge loss, thus, B is constant such that

 Z B2 . Finally, based on triangle inequality and Jensen's inequality, we can write

    
      

E
d d

B

d
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− [ ] − [ 2
.i

i i
T i

2 2

To bound variance of E, we bound variance of every Ei
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Now, taking all summands together, we get
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(39)

Thus, we can say,

     
E

B K N

d

B N

d
ˆ −

3 log
+

2 log
. (40)

Observe that kernel evaluation and randomized features (    B2 , where B 1) are
upper bounded by 1, thus, both   and B are bounded by N , resulting Equation (37). □

5 | EXPERIMENTS

In this section, we evaluate and compare the performance of bounded OCSTMs and the effect
of randomized feature selection for the task of anomaly detection. To validate the gain in
performance, we have performed k‐fold (k = 10) validation on both vector and tensor data sets



and compared the performance with state‐of‐the‐art vector and tensor‐based methods. As our
core objective is the detection of the outliers in large‐scale data, thus, to validate the effec-
tiveness of the proposed approach against the larger data set, we have corrupted the data sets
with outliers and performed several experiments with the various number of dimensions and
records.

5.1 | Data set

In this experiment, we have considered both tensored and vectored data sets and conducted
several experiments. In our first experiment, we have used vector data and transformed it into
tensor form. For this purpose, we have used publicly available data sets mostly from UCI
repository that are Iris, Import, Ionosphere, Lungs, Sonar,25 Delftpump AR, Breast Cancer,26

USPS,27 Daily and Sport Activity (DSA),28 Gas Sensor Array (GSA), and PAMAP2 physical
activity monitoring data set (PAMAP). Most of these data sets are originally vector‐based. Thus,
these data sets are transformed to tensorial representation29 and select the tensor size based on
Reference [30]. In our second experiment, we have used tensor data and considered the CASIA
gait recognition data set (data set‐A31), which includes 19,139 images (about 2.2 GB). Fur-
thermore, we have also used the face recognition data set (The ORL Database of Faces) and
handwritten digits database (MNIST32).

Each record is normalized between [0, 1]. Each data set is segmented into train‐set and test‐
set for evaluation purposes by randomly selecting 80% and 20% records, respectively. To ob-
serve the effectiveness of the proposed R1STM‐BH, we have added 5% anomalies drawn from

(0, 1]. As our approach is unsupervised outliers detection; thus, labels are omitted during
training. However, we have used it in the testing phase.

5.2 | Results and discussion

The focus of this study is to improve the robustness of outliers detection and overcome the
computational challenge for the larger data set. We have performed several experiments on
both vectored and tensored data sets and performed k‐fold cross‐validation. As described in
Section 5.1, we transformed the vector data into tensorial representation. Initially, we per-
formed k‐fold cross‐validation for both vector (Breast Cancer) and tensor (MNIST) data set to
find the optimal range of parameters, followed by an experiment on the rest of the data sets
within that optimal range. We have corrupted all data sets with outliers to validate the ro-
bustness of the proposed R1STM‐BH against anomalies.

To visualize the effect of the bounded hinge loss function and randomized features pro-
jection, we performed cross‐validation (10 times) for all data sets. Results showed that some
methods are comparatively better for a larger data set; however, they are poor for smaller data
sets. Similarly, some methods showed better performance comparatively for smaller data sets.
However, they provided poor performance for the large data set. Computational complexity is
another major challenge that depends on the size of the data set, that is, kernel‐based methods
can be grouped quadratically based on complexity. To generalize the performance for both
larger and smaller data sets, we have performed several experiments by varying the number of
records and dimensions on different data sets. The following discussion provides the experi-
mental results on both vectored (syntactically transformed to second‐ and third‐order tensors)



and tensored data sets. Figures 1 and 2 and Tables 3 and 4 show the results on real and
corrupted data sets with different subjects.

We compared the proposed R1STM‐BH with benchmark methods approaches, such as
OCSTM,30 LOCSTM,30 R1STM,15 vector methods (OCSVM33 LOCSVM,34 and R1SVM20), and deep
methods (One‐Class Deep SVDD35 and SB Deep SVDD35) on 14 publicly available benchmark data
sets. Table 5 shows the comparison of results on the different number of training samples. We can
notice that R1STM‐BH showed better performance for the small number of training samples (2)
and better performance for the larger number of samples (8) per individual, whereas the com-
putational complexity remains very attractive. Table 6 shows the comparison of results on all data
sets. We can notice that R1STM‐BH showed comparatively better performance concerning
OCSVM, LOCSVM, LOCSTM, R1SVM, OCSTM, and LOCSTM; however, results are comparable to
deep SVDD and SB deep SVDD. Figures 1–3 show the results on Iris, Lungs, and ORL data sets,
respectively. We can notice that R1STM significantly outperforms all for small sample size (2);
however, results are comparable to deep SVD and SB deep SVDD for large sample size. This shows
that R1STM‐BH is scaleable and works for both small sample and larger sample data sets. We can

FIGURE 1 Performance comparison of proposed R1STM‐BH with state‐of‐the‐art methods on Iris data set
(corrupted: left; original: right). AUC, area under curve; OCSTM, one‐class support tensor machine; OCSVM,
one‐class support vector machine; R1STM‐BH, robust support tensor machine; STM, support tensor machine
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Performance comparison of proposed R1STM‐BH with state‐of‐the‐art methods on Lungs data
set (corrupted: left; original: right). AUC, area under curve; OCSTM, one‐class support tensor machine; OCSVM,
one‐class support vector machine; R1STM‐BH, robust support tensor machine; STM, support tensor machine
[Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


notice that R1STM‐BS accuracy is slightly better in most cases; however, computationally, R1STM‐
BH is significantly better.

To validate the robustness against outliers, we have evaluated corrupted data. Results on
corrupted data set are shown in Figures 1 and 2, and Tables 3 and 4. We can notice that R1STM‐BH
showed significantly better performance than the state‐of‐the‐art methods for corrupted data. This
shows that bounding the hinge loss overcame the larger loss that occurred due to the outliers,
which affects the performance of anomaly detection. Notice that with the increased intensity of
anomalies, OCSTM‐BS showed significantly better performance (Table 7).

TABLE 3 Average AUC (%) on MNIST data set

Class
OCSVM‐
SVDD

SB Deep
SVDD

OC‐Deep‐
SVDD OCSTM R1OCSTM OCSTM‐BH R1STM‐BH

0 96.75 ± 0.5 97.8 ± 0.7 98.5 ± 0.7 97.87 ± 0.9 97.90 ± 1.1 98.1 ± 0.5 98.29 ± 0.72

1 99.15 ± 0.4 99.6 ± 0.1 99.7 ± 0.08 99.65 ± 0.6 99.60 ± 0.7 99.6 ± 0.07 99.33 ± 1.17

2 79.4 ± 0.9 89.5 ± 0.2 91.7 ± 0.8 90.20 ± 0.4 90.43 ± 0.9 92.1 ± 0.5 92.22 ± 1.07

3 86.1 ± 0.6 90.3 ± 0.1 91.9 ± 0.5 91.1 ± 0.3 91.00 ± 0.7 92.1 ± 0.4 92.22 ± 1.02

4 94.21 ± 0.3 93.8 ± 0.5 95.32 ± 0.8 93.21 ± 0.1 92.8 ± 0.54 95.2 ± 0.9 95.21 ± 0.79

5 73.1 ± 0.8 85.8 ± 0.5 89.23 ± 0.9 86.22 ± 0.4 97.1 ± 0.3 89.12 ± 0.9 89.23 ± 1.16

6 95.5 ± 0.2 98.0 ± 0.4 98.3 ± 0.5 98.0 ± 0.7 98.10 ± 0.1 98.60 ± 0.2 98.69 ± 0.19

7 92.16 ± 0.1 92.7 ± 0.4 94.6 ± 0.9 92.7 ± 0.3 93.85 ± 0.7 95.00 ± 0.5 95.09 ± 0.59

8 89.09 ± 0.4 94.2 ± 0.4 93.9 ± 0.6 93.6 ± 0.2 92.96 ± 0.4 94.1 ± 0.4 94.14 ± 0.54

9 92.71 ± 0.2 94.9 ± 0.6 96.35 ± 0.3 95.7 ± 0.3 95.71 ± 0.2 96.5 ± 0.5 96.61 ± 0.56

Abbreviations: AUC, area under curve; OCSTM, one‐class support tensor machine; OCSVM, one‐class support vector machine;
R1STM‐BH, robust support tensor machine; STM, support tensor machine; SVDD, Support Vector Data Description.

TABLE 4 Average AUC (%) Corrupted MNIST data set

Class
OCSVM‐
SVDD

SB Deep
SVDD

OC‐Deep‐
SVDD OCSTM R1OCSTM OCSTM‐BH R1STM‐BH

0 91.75 ± 0.22 92.11 ± 0.16 93.32 ± 1.1 93.05 ± 1.22 93.55 ± 1.32 95.22 ± 1.28 95.29 ± 1.11

1 92.45 ± 0.9 93.46 ± 1.4 93.32 ± 0.34 93.05 ± 1.4 92.02 ± 0.5 93.87 ± 0.22 93.91 ± 1.03

2 72.43 ± 1.45 78.32 ± 1.2 82.54 ± 1.45 83.08 ± 1.21 82.01 ± 1.43 84.20 ± 1.32 84.29 ± 0.96

3 78.2 ± 1.54 84.34 ± 1.56 84.19 ± 0.4 82.43 ± 1.06 84.41. ± 1.6 85.11 ± 1.1 85.43 ± 2.03

4 84.43 ± 2.1 86.47 ± 0.9 85.32 ± 1.44 84.61 ± 1.05 84.78 ± 1.00 85.13 ± 1.22 85.10 ± 2.17

5 65.43.1 ± 3.1 77.98 ± 1.3 80.11 ± 0.9 79.11 ± 3.6 83.79 ± 1.22 85.00 ± 1.54 85.19 ± 2.19

6 80.89 ± 1.70 86.76 ± 2.2 88.54 ± 2.5 86.54 ± 1.21 87.76 ± 2.10 88.67 ± 1.43 88.73 ± 1.28

7 80.22 ± 0.1 83.57 ± 0.84 85.55 ± 2.44 86.27 ± 1.23 85.43 ± 1.27 86.81 ± 0.76 86.93 ± 1.22

8 78.65 ± 2.4 86.4 ± 1.54 84.43 ± 2.60 82.46 ± 2.23 84.76 ± 2.43 87.43 ± 0.80 87.66 ± 1.83

9 81.89 ± 1.6 85.55 ± 1.96 84.45 ± 1.75 80.54 ± 4.5 84.79 ± 1.29 86.76 ± 1.1 86.83 ± 0.65

Abbreviations: AUC, area under curve; OCSTM, one‐class support tensor machine; OCSVM, one‐class support vector machine;
R1STM‐BH, robust support tensor machine; STM, support tensor machine; SVDD, Support Vector Data Description.
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Table 8 compares the training time, test time, and the number of iterations to converge. We
only compared the performance with methods based on support vector machines, such as
OCSVM and OCSTM. Results show that R1STM‐BH is much faster both in terms of training
and testing as compared with other methods. Furthermore, R1STM‐BH converges with a low
number of iterations as compared with OCSVM and OCSTM.

On the basis of experiments on different benchmark data sets, we observed

• R1STM‐BH (Equation 9) is monotonic, nonconvex, and bounded. We proposed half‐
quadratic to transform the R1STM‐BH to original OCSTM.

• Equation (9) degenerates to traditional OCSTMs, thus, OCSTM (6) is a special case of
R1STM‐BH (10).

• Randomized linear projection with smaller kernel matrices showed significant space and
time complexity for large data set, thus, we considered smaller size randomizing features.

FIGURE 3 Performance comparison of proposed R1STM‐BH with state‐of‐the‐art methods on the task of
face recognition (corrupted: left; original: right). AUC, area under curve; OCSTM, one‐class support tensor
machine; OCSVM, one‐class support vector machine; R1STM‐BH, robust support tensor machine; STM, support
tensor machine [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Space and time complexity analysis

Approach Computational complexity Space complexity

OCSVM36 O dN( )3 O d N( + )2

SVDD15 O dN( )2 O dN( )2

Autoencoder15 O dmN( ) O dq( )

ROCSVM37 O dN( )3 O d N( + )2

R1SVM20,38 O kn( ) O kn( )

RSVM‐RHHQ39 O IN( )3 O IN( )3

OCSTM‐BH (RBF) O Bkn( )2 O Bkn( )2

R1STM‐BH O Bkn( ) O Bkn( )

Abbreviations: OCSTM, one‐class support tensor machine; OCSVM, one‐class support vector machine; R1STM‐BH, robust
support tensor machine; RBF, radial basis function; ROCSVM, robust one‐class support vector machine; SVDD, Support Vector
Data Description.

http://wileyonlinelibrary.com
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5.3 | Parameter setting

To find the best parameter range of the proposed R1CSTM‐BH, we used two larger data sets with
different parameter values initially. R1CSTM‐BH requires four parameters required to be optimal,
such as trade‐off parameter v, width parameter σ , scale constant η, and k dimension of random
features. Once we had a range for the best parameters, we performed 10‐fold validation within the
selected range for all 14 data sets. Experiments showed that R1STM‐BH showed high computa-
tional complexity when k is larger; thus, smaller randomizing features are recommended.

Similarly, we have achieved the best performance of proposed anomaly detection at
σ = {10, 14, 14, 27, 20, 15, 9, 21, 24, 28, 43, 31, 36}, η = {0.3, 0.4, 0.2, 0. 25, 0.25, 0.25, 0.2, 0.5,

0.3, 0.4, 1.45, 1.65, 1.25}, and v = {0.2, 0.25, 0.2, 0.3, 0.2, 0.25, 0.3, 0.3, 0.25, 0.2, 0.3, 0.25, 0.35}

for Breast Cancer, Iris, Import, Ionosphere, Lungs, Sonar, Delftpump AR, USPS, DSA, GSA,
and PAMAP2 PAMAP, CASIA, ORL, and MNIST data set, respectively.

5.4 | Computational complexity

This section described the time complexity of a Randomized OCSTM with bounded hinge loss.
Considering N is the number of training samples and d is the dimension of features. The
computational complexity of solving the dual optimization problem imposed by one‐class SVM
is O dN( )3 , and the computational complexity of OCSVM with RBF kernel function is O dN( )2 .
Similarly, the computational complexity of OCSTM with RBF kernel is O N d d( )2

1
2

2 ,30 whereas
d1 and d2 denote the second‐order tensor such that d d d d= ×1 2 . The computational com-
plexity of OCSTM with bounded loss function is the complexity for dual optimization with RBF
kernel O N d d( )2

1
2

2 and OCSTM with randomized linear projection is O kN( ), where N is the
training data set size. The complexity of the auxiliary variable and margin parameter p is N ,
and α is the complexity of the Lagrange multiplier in every iteration. Thus, the computational
complexity of OCSTM‐BH is O H N N N d d( (( + + ) )BH

2
1
2

2 and O H kN N N d d( (( + + ) )BH
2

1
2

2

with RBF and randomized kernel, respectively. Neglecting the lower‐order terms, we get
O H kN( (( ))BH

2 and O H kN( (( ))BH for RBF and randomized kernel, respectively, where HBH is
the complexity of the half‐quadratic optimization.

To further observe the run time complexity, compare the performance in terms of training,
testing time on Breast Cancer data set, as shown in Table 8. We can observe that computational
and space complexity (both train and test) are much better as compared with the state‐of‐the‐
art methods. Furthermore, it requires much less number of iterations to converge.

6 | CONCLUSION

Traditional support tensor machines and their variants are still sensitive in the presence of outliers.
To overcome the challenge mentioned above, we presented a randomized OCSTM for outliers
detection in a larger data set. The proposed framework helps improve the robustness against
outliers detection and results in improving the time complexity. Instead of utilizing the traditional
loss function, We proposed using the bounded hinge loss function and randomized linear pro-
jection. Extensive experiments on 14 benchmark data sets showed the robustness of the proposed
randomized bounded support tensor machine over support tensor machines and their variants.



Furthermore, the computational and space complexity is beautiful not only for large data sets but
also for small ones that validate the proposed approach's scalability.
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