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Abstract

The source number identification is an essential step in direction-of-arrival (DOA)

estimation. Existing methods may provide a wrong source number due to mod-

eling errors caused by relaxing sparse penalties, especially in impulsive noise.

This paper proposes a novel idea of simultaneous source number identification

and DOA estimation to address this issue. We formulate a multiobjective off-

grid DOA estimation model to realize this idea, by which the source number can

be automatically identified together with DOA estimation. In particular, the

source number is correctly exploited by the l0 norm of impinging signals without

relaxations, guaranteeing accuracy. We further design a multiobjective bilevel

evolutionary algorithm to solve this model. The source number identification

and sparse recovery are simultaneously optimized at the on-grid (lower) level.

A forward search strategy is developed to further refine the grid at the off-grid

(upper) level. This strategy does not need linear approximations and can elim-

inate the off-grid gap with low computational complexity. Simulation results

demonstrate the outperformance of our method in terms of source number and

root mean square error.
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1. Introduction

Direction-of-arrival (DOA) estimation refers to finding the direction informa-

tion of electromagnetic sources according to the outputs of receiving antennas

that form an array. It is a crucial subject in array signal processing and is

ubiquitous in radar, sonar, and wireless communications [1].5

Many DOA estimation methods have been proposed. Classical subspace-

type methods [2] such as MUSIC and ESPRIT, estimate DOAs by exploiting

the eigenvalues decomposition on the sample covariance matrix [2]. They highly

rely on equally-spaced measurements and the Gaussian noise assumption. How-

ever, non-Gaussian noise such as impulsive noise [3] may occur in practice. Un-10

like Gaussian noise, the probability density function of impulsive noise exhibits

heavy-tailed property, i.e., the measurements contain outliers. As a result, the

performance of subspace methods would degrade seriously.

Some variants of subspace methods are proposed to handle impulsive noise,.

For example, maximum likelihood subspace methods [4][5] are developed for15

Gaussian mixture model-based noise. In [6][7], the fractional lower-order statis-

tics instead of second-order covariance is adopted to cope with impulsive noise,

but large samples are needed. Alternatively, the zero-memory nonlinear func-

tion [8] is applied to handle outliers. Inspired by the robust statistics, the

lp-MUSIC method considered the sample covariance matrix with lp-norm min-20

imization [9], but p is difficult to choose. In [10][11], an effective correntropy

induced estimator is integrated into MUSIC to suppress outliers.

Recently, compressed sensing techniques proposed an alternative solution for

DOA estimation, known as “sparse methods”. Representatives include greedy

algorithms [12], convex optimization approaches [13], and sparse Bayesian learn-25

ing (SBL)-based methods [14][15]. Sparse methods [12][13][14] show many ad-

vantages over subspace-type, such as enhanced robustness to lower signal-to-
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noise ratio (SNR), fewer snapshots, and highly correlated sources [16][17]. In

particular, the angular domain is griddle into a finite set, and DOA estimation

is simplified to select the right subsets. In practice, some sources may deviate30

from the preset grid, emerging the grid mismatch issue. This issue seriously de-

grades DOA estimation accuracy. To avoid this issue, gridless sparse methods

[14][18][19] are developed by directly working in the continuous angular domain.

However, they only work well with sufficiently separated sources and often need

to solve a semidefinite programming problem by the interior point method, pay-35

ing the price of high complexity [20]. Off-grid sparse methods are another type

for fixing the grid gap [18][14][19]. They parameterize the gap into models, and

estimate it by linear approximations [18][14], root-finding strategies [21][22], etc.

A few robust sparse methods [21][23][24] have been developed for impulsive

noise. These methods model the measurement noise as a sum of sparse outlier40

noise and dense Gaussian noise to better learn the probability distribution of

measurements. The off-grid SBL based method [21] falls into this type, but

the maximum number of DOAs that can be estimated is reduced. In [23], the

identify-and-reject strategy is presented to reject outliers, yet it works badly in

cases with no outliers. Another robust method [24] identifies and corrects out-45

liers during iterations, gaining improved performance. The three works highly

rely on the assumption that outlier noise has a sparse structure. However, the

outlier noise is not strictly sparse, leading to a performance loss [24].

In DOA estimation, identifying the source number is a crucial step. Par-

ticularly in subspace methods, the source number is an essential precondition50

for DOA estimation. Conventional techniques are based on information crite-

rion such as Akaike information criteria (AIC), and minimum description length

(MDL) [25][26], but they are only effective in Gaussian noise. By contrast, sparse

methods do not need to know the source number. They use sparse penalties

such as lp-norm (p ∈ (0, 1]) sparse penalties, Laplace prior [14] or Gaussian55

scale mixtures [21] to approach the source number. These penalties are relax-

ations of the l0 norm of impinging signals, which brings modeling error and may

not perfectly represent the sparse distributions, leading to overestimated source
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number [27]. Furthermore, how to identify the source number in impulsive noise

via sparse methods has also not been investigated yet.60

In summary, off-grid sparse methods exhibit many advantages compared to

the subspace-based methods and gridless methods [16][17]. Nonetheless, they

employ the suboptimal relaxed sparse penalties, which reportedly overestimates

the source number and incurs a performance loss. In impulsive noise environ-

ments, the overestimation and performance loss would be even worse.65

In this paper, we aim at simultaneous source number identification and DOA

estimation in impulsive noise. We design a multiobjective bilevel evolutionary

approach (MoBEA) with two significant innovations to realize this idea. Firstly,

we build a multiobjective DOA estimation model, in which the source number

and a robust fitting error are taken as two conflicting objectives. Unlike existing70

DOA estimation models, our model can automatically identify the source num-

ber together with DOA estimation. Moreover, our model perfectly exploits the

source number via the original l0-norm of impinging signals without relaxation,

providing a more precise source number. Besides, different from existing models

explicitly or implicitly working with the assumption of Gaussian noise, we in-75

corporate the robustness metric “correntropy” [28] into the model, significantly

improving the performance in impulsive noise.

Secondly, we design a multiobjective bilevel evolutionary algorithm to solve

the proposed model. Our algorithm includes on-grid (lower) level and off-grid

(upper) level optimization. At the on-grid level, we develop a population-based80

genetic algorithm to simultaneously identify the source number and recover

the impinging signal matrix on a coarse grid. The diversified solutions in the

population evolve various source numbers and communicate with each other,

providing multiple pathways to the optima. Finally, the source number and

active grid points are obtained after extracting the knee solution from on-hand85

solutions. At the off-grid level, we introduce a forward search strategy to refine

the active grid points. This strategy does not need linear approximations and

can efficiently eliminate the off-grid gap with low computational complexity.

Overall, MoBEA’s main contributions are:
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• Multiobjective DOA estimation model. The proposed model can automat-90

ically identify the source number together with DOA estimation. Besides,

it perfectly exploits the source number via the l0-norm of impinging signals

without relaxation, guaranteeing its accuracy.

• Multiobjective bilevel evolutionary DOA estimation algorithm. It solves

the proposed model via alternate execution of two levels’ optimization.95

A forward search strategy is introduced at the off-grid level, efficiently

eliminating the off-grid gap with low computational complexity.

• Empirical validation of MoBEA’s performance. Simulation results confirm

the superiority of MoBEA in both source number identification and DOA

estimation over state-of-the-art methods.100

In this paper, bold-face letters represent vectors and matrices. R and C

are the real and complex domain. E denotes the mathematical expectation. ⊺,

∗, and H denote transpose, conjugate, and conjugate transpose of a vector or

matrix, respectively. Ai,: and Ai,j denote the i-th row and (i, j)-th element of

matrix A, respectively. diag(w) is a diagonal matrix with w as the diagonal105

elements. In particular, s|e stands for the sub-vector of s with entries indexed

by the set I = {i|ei = 1}. Similarly, S|e denotes the sub-matrix of S with rows

indexed by the set I = {i|ei = 1}.

The rest of the paper includes the signal model in Section II, the proposed

DOA estimation model and algorithm in Sections III and IV, simulation results110

in Section V, and conclusions in Section VI.

2. Signal Model

Consider K narrowband far-field sources ṡ1(t), ṡ2(t), ..., ṡK(t) 1 impinging

on a uniform linear array of M omnidirectional sensors from directions of θ̇ =

1The dot notation here is used to indicate that these variables are defined with the pre-

condition “the true source number K is known”.
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(θ̇1, θ̇2, ..., θ̇K)⊺. The array output [29] at time t is modeled as

y(t) =

K∑
k=1

a(θ̇k)ṡk(t) + n(t) = A(θ̇)ṡ(t) + n(t), (1)

where y(t) = (y1(t), ..., yM (t))
⊺
is the array output, ṡ(t) = (ṡ1(t), ..., ṡK(t))

⊺
are

the signal waveforms, A(θ̇) =
(
a(θ̇1), ...,a(θ̇K)

)
is the array manifold matrix,

a(θ̇k) =
(
1, e−j2πd/λ sin(θ̇k), ..., e−j2π(M−1)d/λ sin(θ̇k)

)⊺
contains the time delay

of the k-th signal received at each sensor, λ is the wavelength of sources, d

is the spacing distance between adjacent sensors, n(t) = (n1(t), ..., nM (t))
⊺
is

unknown noise. When T snapshots are collected, the array output [29] is

Y = A(θ̇)Ṡ+N, (2)

where Ṡ = (ṡ(1), ..., ṡ(T )), Y = (y(1), ...,y(T )), and N = (n(1), ...,n(T )).

Given Y and mapping θ̇ → A(θ̇), the goal is to find DOAs with unknown

K.115

To accomplish this goal, existing grid-based sparse methods cast DOA es-

timation as a sparse recovery problem [12]. The angular range [−π/2, π/2] is

divided into an equi-spaced grid θ0 = (θ1, ..., θN )
⊺
with the assumption that

N ≫ K, where N denotes the total number of grid points, and r = θi+1 − θi

is the grid interval. If all the sources fall exactly on this grid, it would be an

on-grid case. The array output Y for the on-grid model [12] is formulated as

Y = A(θ0)S+N, (3)

where the impinging signal matrix S is the extension of Ṡ from θ̇ to θ0, with S

being row-sparse, i.e., all columns of S are sparse and share the same support.

However, some sources may deviate from the predefined grid (known as the off-

grid case), as shown in Fig. 1. In this case, the sparse coefficient S is not sparse

any more. Thus, the off-grid gap may lead to estimation degradation.120

To alleviate the off-grid gap, the gap between true DOAs and the initial grid

(denoted as grid mismatch ζ) is usually parameterized into the on-grid model

(3). As a result, the array output for the off-grid model [13] is cast as

Y = A(θ0 + ζ)S+N. (4)
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Figure 1: Off-grid case. Dotted lines stand for predefined grids. Red triangular symbols

correspond to sources.

The grid mismatch and impinging signal matrix are estimated by solving the

following regularization optimization problem [13]:

min
ζ,S

ρ∥S∥2,0 +
1

2
∥Y −A(θ0 + ζ)S∥2F , s.t. −

r

2
< ζi ⩽

r

2
, i = 1, ...N, (P1)

where ρ is a balancing parameter. ∥Y −A(θ0 + ζ)S∥2F is a fitting error term,

denoted as “measurement error”; S is a row-sparse matrix whose i-th row cor-

responds to a possible source impinging on the array at (θ0+ ζ)i; ∥S∥2,0 stands

for the source number, which equals to the number of nonzero rows of S:

∥S∥2,0 = ∥ (∥S1,:∥2, ∥S2,:∥2, ..., ∥SN,:∥2) ∥0.

∥S∥2,0 is a l0-norm penalty. It is the proper and exact sparsity-enforcing penalty,

which plays a prominent role in identifying the source number.

3. Proposed Multiobjective DOA Estimation Model

Problem (P1) is NP-hard because of the l0 norm[30]. Existing off-grid meth-

ods [12][14][15] relaxed the l0 norm to other suboptimal penalties. Such relax-125

ation brings modeling error, which may provide some spurious DOAs and de-

grade the localization performance[27]. Also, the performance is susceptible to

the balancing parameter (i.e., ρ in (P1)), which is hard to tune.

To address the above issues, we naturally model the regularization opti-

mization problem (P1) as a multiobjective optimization problem (MOP). Our
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model holds two significant advantages: 1) it allows automatically identifying

the source number together with DOA estimation, and 2) it perfectly exploits

the source number via the l0-norm of impinging signals without relaxation,

guaranteeing accuracy. In detail, our model simultaneously minimizes the two

conflicting objectives:

min
ζ,S

(
∥S∥2,0, ∥Y −A(θ0 + ζ)S∥2F

)
,

s.t. − r

2
< ζi ⩽

r

2
, i = 1, ...N,

(P2)

where ∥S∥2,0 and ∥Y−A(θ0 + ζ)S∥2F are the source number and measurement

error, respectively.130

The MOP (P2) inherently involves two problems. 0ne is the sparse recovery

of the impinging signal matrix S with given grid, where ∥S∥2,0 denotes the

source number. The other is grid refinement with given S. It should be noted

that, compared to source number identification by sparse recovery, perceiving

true DOAs is more critical. Therefore, the decision-maker of the grid refinement

problem should have complete knowledge about sparse recovery, while the sparse

recovery problem only observes the decisions of grid refinement. Therefore, we

cast the MOP (P2) as a bilevel MOP:

min
ζ,S
∥Y −A(θ0 + ζ)S∥2F ,

s.t. − r

2
< ζi ⩽

r

2
, i = 1, ...N,

S ∈ argmin
S

(
∥S∥2,0, ∥Y −A(θ0 + ζ)S∥2F

)
,

(P3)

where the first and the third rows are the off-grid (upper) level and the on-grid

(lower) level problems, respectively. The on-grid level simultaneously identifies

the source number and recovers S with a given grid. Based on the decisions of

the on-grid level, the off-grid level minimizes the measurement error to refine

the grid and update S.135

The bilevel MOP (P3) explicitly works in Gaussian noise. In practice, the

impulsive noise may exist, bringing great challenges for accurate estimation. To

cope with this, we incorporate a robust metric “correntropy” [28] to reduce the
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detrimental effect of the impulsive noise. Correntropy is a local and nonlinear

similarity measure in a feature space [28]. Given two arbitrary vectors x =

(x1, ..., xM )
⊺
and z = (z1, ..., zM )

⊺
, the correntropy is approximated as [28]

V (x, z) :=E[κσ(x− z)] ≈ 1

M

M∑
i=1

κσ(xi − zi),

κσ(γ) =
1√
2πσ

exp

(
−γγ∗

2σ2

)
,

(5)

where κσ(γ) is the Gaussian kernel function with a kernel size σ. Based on

correntropy, correntropy-based loss function (CLF) [31] is defined as

VCLF(x, z) = 1− 1

M

M∑
i=1

exp

(
− (xi − zi)(xi − zi)

∗

2σ2

)
. (6)

This function is related to Welsch’s cost function [28]. Compared to the l2-

norm error term of the bilevel MOP (P3), VCLF increases much slower and is

bounded, thus large noise outliers have a limited effect on VCLF. Hence, it has

better robustness to impulsive noise. With incorporating VCLF, we give the final

bilevel multiobjective optimization model

min F (S, ζ) = VCLF (Y,A(θ0 + ζ)S) ,

s.t. − r

2
< ζi ⩽

r

2
, i = 1, ...N,

S ∈ argmin
S

f(S) = (∥S∥2,0, VCLF(Y,A(θ0 + ζ)S)) ,

(P4)

where the first and the third rows are the off-grid level and on-grid level prob-

lems, respectively. The second row is the grid mismatch-related constraint.

Compared to the regularization problem (P1), no balancing parameter is needed.

The sparsity of impinging signals is perfectly captured by the l0 norm term with-

out evoking relaxations. Hence the source number is accurately identified.140

4. Proposed Multiobjective BiLevel Evolutionary DOA Estimation

Algorithm

We design a multiobjective bilevel evolutionary algorithm to solve the pro-

posed bilevel MOP (P4). The designed algorithm has three key features: 1)
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it simultaneously identifies the source number and recovers the impinging sig-145

nal matrix on a coarse grid at the on-grid level; 2) A forward search strategy is

developed at the off-grid level, which eliminates the off-grid gap with lower com-

putational complexity than other grid refinement strategies [18][19][22]; and 3)

the population-based evolutionary algorithm evolves diversified search pathways

to the optima, promoting the effectiveness and efficiency of the algorithm.150

The workflow of the proposed algorithm is shown in Fig. 2, with the pseu-

docode and variable definitions exhibited in Algorithm 1 and Table 1, respec-

tively. It starts with initialization, following by a bilevel optimization. At the

on-grid level, an improved framework based on NSGA-II [32] is developed to

simultaneously identify the source number and recover the impinging signal155

matrix S. Instead of directly searching the complex-valued S, we encode S into

a binary vector for simpleness. After evolutionary search and selection, the knee

solution is extracted to represent the active grid points, where “active” means

a source located at that grid point. After that, a forward search strategy is

developed and executed at the off-grid level for refining the grid represented by160

the knee solution. The population is then updated. When the stopping criterion

is satisfied, the active grid points are the estimated DOAs. Key components of

the proposed algorithm are detailed below.

4.1. Chromosome Encoding and Decoding

(S, ζ) represents the solution of the proposed model (P4), but it is non-trivial165

to execute genetic operators on the complex-valued impinging signal matrix S.

Therefore, we search the locations of the nonzero rows of S instead and then

recover these nonzero values. In detail, we encode (S, ζ) as (e, ζ), where e is

a binary vector with “1” and “0” denoting the corresponding row of S being

nonzero and zero entries, respectively. For unity, we denote e as “active set”.170

To recover S from e, we develop a decoding method improved from the

correntropy matching pursuit (CMP) algorithm [31]. For clarity, we briefly

introduce CMP before describing the decoding process.
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Figure 2: Framework of MoBEA.

4.1.1. Correntropy matching pursuit

CMP is a matching pursuit method for sparse recovery in impulsive noise

[31]. In compressive sensing, let the measurement being y = As + n with the

assumption that the dictionary A and measurements y are both known, CMP

solves a correntropy loss minimization problem to recover s

s = argmin
s

VCLF(y,As) = 1− 1

M

M∑
i=1

exp

(
−ziz

∗
i

2σ2

)
, (7)

11



Algorithm 1 Pseudocode of MoBEA

Input: A, Y, θ0, ζ
0 ← 0N×1

Output: θ

1: G = 0;

2:

(
PG,SG, ëG, S̈G

)
=Initialization

(
A,Y, ζ0

)
;

3: while “the algorithm does not teminate” do

4:

(
PG,SG, ëG, S̈G

)
=On grid

(
PG,SG, ëG, S̈G

)
;

5: ζG+1 = Forward search
(
PG,SG, ëG, S̈G

)
, where PG =

(
EG, ζG

)
;

6: /*Population updates*/

7: PG+1 ←
(
EG, ζG+1

)
;

8: SG+1 =Decoding
(
EG, S̈G, ζG+1, σG

)
;

9: G = G+ 1;

10: end while

11: θ =
(
θ0 + ζG

)
|ëG .

where z = y−As is the residual. With the half-quadratic theory [33], problem

(7) can be reformulated as a weighted least square problem and solved by [31]:

σl+1 =

(
1

2M
∥y −Asl∥22

) 1
2

, (8)

wl+1
i = gσ

(
yi −Ai,:s

l
)
, i = 1, 2, ...M, (9)

sl+1|e = argmin
supp(s)∈{i|ei=1}

∥
√
diag(wl+1)(y −As)∥22

=
(
A⊺diag(wl+1)A

)−1
A⊺diag(wl+1)y, (10)

where sl+1|e is the sub-vector of sl+1 with entries indexed by I = {i|ei = 1},175

gσ(p) = exp
(
− pp∗

2σ2

)
, and supp(s) denotes the nonzero entries of s. w is a

weight vector. It indicates the importance of measurements, i.e., the small

coefficients in w suppress the severely contaminated measurements, and the

large coefficients enable to preserve the clean measurements. w can improve

CMP to identify the true atoms, thus boosting the recovery performance [31].180
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Table 1: Notations in MoBEA.

Variable Description

G Outer generation number

lt Inner generation number at the on-grid level

ut Inner generation number in forward search

θ0 Initial grid

ζ Grid mismatch

EG = {eGi }N̄i=1 Active sets at G-th generation

SG = {SG
i }N̄i=1 Set of signal matrices decoded from EG

PG =
(
EG, ζG

)
Population at G-th generation

ëG Active set of the knee solution at G-th generation

S̈G Impinging signal matrix of the knee solution at G-th gen-

eration

4.1.2. Decoding

We extend the CMP to the case of multiple measurement vectors as the

decoding process of the proposed algorithm (see Algorithm 2). In Algorithm

2, W is a weight matrix with each column being the weight vector at each

snapshot. To decode the active set, we first compute the weight matrix based185

on the impinging signal matrix of the knee solution S̈, where the knee solution

will be detailed in Section 4.2. Then, the impinging signal matrix is recovered

by solving a series of reweighted least square problems.

In the decoding process, the choice of kernel size σ is essential. To balance

the recovery accuracy and convergence speed, we employ the kernel annealing

method [28] instead of (8) due to its more excellent performance enhancement

found in [34]. Specifically, the kernel size is defined by

σ(G) = σmax exp(−νG) + σmin, (11)

where G is the generation counter of the outer cycle, σmin=0.03, σmax is cal-

culated by 0.5(abs(Y)0.875 − abs(Y)0.125) − σmin with abs(Y)l being the l-th190
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Algorithm 2 Decoding

Input: A, Y, E, S̈, ζ, σ, S = ∅

Output: S

1: Wi,j = gσ

(
(Y −AS̈)i,j

)
, where gσ(p) = exp

(
− pp∗

2σ2

)
, i = 1, ...,M , j =

1, ..., T ;

2: for each active set e ∈ E do

3: S← 0N×T ;

4: for j = 1 : T do

5: S:,j |e = (A⊺diag(W:,j)A)
−1

A⊺diag(W:,j)Y:,j ;

6: end for

7: put S into S;

8: end for

quantile of {|Yi,j |}M×T , and ν = 2× 10−4 is the decay rate.

4.2. Initialization

We leverage the statistical correlation knowledge to provide a preliminary

choice for the active set to enhance search efficiency. Since a uniform linear array

can identify up to M−1 sources, the condition K ≤M−1 can be considered as195

a priori [35]. In noise-free cases, the sources can be roughly located by selecting

the K atoms that are most correlated with the measurements. Motivated by

this and consider the atoms’ rank distortion caused by impulsive noise, we give

priority to the atoms that have larger correlations, e.g., those who rank the top

2M . In this way, some proper atoms are involved with great probability, thus200

improving the search efficiency. The process is shown in Line 1-5 of Algorithm

3. For the missing atoms, they can be further searched in the mutation step of

the on-grid level.

After that, the knee solution is selected from the current population for

preparing the subsequent decoding. In each decoding process, a solution is205

required to estimate the weight matrix. Here we choose the knee solution based

on the following considerations. The knee solution is commonly an interesting
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Algorithm 3 Initialization

Input: A, Y, ζ0

Output: P0, S0, ë0, S̈0

1: τ =
∑T

t=1 | < y(t), A:,j > |, j = 1, ..., N ;

2: Λ← save the indices of 2M highest correlation in τ ;

3: E0 ← randomly choose no more than M − 1 indices from Λ to construct N̄

active sets;

4: P0 =
(
E0, ζ0

)
;

5: S0 =Decoding
(
E0, 0N×T , ζ0, σ

)
; // Algorithm 2

6: ë0, S̈0 ← Knee Identification
(
P0,S0

)
.

point along the Pareto front (PF), and it provides a good trade-off between

the two objectives [36]. Therefore, it is expected to use the knee solution to

obtain reasonable weights and bring performance enhancement. Even when the210

knee solution fails to be the most satisfactory, it is still a Pareto nondominate

solution from the perspective of multiobjective optimization. Here the kink

method [37] is employed to identify the knee solution, where the solution with

the most significant slope variance over the PF is the knee solution.

4.3. On-grid Level Optimization215

At the on-grid level, we develop a framework based on NSGA-II [32] to

simultaneously identify the source number and recover the signals, where the

grid mismatch acts as parameters. The procedure is exhibited in Algorithm

4. The active set Elt firstly undergoes the one-point crossover, and the bitwise

mutation operations [38] to create offspring solution set Êlt. Êlt is then decoded220

according to Algorithm 2 to recover the corresponding signals Slt. After that,

the environmental selection operator of NSGA-II [32] is executed to select N̄

elite solutions for the next generation. Lastly, the knee solution is identified.

This solution will estimate the weight matrix in the next decoding and identify

the active grid points for off-grid level refinement.225
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Algorithm 4 On-Grid Level

Input: Plt =
(
Elt, ζ

)
, Slt, ëlt, S̈lt

Output: Plt, Slt, ëlt, S̈lt

1: for “lt = 1 : ltmax” do

2: Êlt =Crossover&Mutation(Elt);

3: Ŝlt =Decoding
(
Êlt, S̈lt, ζ, σ

)
; // Algorithm 2

4: Qlt =
(
Êlt, ζ

)
;

5: Plt+1,Slt+1 ←Environmental Selection
(
Plt ∪Qlt,Slt ∪ Ŝlt

)
;

6: ëlt+1, S̈lt+1 ←Knee Identification
(
Plt+1,Slt+1

)
;

7: end for

4.4. Forward Search

We propose a straightforward forward search strategy at the off-grid level

for solving the grid mismatch. Unlike existing grid refinement strategies, this

strategy does not require modeling approximation, achieving higher DOA esti-

mation quality. To save computational cost, the grid points corresponding to230

the knee solution’s nonzero entries are viewed as “active” and allowed to be

refined. The perturbation direction of each active grid point where to decrease

the correntropy-based loss function is obtained separately. Then all the active

grid points are perturbed together along with the obtained directions.

The procedure of the forward search is shown in Algorithm 5. The indices235

of active grid points are saved into I according to the active set of the knee

solution ë. Subsequently, the perturbation directions of the active grid points

are detected and saved into β (Lines 3 to 10 of Algorithm 5): for each active

grid point, a random perturbation direction is given, and it is accepted only

if the corresponding correntropy-based loss function decreases; otherwise, the240

perturbation direction is switched to the opposite direction or zero. Then the ac-

tive grid points are perturbed together along with β with a stepsize µ (Line 13),

where µ equals r/100 to provide a high resolution. The perturbation is repeated

several times until ut reaches its maximum value utmax or the correntropy-based

loss function no longer decreases.245
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Algorithm 5 Forward Search

Input: P = (E, ζ), S, ë, S̈

Output: ζ

1: Find the indices of active grid points: I = {i|ëi = 1};

2: for each index i ∈ I, do

3: give a random perturbation direction: βi = −1 or + 1;

4: ζ̂i = ζi + µβi;

5: if F
(
S̈, ζ̂

)
> F

(
S̈, ζ

)
then

6: βi = −βi;

7: else if F
(
S̈, ζ̂) = F

(
S̈, ζ) then

8: βi = 0;

9: end if

10: end for

11: ζ1 = ζ;

12: for “ut = 1 : utmax” do

13: ζut+1 = ζut + µβ;

14: if F
(
S̈, ζut+1

)
⩾ F

(
S̈, ζut

)
then

15: ζ ← ζut

16: break;

17: end if

18: end for

Remark 1. For any active grid point, it is finally accepted if it is within the

set of −r/2 < ζi ⩽ r/2. Otherwise, it is rejected, and the corresponding grid

point remains unchanged.

4.5. Computational Complexity

The main computational complexity of the proposed algorithm lies in the250

decoding process, i.e., Line 5 of algorithm 3, Line 3 of Algorithm 4 and Line 22

of Algorithm 5. For each solution, the decoding complexity is T ×O(N3) in the

worst case, where T and N are the number of snapshots and the number of grid
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points, respectively. Thus, the algorithm’s complexity is (lt + 1)N̄T × O(N3),

where lt is the number of inner iterations of the on-grid level, N̄ is the population255

size. It can be seen that the number of grid points has a significant impact on

computational complexity. In practical applications, the decoding is suggested

to be implemented in parallel to reduce the execution time.

5. Experimental Study

In this section, we first conduct simulations to investigate the effectiveness260

of the key operators in the proposed MoBEA. Then, we compare MoBEA with

the robust state-of-the-art algorithms to analyze MoBEA’s overall performance.

5.1. Experimental Settings

5.1.1. Comparing Algorithms

We compare MoBEA with four state-of-the-art robust algorithms, i.e., lp-265

MUSIC [9], MCC-MUSIC [11], Bayes-optimal [21], and Fast-alternating [21].

They are introduced below.

• lp-MUSIC: A representative robust subspace-based algorithm that adopts

the lp-norm of the residual fitting error matrix for subspace decomposition.

• MCC-MUSIC: A state-of-the-art robust subspace-based algorithm that270

estimates the signal subspace by solving an optimization problem under

the maximum correntropy criterion.

• Bayes-optimal: A state-of-the-art off-grid SBL-based algorithm that mod-

els the measurement noise as the mix of Gaussian noise and outliers.

• Fast-alternating: A state-of-the-art off-grid SBL-based algorithm that is275

a fast execution version of the Bayes-optimal algorithm.

In simulations, we also compare the proposed forward search strategy to

Taylor expansion [18], to investigate the effectiveness of our strategy in grid re-

finement. In Taylor expansion, the manifold matrix is approximated by the first
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order Taylor approximation [18]: A(θ) = A(θ0 + ζ) ≈ A(θ0) +A′(θ0)diag(ζ),280

where θ0 and ζ are the initial grid and grid mismatch, A′(θ0) is the first deriva-

tive of A(θ0) with respective to θ0. Similar to [18], ζ can be obtained by letting

the derivative of VCLF (Y, (A(θ0) +A′(θ0)diag(ζ))S) with respect to ζ be zero.

5.1.2. Simulation Benchmarks

We use various simulations to testify algorithms’ performance. The simula-285

tion benchmarks are detailed in Table 2, where T is the number of snapshots, c2

is the probability parameter of noise outliers in Gaussian mixture model (GMM)

[4], α is the characteristic exponent in symmetric α-stable distribution (SαS)

noise [39], and M is the number of receiving antennas.

In all simulations, we consider a small number of uncorrelated sources im-290

pinging on a uniform linear array of sensors with an inter-sensor spacing of

d = λ/2. The number of receiving sensors is M = 8. Two widely-used PDF

models, i.e., GMM [4], and SαS [39], are considered to model the impulsive

noise. All sources are assumed to possess equal power η2s .

The PDF of a two-term GMM noise n(t) can be described as

pn(x) =

2∑
i=1

ci
πη2i

exp

(
−|x|

2

η2i

)
, (12)

where 0 ≤ ci ≤ 1 and η2i are the probability and variance of the i-th term295

with c1 + c2 = 1, respectively. Assume η22 = 100η21 and c1 > c2 > 0, the

SNR noise model can be viewed as the large noise outliers of variance η22 with

a smaller probability c2 embedded into Gaussian noise of variance η21 with a

larger probability c1. According to [21], the SNR is simplified as SNR = η2s/η
2
1 .

The symmetric SαS distribution with zero-location is used to model the

noise. Its characteristic function is defined as

φ(x) = exp(−γα|x|α), (13)

where 0 < α ≤ 2 denotes the characteristic exponent that indicates the tail of300

the distribution, and γ is the scale. When α = 2 and α = 1, the SαS reduces

to the Gaussian distribution and the Cauchy distribution, respectively. The
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Table 2: Simulation benchmarks.

Name Feature Settings

Simulation 1 With different GSNRs

in SαS noise

Three uncorrelated sources from −9.7◦, 6.8◦,

and 12.7◦. T = 20. α = 1.4. GSNRs varies

from −10dB to 15dB.

Simulation 2 With different grid in-

tervals in GMM noise

Two uncorrelated sources from −1.6◦ and 13.2◦.

T = 20. SNR = 10dB, c2 = 0.1. Grid interval

varies from 2◦ to 10◦.

Simulation 3 With different SNRs or

GSNRs

Three uncorrelated sources from −2.7◦, 5.8◦,

and 20.2◦. T = 20. c2 = 0.1. α = 1.4. SNR or

GSNR varies from −10dB to 15dB.

Simulation 4 With different grid in-

tervals in SαS noise

Three uncorrelated sources from −19.7◦, 6.8◦,

and 32.7◦ . T = 20. α = 1.4. GSNR = 10dB.

Grid interval varies from 2◦ to 10◦.

Simulation 5 With different angular

separations in GMM

noise

Two uncorrelated sources, one from −10.8◦, and

another varies from −8.8◦ to −0.8◦. T = 30.

c2 = 0.1. SNR = 10dB.

Simulation 6 With different number

of snapshots in SαS

noise

Three uncorrelated sources randomly chosen

from −2.7◦, 5.7◦ and 20.2◦ impinging on the

uniform linear array. α = 1.4. GSNR = 10dB.

T varies from 20 to 100.

Simulation 7 Under Gaussian noise Three uncorrelated sources from −2.7◦, 5.7◦,

and 20.2◦ from a uniform linear array with

M = 8. T varies from 1 to 50. SNR = 5dB.

smaller value of α, the more impulsive noise is. Since the closed-form PDF of

SαS does not exist when α ̸= 2 and α ̸= 1 [39], the SNR becomes meaningless.

Instead, the generalized SNR (GSNR) [9] is reformulated as GSNR = η2s/γ
α.305

5.1.3. Performance Metrics

Since the Bayesian-based algorithms and the proposed MoBEA do not out-

put the spatial spectrum, the spatial spectrum is not used for comparison in

this paper. We employ two statistical measures, i.e., the root mean square error

(RMSE), and the average estimated source number.310

Let (θ̃k)i stands for the estimate of θ̇k at the i-th Monte Carlo trial, the
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RMSE can be formulated as

RMSE =

√√√√ 1

Kυ

υ∑
i=1

K∑
k=1

(
(θ̃k)i − θ̇k

)2

, (14)

where K is the true source number, and υ = 100 is the total number of Monte

Carlo trials. For a given simulation point, RMSE is obtained by averaging only

the trials in which the estimated source number is greater than or equals to K.

The assignment of estimated source number to the true one is executed

based on the Hungarian algorithm [40]. The average estimated source number315

is obtained by averaging the empirical source numbers of all Monte Carlo runs.

These two metrics well reveal the identification capacity of the DOAs and source

number.

5.1.4. Parameter Settings

The comparing algorithms need the source number K as the input. Here we320

set K = M − 1 2. For lp-MUSIC, we set p = 1.1. The grid interval is set to 0.1◦

for lp-MUSIC and MCC-MUSIC, and 2◦ for the remaining methods if not stated.

For MoBEA, the crossover probability and the mutation probability are set to

0.9 and 1/N , respectively, following the practice of [32]. The population sizeN is

50. The on-grid level optimization terminates when its inner generation reaches325

50, or the knee solution remains unchanged in five consecutive generations.

For a fair comparison, all methods stop running when the variance change of

the impinging signal SG is less than 10−6 in five consecutive generations, or the

outer-cycle generation reaches 200; and the total number of Monte Carlo trials

is 100 for all algorithms. All the experiments are implemented in MATLAB330

R2018b on a laptop with Intel i5-8265U CPU and 8GB RAM.

5.2. Investigation of Key Operators of MoBEA

This subsection investigates the efficacy of two key operators of MoBEA,

i.e., the knee solution identification and the forward search scheme.

2A uniform linear array can identify up to M − 1 sources, the condition K ≤ M − 1 can

be considered as a priori while the exact value of K is unavailable [35].
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Figure 3: Final PFs obtained at on-grid level in Simulation 1. Solutions in red circles are knee

solutions.

5.2.1. Efficacy of Knee Solution335

At the on-grid level, the knee solution extracted from the PF is employed

to represent the active grid points for grid refinement. It provides a promising

trade-off between the source number and the estimation accuracy.

We first use Simulation 1 (detailed in Table 2) to investigate the relationship

between the knee solution and the source number. Fig. 3 shows the typical final340

PF obtained by the on-grid level optimization of 100 trails. Since a uniform

linear array can identify up to M − 1 sources [35], it is expected to identify the

knee solution from the non-dominated solutions whose source number is less

than M (where M = 8). It can be observed that the knee solutions in the red

circles of Fig. 3 correspond to the true source number K = 3.345

To further exploit the impact of the knee solution on the accuracy of DOA

estimate, the performance of MoBEA with the knee solution and a randomly

selected nondominated solution entering the off-grid level optimization are com-

pared using Simulation 1. Fig. 4 exhibits the RMSE and average estimated

source number versus GSNR. It can be seen that the version with the knee350

solution achieves a smaller DOAs error compared to the random nondominated

solution case, thanks to its more precise estimate of the source number. This re-

sult indicates that the knee solution is more valuable than other nondominated

solutions regarding the source number and DOAs.
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Figure 4: Results of DOA estimate corresponding to random nondominated solution and knee

solution under various GSNRs in Simulation 1.

5.2.2. Efficacy of Forward Search355

To validate the efficacy of the forward search, we compare the proposed

MoBEA to two different versions , i.e., the “on-grid” MoBEA and the MoBEA

with Taylor expansion (detailed in Section 5.1.1). Fig. 5 shows the results

of DOA estimate versus grid interval in Simulation 2. From Fig. 5(a), the

proposed forward search strategy obtains the best localization accuracy under360

different grid levels. The “on-grid” version and “Taylor expansion” versions

suffer from localization performance loss due to ignorance of off-grid mismatch

and large modeling error caused by Taylor expansion, respectively. From Fig.

5(b), we note that all three strategies estimate the source number rightly. These

observations clearly illustrate the efficacy of forward search.365

5.3. Comparison of MoBEA against State-of-the-Art Methods

In this subsection, we compare the proposed MoBEA with state-of-the-art

methods, i.e., lp-MUSIC [9], MCC-MUSIC([11]), Bayes-optimal [21], and Fast-

alternating [21], in different kinds of simulations to testify the overall perfor-

mance of MoBEA.370
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Figure 5: Results of DOA estimate versus grid intervals in Simulation 2.

5.3.1. Comparison Results

Results under various SNRs. Fig. 6 shows the RMSE and estimated

source number versus SNR in Simulation 3 with GMM noise. It can be seen

that the performance of all algorithms degrades obviously. lp-MUSIC and MCC-

MUSIC perform the worst under lower SNRs, which may be due to their high375

sensitivity to lower SNR and imprecise information of source number. The

two Bayesian methods behave better in most cases, but they are inferior to

MoBEA in localization accuracy. The reason is MoBEA estimating the source

number more precisely, which avoids energy leakage on spurious DOAs. Fig.

7 further reports the performance in Simulation 3 with SαS noise. The two380

MUSIC-based methods still behave badly in impulsive noise. Compared to the

SBL-based methods, MoBEA achieves higher or comparable DOA estimation

accuracy but always predicts the source number more accurately.

Results under various grid intervals. Fig. 8 exhibits the RMSE and

average estimated source number versus grid interval in Simulation 4 with SαS385

noise. MoBEA achieves comparable or smaller RMSE results than other algo-

rithms under lower SNRs and performs much better with higher SNRs. The

enhancement of MoBEA under lower SNRs is non-significant, probably because

the localization accuracy is severely affected by the ignorance of the noise vari-

ance in the proposed model. It is worth noting that, MoBEA shows an absolute390
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Figure 6: Results of DOA estimate versus SNR (dB).
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Figure 7: Results of DOA estimate versus GSNR (dB).

predominance in predicting the source number for all grid interval cases.

Results under various angular separations. This part examines algo-

rithms’ ability to identify two closely located sources. Fig. 9 displays the perfor-

mance versus angular separations in Simulation 5 with GMM noise. The RMSE

values of MoBEA retain the lowest in most cases. As the two sources separate395

from each other, MoBEA predicts the source number more precisely, which per-

forms remarkably better than other algorithms. The results demonstrate that

MoBEA has higher localization resolution when the sources are closely located.

Results under various numbers of snapshots. Fig. 10 shows the RMSE400
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Figure 8: Results of DOA estimate versus grid intervals.
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Figure 9: Results of DOA estimate versus angular separations.

and estimated source number versus the number of snapshots in Simulation 6

with SαS noise. It can be observed that lp-MUSIC and MCC-MUSIC algorithms

gain the worst performance under fewer data samples. Fast-alternating and

Bayes-optimal methods obtain significant enhancement in RMSE with fewer

snapshots. As expected, MoBEA achieves the highest localization accuracy due405

to the accurate identification of the source number.

Results under Gaussian noise environment. The proposed MoBEA is

compared to MUSIC, a classical DOA estimation method for handling Gaussian

noise. MUSIC cannot work without the source number. So we consider using

the AIC [25] and MDL [26] principles to estimate the source number for MUSIC.410
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Figure 10: Results of DOA estimate versus number of snapshots in SαS noise.

0 5 10 15 20 25 30 35 40 45 50

number of snapshots  T

0

1

2

3

4

5

6

7

8

R
M

S
E

MUSIC+AIC

MUSIC+MDL

MoBEA

CRLB

(a) RMSE

0 5 10 15 20 25 30 35 40 45 50

number of snapshots  T

3

3.5

4

4.5

5

5.5

6

6.5
A

v
e

ra
g

e
 e

s
ti
m

a
te

d
 s

o
u

rc
e

 n
u

m
b

e
r

MUSIC+AIC

MUSIC+MDL

MoBEA

(b) Average estimated source number

Figure 11: Results of DOA estimate versus number of snapshots in Gaussian noise.

We also present the Cramér-Rao Lower Bound (CRLB) to show the theoretical

lower bound for comparison. Fig. 11 depicts the RMSE and estimated source

number in Simulation 7 with Gaussian noise. Our method clearly shows a

significant advantage over MUSICs in terms of RMSE and estimated source

number with fewer snapshots (< 30). When the number of snapshots is larger,415

the performance of our method and MUSICs gets similar. Our method’s RMSE

value is closer to the CRLB compared to MUSIC.

5.3.2. Discussions on the Results

Significant findings from the comparing results are summarized below.

Firstly, according to the results reported in Figs. 6-11, the proposed MoBEA420
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achieves the most minor RMSE results in 26 out of the 34 test cases and obtains

the source number most close to the ground truth in 30 out of the 34 test

cases. These results demonstrate the overall superiority of the proposed MoBEA

in DOA estimation and source number identification. In particular, MoBEA

shows a strong ability to estimate the source number, especially in cases with425

fewer snapshots (Figs. 10 and 11). This is because MoBEA perfectly exploits

the sparsity via the l2,0 norm without relaxation. The source number can be

automatically and effectively identified by the knee solution.

Secondly, two MUSICs, i.e., lp-MUSIC and MCC-MUSIC, perform the worst

in most of the 34 test cases. The reasons are two folds. On the one hand, the two430

MUSICs cannot estimate the source number but must preset the source number.

If the preset source number deviates from the ground truth, their performance

degrades significantly. On the other hand, fewer snapshots would also severely

limit the estimation accuracy of MUSICs. In comparison, our method inherits

the advantages of sparse methods, which does not require accurately preset435

source number and large samples. Moreover, our method can automatically

estimate the source number, bringing excellent performance improvement.

Thirdly, the Bayesian-based methods (Fast-alternating and Bayes-optimal)

basically achieve moderate performance compared to MUSICs and MoBEA.

They employ the inherent Gaussian prior to promote sparse solutions. But the440

Gaussian prior is suboptimal, which often gives rise to overestimated source

number, as reported in [27]. In addition, the Bayesian-based methods highly

rely on the assumption that outlier noise has a sparse structure, so that they

identify and reject the outliers for further DOA estimation. However, the outlier

noise is not strictly sparse in practice, leading to some performance loss. By445

contrast, our method employs the original l2,0 norm to exploit the sparsity

without relaxation, thereby predicting more accurate source number. Moreover,

MoBEA employs correntropy to handle impulsive noise, which does not need to

assume that the outlier is sparse, thus achieving better performance.
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Figure 12: Average running time (seconds) of each algorithm versus grid intervals.

5.4. Efficiency on Running Time450

Section 4.5 demonstrates that the number of grid points N has a remarkable

impact on the computational complexity of MoBEA. To further quantify the

effect, this part provides the average running time of MoBEA versus the grid

interval compared to other algorithms, as shown in Fig. 12. The experimental

settings are the same as Simulation 4. It can be observed that the computational455

time of all algorithms shows a decreasing trend with increasing grid intervals

(i.e., fewer grid points). The lp-MUSIC and MCC-MUSIC run much faster than

other algorithms. MoBEA and Bayes-based algorithms are slower because they

need to execute the time-consuming inversions. If there is a high demand for

the faster running speed of MoBEA in practical applications, the decoding is460

suggested to be performed in parallel. Despite this, MoBEA achieves signifi-

cant improvements in RMSE and estimated source number over the comparing

algorithms in most scenarios.

6. Conclusion

This paper has proposed the MoBEA for DOA estimation. MoBEA in-465

volves two innovations. The first is the multiobjective DOA estimation model,

in which the source number and a robust correntropy-based fitting error func-

tion are taken as two objectives. Unlike existing DOA estimation models, the
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proposed model automatically identifies the source number together with DOA

estimation. Besides, the original l0-norm penalty is used to capture the spar-470

sity of signal-of-interest, which avoids relaxing sparse-inducing penalties and

enables source number identification more accurately. The second innovation

is the multiobjective bilevel evolutionary DOA estimation algorithm for solving

the proposed model. The on-grid level is for joint source number identification

and sparse recovery, while the off-grid level works on grid refinement via the475

proposed forward search strategy. This strategy avoids linear approximation

and enhances the localization accuracy. Thanks to the population-based search

of the proposed algorithm, the solutions own different source numbers communi-

cate to each other during the evolutionary search, which provides diverse search

pathways to the optima.480

Experimental results have shown that MoBEA is superior to lp-MUSIC,

MCC-MUSIC, Fast-alternating, and Bayes-optimal method in terms of RMSE

and estimated source number in impulsive noise. It has also shown that MoBEA

works well (close to CRLB) in the scenario of Gaussian noise.

In the future, parallel processing will be considered to accelerate our algo-485

rithm. A future study on reducing the computational complexity of MoBEA

will also be explored.
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