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Abstract This paper proposes a new sequence-based approach to resolve the stability problems found in
switched systems with unstable subsystems. In existing approaches, the sequence information of switching
subsystems is seldom exploited. By exploiting the sequence information, threshold values can be less restrictive
and more appropriate for the situation. We study two cases in this paper: (a) all subsystems are unstable, and
(b) part of the subsystems are unstable. Both continuous-time and discrete-time systems are studied, and a
numerical example is given to show the advantage of our approach.
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1 Introduction

A switched system is a dynamic system that consists of a family of subsystems and a rule that dictates how
the system as a whole switches between the active subsystem [4]. It has attracted extensive research interest
due to its potentially wide applications in practice and theory [2, 11,15,18,22,24,28].

Stability is one of the fundamental problems of switched systems, and has been extensively studied in the
past two decades [4,5,12,13,16,19]. The feedback control for a discrete-time integrator with unitary delay was
studied in [7]. The H∞ filtering problem for a class of nonlinear switched systems with stable and unstable
subsystems was discussed in [25]. The problem of asymptotic stability of continuous-time positive switched
linear systems under both arbitrary and restricted switching was studied in [14]. The stabilizability of controlled
discrete-time switched linear systems was analyzed in [3].

Recently, switched systems with unstable subsystems have also been studied [8,9,11,15,17,25]. The input-
to-state stability of switched nonlinear input delay systems under asynchronous switching was studied in [11].
Paper [9] investigated the asymptotic stability of Markov switched systems. Some stability results of a discrete-
time switched system with unstable subsystems were presented in [17]. Robust adaptive tracking control schemes
for uncertain switched linear systems subject to disturbances were investigated in [15].

In order to resolve the stability problem of switched systems, some new concepts have been proposed. The
concepts of dwell time, average dwell time (ADT), and mode-dependent average dwell time (MDADT) were
firstly introduced in [1, 6, 20]. The concept of sequence was proposed in [23] to resolve the stability problems
when all subsystems are stable. However, it has not been applied to switched systems with unstable subsystems.

Based on these concepts, a large number of methods have been studied for switched systems with unstable
subsystems. The approaches based on dwell time have some advantages that can be computed and verified.
They have been widely applied to switched systems with unstable subsystems [12, 13, 16, 19]. A new method
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for the computation of ADT was proposed in [18]. By developing a novel Lyapunov function approach and
exploring the features of mode-dependent dwell time switching, some new stability conditions were established
in [19]. Based on mode-dependence dwell time approaches, a sufficient condition ensuring the asymptotic
stability of switched continuous-time systems with all modes unstable was presented in [12]. Based on the
delay-dependent average dwell-time approach, sufficient conditions for stability were derived and formulated
in [16]. By using MDADT techniques, some less conservative stability conditions were derived in paper [13].
However, the stability problems of switched systems have not been resolved thoroughly; current methods are
too conservative in nature and result in unnecessary drops in performance. In order to reduce conservativeness,
much effort is still needed.

Exploiting the sequence information is a new direction of reducing conservativeness. For the stable subsys-
tems, using the sequence information can get a smaller dwell time threshold value which can lead to a reduction
of constraints involving average dwell time for the stable subsystems. Superfluous constraints are often what
cause a system to behave more conservative than necessary. In this paper we utilize these same techniques for
unstable subsystems, using the sequence information to enlarge the dwell time interval. The goal of this is to
relax average dwell time constraints and improve the overall response of the system.

In this paper, we study a novel approach for the stability analysis of switched systems with unstable
subsystems. The main contributions of this paper are: (a) proposing a fast switching concept for the sequence-
based method, and (b) proposing a novel approach based on switching sequences to analyze the stability of
switched systems with unstable subsystems. By exploiting the sequence information, our new approach can
reduce conservativeness, release some constraints and obtain better threshold values compared to existing
approaches.

The rest of this paper is organized as follows: In section 2 we introduce some basic concepts of switched
systems. Our main stability analysis results are presented in Section 3 for two cases: when all subsystems are
unstable, and only part of the subsystems are unstable. In Section 4, we provide a comparative study between
our approach and two existing ones.

Notation: For a switched system with m subsystems, its switching signal is represented as function
σ(t)(or σ(k)) : [0,+∞) → M = {1, 2, · · · ,m}. The symbol “×” represents the multiplication operation or
Cartesian product of sets. The symbol “→ 0+(1+)” means any value approaching 0 (1) from the right side. For
any given matrix P , P > 0 claims this matrix is symmetric and positive definite (or if P < 0 it is considered
negative definite). The superscript “T” denotes the matrix transpose. The class K∞ function κ denotes that
the function κ : [0,∞) → [0,∞), κ(0) = 0, is unbounded, strictly increasing and continuous. We use the time
t1, t2, · · · to stand for the switching time of continuous-time subsystems, and k1, k2, · · · for the switching time
of discrete-time subsystems. The flags t−i represents the time approaching subsystems switching time ti from
the left side. The mark [p|q] denotes the situation that the pth subsystem is instantly activated after the qth

subsystem.

2 Preliminaries

In this paper, both linear and nonlinear systems are considered. For nonlinear systems, we consider the following
system models:
discrete-time switched systems

x(k + 1) = fσ(k) (x(k)) , x(k0) = x0; (1)

continuous-time switched systems

ẋ(t) = fσ(t) (x(t)) , x(t0) = x0. (2)

The symbol x(k) (or x(t)) ∈ Rn denotes a n-dimension state vector. For the initial time k0 or t0, we set
x(k0) = x0 and x(t0) = x0, where x0 is known as the initial state. We use σ(k) (or σ(t)) to denote the
switching signal which is a piecewise continuous function. Its range is the finite set M = {1, . . . ,m} where m
is the number of subsystems.

Correspondingly, the following linear switched system models are considered:
discrete-time switched systems

x(k + 1) = Aσ(k)x(k), x(k0) = x(0); (3)

continuous-time switched systems

ẋ(t) = Aσ(t)x(t), x(t0) = x(0). (4)

In order to obtain a new solution for the stability problem of switched systems (1)-(4), we first introduce
some concepts about switched systems.

Definition 1 [23] For a given linear or nonlinear discrete-time switched system with a switching signal σ(k)
and any switching time k1, k2, where k2 > k1 ≥ 0, let Nσ[p|q](k2, k1) represent the number of the sequence that

the pth subsystem is activated immediately after the qth subsystem over the time interval [k1, k2). The symbol
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Tp,[p|q](k2, k1) (or Tq,[p|q](k2, k1)) stands for the total running time of the pth(or the qth) subsystem under this
circumstance. It is said that:
1) σ(k) has a slow sequence-based average subsequent dwell time (SBASDT) τa(p,[p|q]) if there exist two numbers,
τa(p,[p|q]) and N0(p,[p|q]), where N0(p,[p|q]) is called the sequence-based subsequent slowly switching chatter bound
here, such that:

Nσ[p|q](k2, k1) ≤ N0(p,[p|q]) +
Tp,[p|q](k2, k1)

τa(p,[p|q])
; (5)

2) σ(k) has a slow sequence-based average preceding dwell time (SBAPDT) τa(q,[p|q]) if there exist two numbers,
τa(q,[p|q]) and N0(q,[p|q]), where N0(q,[p|q]) is called the sequence-based preceding slowly switching chatter bound
here, such that:

Nσ[p|q](k2, k1) ≤ N0(q,[p|q]) +
Tq,[p|q](k2, k1)

τa(q,[p|q])
. (6)

According to [23], Definition 1 is known for the sequence-based slowly switching. In [23], the methods based
on this definition were applied to asynchronous switched systems where all subsystems are stable. Below, we
introduce a new concept for fast switching.

Definition 2 For a given linear or nonlinear discrete-time switched system with a switching signal σ(k) and
any switching time k1, k2, where k2 > k1 ≥ 0, let Nc

σ[p|q](k2, k1) represent the number of the sequences that

the pth subsystem is activated immediately after the qth subsystem over the time interval [k1, k2). The symbol
T cp,[p|q](k2, k1) (or T cq,[p|q](k2, k1)) stands for the total running time of the pth(or qth) subsystem under this
circumstance. It is said that
(1) σ(k) has a fast SBASDT τca(p,[p|q]) if there exist two numbers, τca(p,[p|q]) and Nc

0(p,[p|q]), where Nc
0(p,[p|q]) is

called the sequence-based subsequent fast switching chatter bound here, such that:

Nc
σ[p|q](k2, k1) ≥ Nc

0(p,[p|q]) +
T cp,[p|q](k2, k1)

τca(p,[p|q])
; (7)

(2) σ(k) has a fast SBAPDT τca(q,[p|q]) if there exist two numbers, τca(q,[p|q]) and Nc
0(q,[p|q]), where Nc

0(q,[p|q]) is
called the sequence-based preceding fast switching chatter bound here, such that:

Nc
σ[p|q](k2, k1) ≥ Nc

0(q,[p|q]) +
T cq,[p|q](k2, k1)

τca(q,[p|q])
. (8)

Similar definitions can be given for continuous switched systems, but are not explicitly provided in this
paper.

3 Stability Analysis

In this section, we consider two cases: (a) all modes are unstable; and (b) only part of the subsystems are
unstable.

3.1 All Modes Are Unstable

In this subsection, we consider the case that all subsystems are unstable. We study discrete systems first and
then continuous systems.

3.1.1 Discrete systems

For the discrete-time switched system (1), we can get the following Lemma 1 can be derived using the fast
sequence-based average dwell time approach.

Lemma 1 Consider the nonlinear discrete-time switched system (1) with the given constants ςp > 0, ςq > 0,
0 < µ[p|q] < 1. Suppose that there exist C1 functions Vσ(k) : Rn → R, and class K∞ functions κp1, κp2, κq1, κq2,
such that ∀(σ(ki) = p, σ(ki − 1) = q) ∈M×M, p 6= q,{

κp1(‖ x(k) ‖) ≤ Vp(x(k), k) ≤ κp2(‖ x(k) ‖),
κq1(‖ x(k) ‖) ≤ Vq(x(k), k) ≤ κq2(‖ x(k) ‖), (9)

{
Vp(x(k + 1), k + 1)− Vp(x(k), k) ≤ ςpVp(x(k), k),
Vq(x(k + 1), k + 1)− Vq(x(k), k) ≤ ςqVq(x(k), k),

(10)
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Vp(x(ki), ki) ≤ µ[p|q]Vq(x(ki), ki), (11)

then the system is globally uniformly asymptotically stable for any switching signals with fast SBASDT

τca(p,[p|q]) < −
lnµ[p|q]

ln (1 + ςp)
, (12)

or with fast SBAPDT

τca(q,[p|q]) < −
lnµ[p|q]

ln (1 + ςq)
. (13)

Proof: For any k > 0 and ∀k ∈ [ ki, ki+1 ), i ∈ Z+: Let k0 = 0, the set S′′ , {(p, q) : p = σ(kj), q =
σ(kj − 1), j = 1, 2, 3, · · · , i}, Vσ(k)(k) denote Vσ(k)(x(k), k), and ς stand for 1 + ς. According to (9)-(11), one
can get

Vσ(k)(k)

≤ (1 + ςσ(ki))
(k−ki)Vσ(ki)(ki)

≤ µσ(ki)(1 + ςσ(ki))
(k−ki)Vσ(ki−1)(ki)

≤ µσ(ki)ς
(k−ki)
σ(ki)

ς
(ki−ki−1)

σ(ki−1)
Vσ(ki−1)(ki−1).

(14)

It follows that

Vσ(k)(k) ≤
i∏

j=1

µσ(kj)ς
(k−ki)
σ(ki)

· · · ς(k1−0)
σ(0) Vσ(0)(0). (15)

If σ(kj) = p and σ(kj − 1) = q, then µσ(kj) is represented by µ[p|q] to reveal the switching sequence.
We sort all the elements in the set S′′, and represent the ordered elements as [p|q](g) which means (p, q) is

the gth element of the set S′′. The amount of all the elements of S′′ is given by s′′.
Let Nc

σ[p|q](g)(k, 0), T cp,[p|q](g)(k, 0) and T cq,[p|q](g)(k, 0) denote the activated numbers, the total subsequent

dwell time, and the total proceeding dwell time of the gth element in the time interval [0, k) for fast switching,
respectively.

Therefore, it follows that

Vσ(k)(k) ≤

{
s′′∏
g=1

µ
Nc
σ[p|q](k)

(k,0)

[p|q](g) ςp,[p|q](g)
T cp,[p|q](g)

(k,0)

}
ς
(k1)
σ(0)Vσ(0)(x(0)). (16)

Next, we provide the proofs for the SBASDT and SBAPDT switching, separately.
(a) SBASDT switching:

According to (7) and T cp,[p|q](g)(k, 0) = T cp,[p|q](g)(k, k1), one can obtain

Vσ(k)(k)

≤
s′′∏
g=1

µ

Nc
0(p,[p|q](g))

+
Tc
p,[p|q](g)

(k,0)

τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g)
T cp,[p|q](g)

(k,k1)
ς
(k1)
σ(0)Vσ(0)(x(0))

=
s′′∏
g=1

µ
Nc

0(p,[p|q](g))

[p|q](g) µ

Tc
p,[p|q](g)

(k,0)

τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g)
T cp,[p|q](g)

(k,k1)
ς
(k1)
σ(0)Vσ(0)(x(0))

=
s′′∏
g=1

µ
Nc

0(p,[p|q](g))

[p|q](g) (µ

1
τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g))
T cp,[p|q](g)

(k,k1)
ς
(k1)
σ(0)Vσ(0)(x(0)).

(17)

We make the following definitions:

γ1 , max
g

{
(µ

1
τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g))

}
,

K1 ,
s′′∏
g=1

µ
Nc

0(p,[p|q](g))

[p|q](g) γ−k1
1 ςk1

σ(0).

According to the switching condition (12) and ςp > 0, we know that 0 < γ1 < 1.
Therefore, we have

Vσ(k)(k) ≤ K1γ
(k−k0)
1 Vσ(0)(x(0)). (18)

Therefore, the switched system is globally uniformly asymptotically stable.
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(b) SBAPDT switching:
According to (8), (16) and T cq,[p|q](g)(k, 0) = T cq,[p|q](g)(ki, 0), one can obtain

Vσ(k)(k)

≤
s′′∏
g=1

µ

Nc
0(q,[p|q](g))

+
Tc
q,[p|q](g)

(k,0)

τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g)
T cq,[p|q](g)

(ki,0)
ς
(k−ki)
σ(ki)

Vσ(0)(x(0))

=
s′′∏
g=1

µ
Nc

0(q,[p|q](g))

[p|q](g) µ

Tc
q,[p|q](g)

(k,0)

τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g)
T cq,[p|q](g)

(ki,0)
ς
(k−ki)
σ(ki)

Vσ(0)(x(0))

=
s′′∏
g=1

µ
Nc

0(q,[p|q](g))

[p|q](g) (µ

1
τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g))
T cq,[p|q](g)

(ki,0)
ς
(k−ki)
σ(ki)

Vσ(0)(x(0)).

(19)

We make the following definitions:

γ2 , max
g

{
(µ

1
τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g))

}
, (20)

K2 ,
s′′∏
g=1

µ
Nc

0(q,[p|q](g))

[p|q](g) γ
−(k−ki)
2 ς

(k−ki)
σ(ki)

. (21)

From the switching condition (13) and ςp > 0, we can know that 0 < γ2 < 1, which leads to

Vσ(k)(k) ≤ K2γ
(k−k0)
2 Vσ(0)(x(0)). (22)

Therefore, the switched system is globally uniformly asymptotically stable.
Combining (a) and (b), this lemma is proved. �
If the considered system is linear, we have the following theorem.

Theorem 1 Consider the system (3). Let ςp > 0, ςq > 0, 0 < µ[p|q] < 1, τmin,p = min
σ(ki)=p

(ki− ki−1), τmin,q =

min
σ(ki)=q

(ki − ii−1) be given constants. If there exists a set of positive definite matrices Pp,jp > 0, Pq,jq > 0,

jp = 0, 1, · · · , τmin,p, jq = 0, 1, · · · , τmin,q, such that ∀(σ(ki) = p, σ(ki − 1) = q) ∈ M ×M, p 6= q,
∀jp = 0, 1, · · · , τmin,p − 1, ∀jq = 0, 1, · · · , τmin,q − 1,

[
(ςp + 1)Pp,jp+1, A

T
p Pp,jp

∗ Pp,jp

]
> 0,[

(ςp + 1)Pp,τmin,p , A
T
p Pp,τmin,p

∗ Pp,τmin,p

]
> 0,

(23)


[

(ςq + 1)Pq,jq+1, A
T
q Pq,jq

∗ Pq,jq

]
> 0,[

(ςq + 1)Pq,τmin,q , A
T
q Pq,τmin,q

∗ Pq,τmin,q

]
> 0,

(24)

Pp,0 ≤ µ[p|q]Pq,τmin,p , (25)

then the system is globally uniformly asymptotically stable for any switching signals with fast SBASDT satisfying
(12) or with fast SBAPDT satisfying (13).

Proof: For the multiple Lyapunov functions for linear discrete-time switched systems, (3) can be rewritten as

Vσ(k)(k) = xT (k)Pσ(k)(k)x(k), σ(k) ∈M. (26)

For ∀k ∈ [ki, ki+1), the matrix Pσ(k)(k) is defined as

Pσ(k)(k) =

{
Pσ(ti)(k − ki), k ∈ [ki, ki + τmin,σ(ki))
Pσ(ti)(τmin,σ(ki)), k ∈ [ki + τmin,σ(ki), ki+1)

. (27)

We rewrite Pσ(ki)(k − ki) and Pσ(ki)(τmin,σ(ki)) as Pσ(ki),k−ki and Pσ(ki),τmin,σ(ki) .

The condition (23) implies (9). The condition (24) means (10). Because of (25), we can get (11). �
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3.1.2 Continuous systems

For the continuous-time systems, we can get Lemma 2 and Theorem 2 below. They are similar to Lemma 1
and Theorem 1.

Lemma 2 Consider the system (2). Let 0 < µ[p|q] < 1, αp > 0, αq > 0 be the given constants. Suppose

that there exist C1 functions Vσ(t) : Rn → R, and class K∞ functions κp1, κp2, κq1 and κq2, such that

∀(σ(ti) = p, σ(t−i ) = q) ∈M×M and p 6= q,

{
κp1(‖ x(t) ‖) ≤ Vp(x(t), t) ≤ κp2(‖ x(t) ‖),
κq1(‖ x(t) ‖) ≤ Vq(x(t), t) ≤ κq2(‖ x(t) ‖), (28)

{
V̇p(x(t), t) ≤ αpVp(x(t), t),

V̇q(x(t), t) ≤ αqVq(x(t), t),
(29)

and

Vp(x(ti), ti) ≤ µ[p|q]Vq(x(ti), ti), (30)

then the system is globally uniformly asymptotically stable for any switching signals with fast SBASDT

τa(p,[p|q]) < τ∗a(p,[p|q]) = −lnµ[p|q]/αp, (31)

or with fast SBAPDT

τa(q,[p|q]) < τ∗a(q,[p|q]) = −lnµ[p|q]/αq. (32)

Theorem 2 Consider the system (4). Let 0 < µ[p|q] < 1, αp > 0, αq > 0, τmin,p = min
σ(ti)=p

(ti − ti−1),

τmin,q = min
σ(ti)=q

(ti − ti−1) and lp, lq be the given constants. If there exists a set of positive definite matrices

Pp,jp > 0, Pq,jq > 0, jp = 0, 1, · · · , lp, jq = 0, 1, · · · , lq, such that ∀(σ(ti) = p, σ(t−i ) = q) ∈M×M, p 6= q,
∀jp = 0, 1, · · · , lp − 1, ∀jq = 0, 1, · · · , lq − 1,

ATp Pp,jp + Pp,jpAp +
lp(Pp,jp+1−Pp,jp )

τmin,p
≤ αpPp,jp ,

ATp Pp,jp+1 + Pp,jp+1Ap +
lp(Pp,jp+1−Pp,jp )

τmin,p
≤ αpPp,jp+1,

ATp Pp,lp + Pp,lpAp ≤ αpPp,lp ,

(33)


ATq Pq,jq + Pq,jqAq +

lq(Pq,jq+1−Pq,jq )
τmin,q

≤ αqPq,jq ,
ATq Pq,jq+1 + Pq,jq+1Aq +

lq(Pq,jq+1−Pq,jq )
τmin,q

≤ αqPq,jq+1,

ATq Pq,lq + Pq,lqAq ≤ αqPq,lq ,

(34)

Pp,0 ≤ µ[p|q]Pq,lp , (35)

then the system is globally uniformly asymptotically stable for any switching signals with SBASDT satisfying
(31) or with SBAPDT satisfying (32).

Remark 1 For the sequence-based approach, it just requires 0 < µ[p|q] < 1, when σ(ti) = p, σ(t−i ) = q,
i ∈ Z+. If some sequences do not appear, there is no constraint on their µ values. For example, Fig.1 shows the
periodically switched systems. For this kind of switched systems, we do not need to check whether µ[3|1],µ[2|3]
µ[1|2] are less than 1 or not.

3.2 Part of the Subsystems Are Unstable

In this subsection, we consider the switched systems with both unstable and stable subsystems. In this case, it
means M = S ∪ U , where S and U denote the set of stable and unstable subsystems, respectively.
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Fig. 1: A periodically switched system.

3.2.1 Discrete systems

For a discrete-time switched system (1), if the unstable subsystems are fast switching and the stable systems
are slowly switching, we can get Lemmas 3,4 and Theorems 3,4 below.

Lemma 3 Consider the system (1), and let ςp, ςq, µ[p|q], be given constants. Suppose that there exist C1
functions Vσ(k) : Rn → R, and class K∞ functions κq1, κq2, κp1, κp2, such that ∀(σ(ki) = p, σ(ki − 1) = q) ∈
M×M, p 6= q, {

κp1(‖ x(k) ‖) ≤ Vp(x(k), k) ≤ κp2(‖ x(k) ‖),
κq1(‖ x(k) ‖) ≤ Vq(x(k), k) ≤ κq2(‖ x(k) ‖), (36)

{
Vp(x(k + 1), k + 1)− Vp(x(k), k) ≤ ςpVp(x(k), k),
Vq(x(k + 1), k + 1)− Vq(x(k), k) ≤ ςqVq(x(k), k),

(37)

Vp(x(ki), ki) ≤ µ[p|q]Vq(x(ki), ki). (38)

Then the system is globally uniformly asymptotically stable for any switching signals with SBASDT{
τa(p,[p|q]) > τ∗a(p,[p|q]) , −

lnµ[p|q]
ln (1+ςp)

, (−1 < ςp < 0, µ[p|q] > 1, p ∈ S),

τca(p,[p|q]) < τ∗a(p,[p|q]) , −
lnµ[p|q]
ln (1+ςp)

, (ςp > 0, 0 < µ[p|q] ≤ 1, p ∈ U),
(39)

or with SBAPDT {
τa(q,[p|q]) > τ∗a(q,[p|q]) , −

lnµ[p|q]
ln (1+ςq)

, (−1 < ςq < 0, µ[p|q] > 1, q ∈ S).

τca(q,[p|q]) < τ∗a(q,[p|q]) , −
lnµ[p|q]
ln (1+ςq)

, (ςq > 0, 0 < µ[p|q] ≤ 1, q ∈ U).
(40)

Proof: For any k > 0 and ∀k ∈ [ ki, ki+1 ), i ∈ Z+: Let k0 = 0, the set S′′ = {(p, q) : p = σ(kj), q =
σ(kj − 1), j = 1, 2, 3, · · · , i}, Vσ(k)(k) denote Vσ(k)(x(k), k), and ς stand for 1 + ς. According to (36)-(38), one
can get

Vσ(k)(k)

≤ (1 + ςσ(ki))
(k−ki)Vσ(ki)(ki)

≤ µσ(ki)(1 + ςσ(ki))
(k−ki)Vσ(ki−1)(ki)

≤ µσ(ki)ς
(k−ki)
σ(ki)

ς
(ki−ki−1)

σ(ki−1)
Vσ(ki−1)(ki−1).

(41)

Finally, we can get

Vσ(k)(k) ≤
i∏

j=1

µσ(kj)ς
(k−ki)
σ(ki)

· · · ς(k1−0)
σ(0) Vσ(0)(0). (42)

The symbolsNc
σ[p|q](g)(k, 0) (Nσ[p|q](g)(k, 0)), T cp,[p|q](g)(k, 0) (Tp,[p|q](g)(k, 0)) and T cq,[p|q](g)(k, 0) (Tq,[p|q](g)(k, 0))

denote the activated numbers, total subsequent dwell time, and the total preceding dwell time of the gth element
in the time interval [0, k) for fast (slowly) switching, respectively.
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Next, we provide proof for the SBASDT and SBAPDT switching separately.
(a) The SBASDT switching:
According to (5) and (7), one can obtain

Vσ(k)(k)

≤
g=s′′∏

g=1,p∈S
µ
N0(p,[p|q](g))+

Tp,[p|q](g)
(k,k1)

τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g)
Tp,[p|q](g) (k,k1)

×
g=s′′∏

g=1,p∈U
µ

Nc
0(p,[p|q](g))

+
Tc
p,[p|q](g)

(k,k1)

τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g)
T cp,[p|q](g)

(k,k1)
ς
(k1)
σ(0)Vσ(0)(x(0))

=
g=s′′∏

g=1,p∈S
µ
N0(p,[p|q](g))

[p|q](g) (µ

1
τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g))
Tp,[p|q](g) (k,k1)

×
g=s′′∏

g=1,p∈U
µ
Nc

0(p,[p|q](g))

[p|q](g) (µ

1
τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g))
T cp,[p|q](g)

(k,k1)
ς
(k1)
σ(0)Vσ(0)(x(0)).

(43)

We give the following definitions:

γ3 , max
g

{
µ

1
τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g) , µ

1
τc
a(p,[p|q](g))

[p|q](g) ςp,[p|q](g)

}
,

K3 ,


g=s′′∏

g=1,p∈S
µ
N0(p,[p|q](g))

[p|q](g)




g=s′′∏
g=1,p∈U

µ
Nc

0(p,[p|q](g))

[p|q](g)

 γ−k1
3 ςk1

σ(0).

According to the switching condition (39), we know that 0 < γ3 < 1. It follows that

Vσ(k)(k) ≤ K3γ
(k−k0)
3 Vσ(0)(x(0)). (44)

Therefore, the switched system is globally uniformly asymptotically stable.

(b) The SBASDT switching:
According to (6) and (8), one can obtain

Vσ(k)(k)

≤
g=s′′∏

g=1,q∈S
µ
N0(q,[p|q](g))+

Tq,[p|q](g)
(ki,0)

τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g)
Tq,[p|q](g) (ki,0)

×
g=s′′∏

g=1,q∈U
µ

Nc
0(q,[p|q](g))

+
Tc
q,[p|q](g)

(ki,0)

τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g)
T cq,[p|q](g)

(ki,0)
ς
(k−ki)
σ(k−ki)Vσ(0)(x(0))

=
g=s′′∏

g=1,q∈S
µ
N0(q,[p|q](g))

[p|q](g) (µ

1
τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g))
Tq,[p|q](g) (ki,0)

×
g=s′′∏

g=1,q∈U
µ
Nc

0(q,[p|q](g))

[p|q](g) (µ

1
τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g))
T cq,[p|q](g)

(ki,0)
ς
(k−ki)
σ(k−ki)Vσ(0)(x(0)).

(45)

We give the following definitions:

γ4 , max
g

{
µ

1
τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g) , µ

1
τc
a(q,[p|q](g))

[p|q](g) ςq,[p|q](g)

}

K4 ,


g=s′′∏

g=1,q∈S
µ
N0(q,[p|q](g))

[p|q](g)




g=s′′∏
g=1,q∈U

µ
Nc

0(q,[p|q](g))

[p|q](g)

 γ
−(k−ki)
4 ς

(k−ki)
σ(ki)

According to the switching condition (40), we can know that 0 < γ4 < 1. It follows that

Vσ(k)(k) ≤ K4γ
(k−k0)
4 Vσ(0)(x(0)). (46)

Therefore, the switched system is globally uniformly asymptotically stable.
Combining (a) and (b), this lemma is proved.�

If the considered system is linear, we have Theorem 3.
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Theorem 3 Consider the system (3). Let ςp, ςq, µ[p|q], τmin,p = min
σ(ki)=p

(ki−ki−1), τmin,q = min
σ(ki)=q

(ki− ii−1)

be given constants. For ∀(σ(ki) = p, σ(ki − 1) = q) ∈ M ×M, p 6= q, assume there exists a set of positive
definite matrices satisfying:
(a) if p ∈ U , then Pp,τmin,p > 0, Pp,jp > 0, jp = 0, 1, · · · , τmin,p − 1, and

[
(ςp + 1)Pp,jp+1, A

T
p Pp,jp

∗ Pp,jp

]
> 0[

(ςp + 1)Pp,τmin,p , A
T
p Pp,τmin,p

∗ Pp,τmin,p

]
> 0

; (47)

(b) if p ∈ S, then Pp > 0 and [
(ςp + 1)Pp A

T
p Pp

∗ Pp

]
> 0; (48)

(c) if q ∈ U , then Pq,τmin,q > 0, Pq,jq > 0, jq = 0, 1, · · · , τmin,q − 1, and
[

(ςq + 1)Pq,jq+1, A
T
q Pq,jq

∗ Pq,jq

]
> 0[

(ςq + 1)Pq,τmin,q , A
T
q Pq,τmin,q

∗ Pq,τmin,q

]
> 0

; (49)

(d) if q ∈ S, then Pq > 0 and [
(ςq + 1)Pq A

T
q Pq

∗ Pq

]
> 0, (50)

and

Pp,0 ≤ µ[p|q]Pq,τmin,p . (51)

Then for any switching signals with SBASDT satisfying (39) or with SBAPDT satisfying (40), the system (3)
is globally uniformly asymptotically stable.

Proof: The proof of this theorem is largely similar to that of Theorem 1. The only additional requirement is:{
Pp = Pp,jp > 0, jp = 0, 1, · · · , τmin,p, p ∈ S
Pq = Pq,jq > 0, jq = 0, 1, · · · , τmin,q, q ∈ S

.

It means that a constant Pp (or Pq) replaces all Pp,jp (or Pq,jq ) if p ∈ S (q ∈ S). �
For the continuous-time systems, we can get Lemma 4 and Theorem 4 below, and the proofs are similar to

those for discrete-time systems.

Lemma 4 Consider the system (2). Let µ[p|q], αp and αq be given constants. Suppose that there exist class

K∞ functions κp1, κp2, κq1, and κq2 and C1 functions Vσ(t)(x(t)) : Rn → R, such that ∀(σ(ti) = p, σ(t−i ) =
q) ∈M×M and p 6= q, {

κp1(‖ x(t) ‖) ≤ Vp(x(t), t) ≤ κp2(‖ x(t) ‖),
κq1(‖ x(t) ‖) ≤ Vq(x(t), t) ≤ κq2(‖ x(t) ‖), (52)

{
V̇p(x(t), t) ≤ αpVp(x(t), t),

V̇q(x(t), t) ≤ αqVq(x(t), t),
(53)

Vp(x(ti), ti) ≤ µ[p|q]Vq(x(ti), ti). (54)

Then for any switching signals with SBASDT{
τa(p,[p|q]) > τ∗a(p,[p|q]) , −lnµ[p|q]/αp, (αp < 0, µ[p|q] > 1, p ∈ S),

τca(p,[p|q]) < τ∗a(p,[p|q]) , −lnµ[p|q]/αp, (αp > 0, 0 < µ[p|q] < 1, p ∈ U),
(55)

or with SBAPDT {
τa(q,[p|q]) > τ∗a(q,[p|q]) , −lnµ[p|q]/αq, (αq < 0, µ[p|q] > 1, q ∈ S),

τca(q,[p|q]) < τ∗a(q,[p|q]) , −lnµ[p|q]/αq, (αq > 0, 0 < µ[p|q] < 1, q ∈ U),
(56)

the system is globally uniformly asymptotically stable.
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Theorem 4 Consider the system (4). Let µ[p|q], αp, αq, τmin,p = min
σ(ti)=p

(ti−ti−1), τmin,q = min
σ(ti)=q

(ti−ti−1)

and lp, lq be the given constants. For ∀(σ(ti) = p, σ(t−i ) = q) ∈ M×M, p 6= q, assume that there exists a set
of positive definite matrices satisfying:
(a) if p ∈ U then Pp,lp > 0, Pp,jp > 0, jp = 0, 1, · · · , lp − 1, and

ATp Pp,jp + Pp,jpAp +
lp(Pp,jp+1−Pp,jp )

τmin,p
≤ αpPp,jp

ATp Pp,jp+1 + Pp,jp+1Ap +
lp(Pp,jp+1−Pp,jp )

τmin,p
≤ αpPp,jp+1

ATp Pp,lp + Pp,lpAp ≤ αpPp,lp

; (57)

(b) if p ∈ S then Pp > 0, and

ATp Pp + PpAp ≤ αpPp; (58)

(c) if q ∈ U then Pq,lq > 0, Pq,jq > 0, jq = 0, 1, · · · , lq − 1, and
ATq Pq,jq + Pq,jqAq +

lq(Pq,jq+1−Pq,jq )
τmin,q

≤ αqPq,jq
ATq Pq,jq+1 + Pq,jq+1Aq +

lq(Pq,jq+1−Pq,jq )
τmin,q

≤ αqPq,jq+1

ATq Pq,lq + Pq,lqAq ≤ αqPq,lq

; (59)

(d) if p ∈ S then Pp > 0, and

ATq Pq + PqAq ≤ αqPq;

and

Pp,0 ≤ µ[p|q]Pq,lp . (60)

Then the system (4) is globally uniformly asymptotically stable for any switching signals with SBASDT satisfying
(55) or with SBAPDT satisfying (56).

Remark 2 In most existing methods that solve the stability problems of switched systems with both stable
and unstable systems, the precondition is either there is a common Lyapunov function when unstable subsys-
tems switch to unstable subsystems [19] or that unstable subsystems must be followed by a stable systems [17].
According to Theorem 3 and 4, both preconditions are not required any more.

The preceding theorems in this subsections require µ[p|q] < 1 when the subsequent or preceding subsystem
is unstable. This is a relatively strong requirement in some cases. In the following, we relax this requirement.

Lemma 5 Consider the system (1). Let ςp, ςq, µ[p|q] > 1 be given constants. Suppose that there exist class K∞
functions κp1, κp2, κq1, κq2 and C1 functions Vσ(k) : Rn → R, such that ∀(σ(ki) = p, σ(ki − 1) = q) ∈M×M,
p 6= q, {

κp1(‖ x(k) ‖) ≤ Vp(k) ≤ κp2(‖ x(k) ‖),
κq1(‖ x(k) ‖) ≤ Vq(k) ≤ κq2(‖ x(k) ‖), (61)

{
Vp(k + 1)− Vp(k) ≤ ςpVp(k),
Vq(k + 1)− Vq(k) ≤ ςqVq(k),

(62)

Vp(ki) ≤ µ[p|q]Vq(ki). (63)

Then for any switching signals with SBASDT,
τa(p,[p|q]) > −

lnµ[p|q]
ln (1+ςp)

, (−1 < ςp < 0, p ∈ S),

τa(p,[p|q]) > τ∗a(p,[p|q]), (∀τ
∗
a(p,[p|q]) > 0, ςp > 0, p ∈ U),

T−

T+ >
ln γ+

s −ln γ

ln γ−ln γ−s
, (0 < γ−s < γ < 1),

(64)

or with SBAPDT 
τa(q,[p|q]) > −

lnµ[p|q]
ln (1+ςq)

, (−1 < ςq < 0, q ∈ S),

τa(q,[p|q]) > τ∗a(q,[p|q]), (∀τ
∗
a(q,[p|q]) > 0, ςq > 0, q ∈ U),

T−

T+ >
ln γ+

p −ln γ

ln γ−ln γ−p
, (0 < γ−p < γ < 1),

(65)

the system is globally uniformly asymptotically stable with marginal γ, where T− and T+ stand for the total
running time of stable and unstable subsystems. The definitions of γ+s ,γ+p , γ−s ,γ−p are given in (69)-(70) and
(76)-(77).
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Proof: For any k > 0 and ∀k ∈ [ ki, ki+1 ), i ∈ Z+: Let k0 = 0, the set S′′ , {(p, q) : p = σ(kj), q =
σ(kj − 1), j = 1, 2, 3, · · · , i}, Vσ(k)(k) denote Vσ(k)(x(k)), and ς stand for 1 + ς. According to (61)-(63), one can
get the system (42).

Let Nσ[p|q](g)(k, 0), Tq,[p|q](g)(k, 0) and Tp,[p|q](g)(k, 0) denote the activated numbers, total proceeding dwell

time and total subsequent dwell time of the gth element in the time interval [0, k) respectively.
Next, we provide proof for the SBASDT and SBAPDT switching separately.
(a) The SBASDT switching:

According to (5), one can obtain

Vσ(k)(k)

≤
g=s′′∏

g=1,p∈S
µ
N0(p,[p|q](g))+

Tp,[p|q](g)
(k,k1)

τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g)
Tp,[p|q](g) (k,k1)

×
g=s′′∏

g=1,p∈U
µ
N0(p,[p|q](g))+

Tp,[p|q](g)
(k,k1)

τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g)
Tp,[p|q](g) (k,k1)ς

(k1)
σ(0)Vσ(0)(x(0))

=

{
g=s′′∏
g=1

µ
N0(p,[p|q](g))

[p|q](g)

}{
g=s′′∏

g=1,p∈S
(µ

1
τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g))
Tp,[p|q](g) (k,k1)

}

×

{
g=s′′∏

g=1,p∈U
(µ

1
τa(p,[p|q](g))

[p|q](g) ςp,[p|q](g))
Tp,[p|q](g) (k,k1)

}{
ς
(k1)
σ(0)Vσ(0)

}
(x(0)).

(66)

We make the following definitions:

T− ,


∑
p∈S

Tp,[p|q](k, k1) + k1, σ(0) ∈ S,∑
p∈S

Tp,[p|q](k, k1), σ(0) ∈ U , ,
∑
p∈S

Tp(k, 0), (67)

T+ ,


∑
p∈U

Tp,[p|q](k, k1) + k1, σ(0) ∈ U ,∑
p∈U

Tp,[p|q](k, k1), σ(0) ∈ S, ,
∑
p∈U

Tp(k, 0), (68)

γ
−

s , max
p∈S

{
µ

1
τa(p,[p|q])
[p|q] ς̄p,[p|q]

}
, (69)

γ
+

s , max
p∈U

{
µ

1
τa(p,[p|q])
[p|q] ς̄p,[p|q]

}
, (70)

K5 ,
g=s′′∏
g=1

µ
N0(p,[p|q](g))

[p|q](g) γ−k1ςk1

σ(0). (71)

According to (66)-(70) and the SBASDT condition (64), one can have

Vσ(k)(k)

≤ K5γ
−
s
T−

γ+s
T+

Vσ(0)(0)

≤ K5γ
(k−k0)Vσ(0)(0),

(72)

Therefore, the switched system is globally uniformly asymptotically stable.

(b) The SBAPDT switching:

According to (6), one can obtain

Vσ(k)(k)

≤
g=s′′∏

g=1,q∈S
µ
N0(q,[p|q](g))+

Tq,[p|q](g)
(ki,0)

τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g)
Tq,[p|q](g) (ki,0)

×
g=s′′∏

g=1,q∈U
µ
N0(q,[p|q](g))+

Tq,[p|q](g)
(ki,0)

τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g)
Tq,[p|q](g) (ki,0)ς

(k−ki)
σ(ki)

Vσ(0)(x(0))

=

{
g=s′′∏
g=1

µ
N0(q,[p|q](g))

[p|q](g)

}{
g=s′′∏

g=1,q∈S
(µ

1
τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g))
Tq,[p|q](g) (ki,0)

}

×

{
g=s′′∏

g=1,p∈U
(µ

1
τa(q,[p|q](g))

[p|q](g) ςq,[p|q](g))
Tq,[p|q](g) (ki,0)

}
ς
(k−ki)
σ(ki)

Vσ(0)(x(0)).

(73)
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We make the following definitions:

T− ,


∑
q∈S

Tq,[p|q](ki, 0) + k − ki, σ(ki) ∈ S,∑
q∈S

Tq,[p|q](ki, 0), σ(ki) ∈ U ,
,
∑
q∈S

Tq(k, 0), (74)

T+ ,


∑
q∈U

Tq,[p|q](ki, 0) + k − ki, σ(ki) ∈ U ,∑
q∈U

Tq,[p|q](ki, 0), σ(ki) ∈ S,
,
∑
q∈U

Tq(k, 0), (75)

γ
−

p , max
q∈S

{
µ

1
τa(q,[p|q])
[p|q] ς̄q,[p|q]

}
, (76)

γ
+

p , max
q∈U

{
µ

1
τa(q,[p|q])
[p|q] ς̄q,[p|q]

}
, (77)

K6 ,
g=s′′∏
g=1

µ
N0(q,[p|q](g))

[p|q](g) γ−(k−ki)ς
(k−ki)
σ(ki)

. (78)

According to (73)-(78) and the SBAPDT condition (65), one can get

Vσ(k)(k)

≤ K6γ
−
p
T−

γ+p
T+

Vσ(0)(0)

≤ K6γ
(k−k0)Vσ(0)(0),

(79)

Therefore, the switched system is globally uniformly asymptotically stable.
Combining (a) and (b), this lemma is proved.�
If the considered system is linear, we have Theorem 5.

Theorem 5 Consider the system (3). Let ςp > 0, ςq > 0, µ[p|q] > 1 be given constants. Suppose that there
exist matrices Pp > 0, Pq > 0, such that ∀(σ(ki) = p, σ(ki − 1) = q) ∈M×M and p 6= q,[

(ςp + 1)Pp A
T
p Pp

∗ Pp

]
> 0, (80)

[
(ςq + 1)Pq A

T
q Pq

∗ Pq

]
> 0, (81)

Vp(ki) ≤ µ[p|q]Vq(ki). (82)

Then for any switching signals with SBASDT satisfying (64) or with SBAPDT satisfying (65), the system (3)
is globally uniformly asymptotically stable.

3.2.2 continuous systems

For the continuous-time systems, We can obtain Lemma 6 and Theorem 6 below. The proofs are similar to the
discrete systems.

Lemma 6 Consider the system (2). Let αp, αq and µ[p|q] > 1 be given constants. Suppose that there exist C1

functions Vσ(t) : Rn → R, and class K∞ functions κp1, κp2, κq1, κq2, such that ∀(σ(ti) = p, σ(t−i ) = q) ∈M×M
and p 6= q, {

κp1(‖ x(t) ‖) ≤ Vp(x(t)) ≤ κp2(‖ x(t) ‖),
κq1(‖ x(t) ‖) ≤ Vq(x(t)) ≤ κq2(‖ x(t) ‖), (83)

{
V̇p(x(t)) ≤ αpVp(x(t)),

V̇q(x(t)) ≤ αqVq(x(t)),
(84)

Vp(x(ti)) ≤ µ[p|q]Vq(x(ti)). (85)

Then for any switching signals with SBASDT
τa(p,[p|q]) > τ∗a(p,[p|q]) , −lnµ[p|q]/αp, (αp < 0, p ∈ S),

τa(p,[p|q]) > τ∗a(p,[p|q]), (∀τ
∗
a(p,[p|q]) > 0, αp > 0, p ∈ U),

T−s
T+
s
>

γ+
s +γ∗

γ−s −γ∗
, (0 < γ∗ < γ−s ),

(86)
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or with SBAPDT 
τa(q,[p|q]) > τ∗a(q,[p|q]) , −lnµ[p|q]/αq, (αq < 0, q ∈ S),

τa(q,[p|q]) > τ∗a(q,[p|q]), (∀τ
∗
a(q,[p|q]) > 0, αq > 0, q ∈ U),

T−p

T+
p
>

γ+
p +γ∗

γ−p −γ∗
, (0 < γ∗ < γ−p ),

(87)

the system (2) is globally uniformly asymptotically stable with marginal γ∗, where T− and T+ stand for the
total running time of stable and unstable subsystems. The parameters of γ+s ,γ+p , γ−s ,γ−p are given as:

γ
−

s , max
p∈S

{
αp +

lnµ[p|q]

τa(p,[p|q])

}
, (88)

γ
+

s , max
p∈U

{
αp +

lnµ[p|q]

τa(p,[p|q])

}
, (89)

γ
−

p , max
q∈S

{
αq +

lnµ[p|q]

τa(q,[p|q])

}
, (90)

γ
+

p , max
q∈U

{
αq +

lnµ[p|q]

τa(q,[p|q])

}
. (91)

Theorem 6 Consider the system (4). Let αp, αq and µ[p|q] > 1 be given constants. Suppose that there exist

matrices Pp > 0, Pq > 0, such that ∀(σ(ti) = p, σ(t−i ) = q) ∈M×M and p 6= q,

ATp Pp + PpAp ≤ αpPp, (92)

ATq Pq + PqAq ≤ αqPq, (93)

Pp ≤ µ[p|q]Pq. (94)

Then the system (4) is globally uniformly asymptotically stable for any switching signals with SBASDT satisfying
(86) or with SBAPDT satisfying (87).

If the sequence information is ignored, the presented SBASDT/SBAPDT sets degenerate into a mode-
dependent average dwell time set. If the sequence and mode information is ignored, the presented SBASDT/SBAPDT
sets degenerate into an average dwell time set. The presented SBASDT/SBAPDT sets can cover the dwell time
set, the average dwell time set, etc.

In the past years, many control systems have been studied based on various dwell time methods, such as
common linear systems and T-S fuzzy systems [26], but almost all of them ignore the significance of sequence.
Our method can be extended to these systems, such as the T-S switched fuzzy systems with unstable subsystems.

4 Numerical Example

In order to verify our approach, we present an illustrative numerical example here. Comparison with the existing
method in [17] is also provided. In particular, comparison is made with respect to Theorem 1 in [17] , which
studied a mode-dependent average dwell time approach. It proves that the system (3) is globally uniformly
asymptotically stable for any switching signal satisfying some proper conditions of mode-dependent average
dwell time. Considering the similarity between the discrete-time and continuous-time cases, as well as the space
limitation, we only verify Theorem 3 for discrete-time systems.

Let us consider the linear discrete-time switched systems with A1 =

[
−0.012 −0.022
−0.11 0.012

]
, A2 =

[
−0.5 −0.9
−0.7 0.2

]
,

A3 =

[
0.011 −0.013
−0.23 0.031

]
. The first and third subsystem are Schur stable. The second subsystem is Schur unstable.

Parameters and the results are provided in Table 1 for Theorem 1 in [17] and Theorem 3 in this paper for
these three subsystems.

From Table 1, we can get the following observations.
(a) For stable subsystems:

(a.1) According to Theorem 1 in [17] {
τa1 > 0.9350
τa3 > 1.1564

;
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Table 1: Parameters and results for the numerical example for verifying Theorem 3 in this paper and
Theorem 1 in [17].

Theorem 1 in [17] Theorem 3 in this paper
Given constants λ1=-0.98; λ1=-0.98;

λ2 = 0.036; λ2 = 0.036;
λ3 = −0.95; λ3 = −0.95;
µ1 = 2.5; µ[1|2] = 2.5; µ[1|3] → 1+;
µ2 = 0.41; µ[2|1] = 0.41;µ[2|3] = 0.40;
µ3 = 3.0. µ[3|1] = 1.2;µ[3|2] = 3.0.

Time Thresholds(stable subsystems) τ∗a1=0.9350; τ∗
a(1,[1|2]) = 0.9350;

τ∗a3= 1.1564. τ∗
a(1,[1|3]) → 0+;

τ∗
a(3,[3|2]) = 1.1564;

τ∗
a(3,[3|1]) = 0.1919.

Time Thresholds(unstable subsystems) τ∗a2=24.7666. τ∗
a(2,[2|1]) = 24.7666;

τ∗
a(2,[2|3]) = 25.4525.

(a.2) According to Theorem 3 in this paper{
τa(1,[1|2]) > 0.9350; τa(1,[1|3]) > 0
τa(3,[3|2]) > 1.1564; τa(3,[3|1]) > 0.1919

.

According to (a.1) and (a.2), the proposed methods in this paper have a less conservative condition for
stable subsystems. It has been shown in the literature [17] that, for the sequence that the first subsystem is
activated immediately after the third subsystem, stability cannot be guaranteed if the average dwell time is
less than 0.9350. In this paper, we show that stability can be guaranteed if the average dwell time is less than
0.9350, when the order of sequence is known. In the same way, we can guarantee the stability if the average
dwell time of the sequence, when the third subsystem is activated immediately after the first subsystem, is
between 0.1919 and 1.1596.

(b) For unstable subsystems:

(b.1) According to Theorem 1 in [17]

τca2 < 24.7666,

(b.2) According to Theorem 3 in this paper

τca(2,[2|1]) < 24.7666; τca(2,[2|3]) < 25.4525.

According to (b.1) and (b.2), the proposed methods in this paper have a less conservative condition for
unstable subsystems. For the sequence that the second subsystem is activated immediately after the third
subsystem, stability cannot be guaranteed if the average dwell time is between 24.7666 and 25.4525 according
to the past conclusion in [17]. But in this paper, we show that stability can be guaranteed if the average dwell
time is between 24.7666 and 25.4525 under this circumstance, when the order of sequence is known.

Combining (a) and (b), we can know that our sequence-based approach provides a less conservative condition
for ensuring the stability of switched systems with unstable subsystems.

According to the above discussion, we can enlarge the dwell time ranges of subsystems for both stable
subsystems and unstable subsystems which lowers conservativeness.

This new approach and conventional methods have some common limitations, such as when the dimensions
of state vectors or the number of subsystems are large, more computing resources are needed or the time
required to calculate results will increase exponentially.

In papers [22, 24], stability analysis of unstable switched subsystems is important for multi-agent systems
under switched topologies. If we consider the order of sequence and use our proposed methods, the estimation
accuracy of multi-agent systems can be improved [10,21,27].

5 Conclusion

The stability problem of switched systems with unstable subsystems was studied using a sequence-based average
dwell time approach, similar to how switched systems with stable subsystems have been reviewed in the past
with great success. Switching behaviours of both slow-switching and fast-switching were included in the study.
When all subsystems are unstable, the constraints are further relaxed. If parts of the subsystems are unstable,
a better threshold value can be obtained when we use the new approach. These methods lead to results that
are less conservative than those of existing methods.
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6 Data Availability

There is no associated data.
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