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Abstract— Volume Projection Imaging from ultrasound
data is a promising technique to visualize spine features
and diagnose Adolescent Idiopathic Scoliosis. In this pa-
per, we present a novel multi-task framework to reduce the
scan noise in volume projection images and to segment
different spine features simultaneously, which provides an
appealing alternative for intelligent scoliosis assessment in
clinical applications. Our proposed framework consists of
two streams: i) A noise removal stream based on genera-
tive adversarial networks, which aims to achieve effective
scan noise removal in a weakly-supervised manner, i.e.,
without paired noisy-clean samples for learning; ii) A spine
segmentation stream, which aims to predict accurate bone
masks. To establish the interaction between these two
tasks, we propose a selective feature-sharing strategy to
transfer only the beneficial features, while filtering out the
useless or harmful information. We evaluate our proposed
framework on both scan noise removal and spine segmen-
tation tasks. The experimental results demonstrate that our
proposed method achieves promising performance on both
tasks, which provides an appealing approach to facilitating
clinical diagnosis.

Index Terms— Ultrasound volume projection imaging, in-
telligent scoliosis diagnosis, weakly-supervised scan noise
removal, multi-task spine segmentation.

I. INTRODUCTION

ADOLESCENT Idiopathic Scoliosis (AIS) is a serious
deformity of the spinal cord, which develops over time

and occurs in 2-4% of teenagers [1]. Currently, the Cobb angle
based on radiography is the gold standard for the diagnosis of
scoliosis [2]. However, exposure to X-rays is harmful to the
human body, and an AIS patient needs to receive at least 25
X-rays during the whole treatment. 3D ultrasound imaging, as
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Fig. 1: An illustration of automatic scoliosis diagnosis from
ultrasound volume projection images. The image on the left
refers to the obtained ultrasound VPI image from a patient
with scoliosis. The image in the middle presents different
bone features in the VPI image. In the thoracic area, ribs and
thoracic processes are annotated in green and red, respectively.
In the lumbar region, the lumps, which are formed by the
combined shadows of the partial bilateral inferior articular
processes, laminae, and the superior articular processes of the
inferior vertebrae, are labeled in blue. Following the ultrasound
curve angle measurement (UCA) [6], the most tilted lump and
paired transverse processes are utilized to calculate the spine
deformity.

a radiation-free, inexpensive, and real-time imaging technique,
has shown its remarkable reliability and feasibility in the
screening and assessment of AIS in the literature [3]–[5].

In clinical AIS diagnosis with 3D ultrasound imaging,
experts need to observe hundreds of images in a sequence
of the whole spine region. This process is tedious and time-
consuming. For faster diagnosis and better visualization of the
spine structure, Volume Projection Imaging (VPI) was pro-
posed to project the voxels of 3D ultrasound volume data onto
a sequence of 2D spine coronal-plane images [7]. However,
owing to the low quality (caused by speckle noise and contrast)
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Fig. 2: An illustration of scan noise. (a) A typical 2D
ultrasound sequence obtained from an AIS subject through
the manual scan. Multiple B-mode images (illustrated as red
frames within the volume) are captured and added together to
form the 3D volume, which is later used to project the coronal
(illustrated as the blue frame) and sagittal (illustrated as the
yellow frame) images. (b) In case there is a missing B-mode
image for various reasons ( e.g., the 5th red frame from the
bottom), the noise will be created (green dotted lines). (c) The
resultant noise (indicated inside the green box) in the coronal
projected image.

TABLE I: FLOPS and the computational time of applying one
filter to process 3D and 2D data.

Image Data size Filter size FLOPS Computational Time
2D (2048, 512) 3× 3 1.049× 107 0.014s
3D (2048, 512, 512) 3× 3× 3 1.503× 1010 6.92s

of the ultrasound images and the acoustic shadow caused by
high acoustic impedance of the bones [8], examinations require
a rich sonographic experience from experts. The subjective
factors behind personal experience are inevitable in manual
scoliosis diagnosis. Therefore, current clinical workflow can
greatly benefit from an automatic method for spine deformity
measurement [7], [9]. As a pre-analyzing step for intelligent
scoliosis diagnosis, spine segmentation functions to analyze
and locate different bone features, which provides the basis for
automatic spine deformity measurement. The idea is illustrated
in Fig. 1.

On acquiring an ultrasound sequence, the operator can
move the probe on the back smoothly and steadily with a
relatively consistent speed in most cases. The probe touches
the skin and scans from bottom to top along the spine, with
ultrasound gel as a lubricant between the probe and the skin
surface. However, owing to various reasons, including the
resistance and fluidity of the skin, the resistance of the probe at
certain parts of the spine, such as protruded spinous processes,
will suddenly change. Therefore, the speed of the probe will
increase sharply, resulting in fewer ultrasound frames in some
specific areas. Consequently, the reconstructed 2D coronal

Fig. 3: An example of scan noise removal based on our
proposed method for an ultrasound VPI image. The VPI
image is generated by non-planar volume rendering from 3D
ultrasound volume data [7]. (a) The original VPI image with
severe scan noise, (b) The recovered image produced by our
proposed method, (c) The scan noise and the recovered details
highlighted in the blue and gray boxes.

images will suffer from strong scan noise, as shown in Fig.
3(a). Fig. 2 illustrates one of the possible formations of the
noise. The scan noise exacerbates the difficulty in scoliosis
assessment. To address this issue, a potential solution is to
increase the sampling frequency in the acquisition. However,
a high sampling frequency means a higher requirement for
scanners, and increases the cost in clinical applications. From
another perspective, densifying the sparse ultrasound volume
data provides an algorithm-based approach to recovering the
signal. However, the high computational complexity makes
it impractical in real-time diagnosis. As a more practical
solution, noise removal in 2D VPI images is of great interest
thanks to its flexibility and efficiency. To show the computa-
tional benefit of the noise removal approach over the dense
3D reconstruction approach, we analyze the computational
complexity in terms of the floating-point operations per second
(FLOPS) and the computational time of each convolutional
layer. As tabulated in Table I, FLOPS for processing volume
data with 3D filters is about 1, 400 times larger than that with
2D filters on image data. Similarly, the computational cost on
3D data is also around 500 times larger than that on 2D data.
With the rapid development of deep learning techniques, Deep
Convolutional Neural Networks (DCNNs) have shown their
great superiority in medical image restoration [10]–[12]. De-
spite their high effectiveness, the restoration based on DCNNs
generally requires a large amount of paired data for learning.
However, scan noise in VPI images is sensitive to various
factors, such as ultrasound operators, probing, VPI settings,
etc. This phenomenon makes the degradation model of scan
noise unpredictable, which precludes us from synthesizing
paired noisy and noise-free images for training. In practice,
the acquired VPI images cannot produce the paired noise-free
reference of each observation. These limitations trigger us to
investigate a weakly supervised denoiser especially for scan
noise. To this end, Generative Adversarial Networks (GANs)
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Fig. 4: The visualization of the feature map extracted from the
second-last convolutional layer of the noise removal network.
(a) The original noisy VPI image, (b) the extracted feature
map, (c) overlap of the input image and the feature map, (d)
the denoised VPI image.

provide an alternative to learning an image restoration model
without paired-data supervision [13].

In this paper, we conduct an in-depth study on GAN-based
scan noise removal, and propose a novel weakly supervised
denoiser that does not require the noisy-clean pairs for train-
ing. We further present a dual-adversarial learning strategy,
which serves as an online augmentation approach to enhance
the generalization ability of the learned denoiser. An example
of the restored image patches based on our proposed method
is presented in Fig. 3. It is clear that our proposed denoiser
can effectively recover the noisy patterns from the original
image, and provide better visual quality for medical experts
to analyze the spinal deformity.

The integration of scan-noise removal and spine segmen-
tation affects the efficiency and flexibility of a diagnosis
system in clinical applications. Previous studies generally
follow a cascaded fashion [14], [15]. They first perform image
restoration to enhance the image quality (remove the noise),
and then segment the objects of interest based on the recovered
images. In spite of the simplicity, those frameworks suffer
from low efficiency because the segmentation module has to
wait for the results from the restoration modules. Moreover,
the segmentation is performed on the reconstructed high-
quality images, while the intermediate features are ignored.
To better elaborate the intermediate features, we visualize the
feature of the second last convolutional layer of the noise
removal network as shown in Fig. 4. According to the features
shown in Fig. 4(b) and (c), it is obvious that the intermediate
features fill the noisy patterns and serve as a compact rep-
resentation of the denoised output. In this paper, we argue
that those intermediate features for reconstructing the high-
quality images are important in enhancing the segmentation
accuracy, because they synthesize the lost information in the
low-quality image. Therefore, we propose to integrate our
denoising network and the employed segmentation network in
a multi-task manner, which accomplishes the restoration task
and the segmentation task simultaneously for better perfor-
mance and higher inference efficiency. Furthermore, to support
the multi-task learning, we adopt a novel selective feature-

sharing strategy, which facilitates the framework to select only
meaningful features from the auxiliary tasks, and filter out the
useless or harmful information. By these means, the proposed
joint learning of scan noise removal and spine segmentation
can mutually benefit each other.

This paper is an extension of our early work in [16]. We
improve our previous method by designing a selective feature-
sharing multi-task framework to replace the original cascaded
learning strategy. The main contributions of this paper are
summarized as follows:
• We first review the noise removal network proposed in

our previous work in more detail. Specifically, we further
visualize the extracted noisy patches from the training
data, and present their distribution in terms of the degree
of degradation. Based on the distribution, we perform a
deeper analysis to show the feasibility of the adopted
automatic annotation strategy. We also conduct more
experiments to validate and evaluate the proposed noise
removal network. We present the subjective results based
on Mean Opinion Scores (MOS), as well as the objective
results based on Scan Noise Removal Rate (SNRR)
to verify the effectiveness of the proposed restoration
method.

• We establish a multi-task framework with a novel selec-
tive feature-sharing strategy for learning the scan noise
removal and spine segmentation jointly. To the best of
our knowledge, it is the first attempt to perform selective
feature sharing on the restoration and the segmentation
of VPI images in medical image analysis.

• We conduct extensive experiments to demonstrate that
the proposed weakly supervised denoiser is beneficial to
both the visual quality and segmentation accuracy of the
spine bone features. The adopted selective feature-sharing
strategy can also enhance the inference efficiency and the
performance.

The remainder of this paper is organized as follows. In Sec.
II, we review some works related to our proposed methods.
In Sec. III, we explicitly present the details of the proposed
framework, including the preparation of the unpaired training
samples for noise removal, the dual-adversarial strategy for
enhancing the learning of the GAN-based network, and the
selective feature-sharing mechanism for the multi-task frame-
work’s establishment. In Sec. IV, we introduce the experiment
settings, and analyze the experimental results. Finally, we
conclude this paper in Sec. V.

II. RELATED WORKS

A. Ultrasound Volume Projection Imaging
The construction of 3D data from a sequence of 2D ul-

trasound slices helps to reveal pathology that is obscured in
2D observations [17]. Recently, volume projection imaging
(VPI) was proposed to visualize the spinal anatomy in 2D
coronal-plane images from 3D ultrasound volume data [7].
The working pipeline of VPI is illustrated in Fig.5. Having
acquired an ultrasound sequence of 2D slices, the squared
distance weighted (SDW) interpolation [18] is utilized to
reconstruct the 3D volume. Then the voxels of reconstructed
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Fig. 5: An illustration of volume projection imaging. (a) The
original 2D ultrasound sequence, (b) The reconstructed 3D
volume, (c) The extracted VPI image.

3D volume are projected onto a 2D coronal plane by non-
planar volume rendering. More details can be found in [7]. In
this study, we process the 2D coronal-plane images from VPI
to recover the corrupted details that resulted from excessive
tilt and also to extract segmentation masks of different bone
features. Our proposed algorithm thus improves the robustness
and reliability of the scan system, so that, even in some of
the worst cases, it can still generate satisfactory visual and
segmentation results.

B. Scoliosis Diagnosis with Ultrasound
Previous studies related to ultrasound-based scoliosis mea-

surement can be found. Berton et al. [19] developed a multiple
feature extraction framework, and introduced a linear discrim-
inant analysis (LDA) classifier for the segmentation of spinous
processes. However, it was difficult for their performance to
meet the requirements in clinical tasks. It is because experts
should consider not only the spinous processes, but also the
transverse processes and the laminae [20]. Recently, Ungi
et al. [21] utilized convolutional neural networks (CNNs) to
automatically segment the bone features from 2D ultrasound
images in an end-to-end manner. However, since the segmenta-
tion is performed on sparse 2D images, the predicted segments
are of low accuracy. Alternatively, volume projection imaging
(VPI), as a 3D volume compression technique [7], provides
a promising approach to visualize the whole spine anatomy
based on the intensity of the voxels in ultrasound volumetric
data. Owing to the superimposition of acoustic shadows on the
superficial bone surfaces [8], the spinous processes are visible
in VPI images. Chen et al. [4] proposed to manually measure
spine deformity based on the middle dark spine profile in
VPI images (VPI-SP), which was the first attempt to diagnose
scoliosis using the VPI technique. To reduce the inter-observer
and intra-observer variations caused by manual measurements
in [4], Zhou et al. [22] proposed an automatic framework to
model the middle spine curve in VPI images using a 6-th
order polynomial. However, owing to the rotation of individual
vertebrae in the axial and coronal planes, those VPI-SP based
methods tend to underestimate the deformity in scoliosis

assessment. To more accurately estimate the spine deformity, a
more reliable approach is to compute the spine deformity using
the paired thoracic processes and lumbar vertebrae, as shown
in Fig. 1. The studies on spine segmentation from VPI images
have founded an important basis for intelligent scoliosis diag-
nosis. Different related results have been obtained. Huang et
al. [23] proposed an efficient regularization-based algorithm
to address the occlusion issue in VPI images for enhanced
spine segmentation. Zhao et al. [24] proposed to introduce
the structure supervision to the representation learning in a
self-attention manner for more effective spine segmentation.
Lyu et al. [25] presented a dual-task framework with boundary
detection as an auxiliary task to regularize spine segmentation.
Banerjee et al. [26] proposed a lightweight UNet to perform
effective spine segmentation with a low computational burden.
In our previous study, we proposed a generative adversarial
network with dual adversarial learning (DAGAN) to perform
noise removal, which is cascaded with a segmentation network
for enhanced spine segmentation [16]. However, DAGAN suf-
fers from low efficiency because the segmentation model has
to wait for the denoised image produced by the noise removal
network. More importantly, the two tasks in DAGAN lack
communication with each other, which restricts the knowledge
interactions during the framework learning. These phenomena
motivate us to investigate a more efficient learning approach in
this paper that can perform effective information interactions
in a multi-task fashion.

This work extends our previous work on DAGAN in three
aspects. First, we perform a more comprehensive discussion
on the proposed automatic annotation strategy and the dual-
adversarial learning strategy in the noise removal task, through
the analysis on the noisy patch distribution. Second, to pro-
mote the feature interaction of joint learning, we propose a
multi-task framework with a selective feature-sharing strategy
to transfer only the beneficial features from the auxiliary tasks.
Third, our early work of DAGAN evaluates noise removal only
via visualization. To qualitatively and quantitatively evaluate
our denoising performance, we conduct a user study and
propose an objective metric, i.e., Scan Noise Removal Rate,
to show the superiority of our noise removal network.

C. Weakly Supervised Image Restoration

Similar to ultrasound scan noise, Computerized Tomog-
raphy (CT) and Electron Tomography (ET) reconstructions
usually encounter significant amounts of noise caused by
low dose, limited, and fragmented data. Total variation (TV)
regularization, which minimizes the total variance of an image
while preserving the content of the original image, has been
used extensively in the noise removal of CT and ET recon-
struction [27]–[30]. Mahmood [27] adopted a total variance
regularization strategy directly in sinogram for tomographic
reconstruction. Traditional TV methods tend to over-smooth
the image. Adaptive graph-based total variance (AGTV) [28]
was proposed to preserve texture details and reduce arti-
facts caused by over-smoothing. However, AGTV does not
consider the localization information of the graph patch. As
an improved version of AGTV, non-local patch graph total
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Fig. 6: An overview of the proposed framework, which consists of four main components, i.e, a preprocessing module, a noise
removal module, a spine segmentation module, and selective feature-sharing blocks.

variation (NPGTV) [30] introduces the pixel coordinate as
an ingredient to construct the K-nearest neighbor graph for
effective denoising. We will compare the denoising results
of various kinds of algorithms with those of our proposed
algorithms in the experiment section.

Recently, generative adversarial networks (GANs) have
been widely used in noise removal tasks and have achieved
promising performance [31]–[35]. Matsui et al. [32] proposed
a GAN-based model for single-image rain noise removal.
Bobrow et al. [33] proposed a domain transformation model
between coherent and incoherent illumination for laser speckle
reduction. Yang et al. [35] proposed a perceptual loss function
for training the GAN-based model to perform low-dose CT
image denoising.

As introduced in Sec. I, it is difficult to acquire pairs
of noisy-clean images from VPI for learning the noise re-
moval task in a fully supervised manner. Thus, we propose a
weakly-supervised denoising method in this paper. Recently,
reference-free image denoising methods have been studied.
Noise2Noise [36] was proposed to learn a deep denoiser
without clean references. However, it requires extra knowledge
of the noise generation model, which limits its application to
ultrasound images. Noise2Void [37] and Noise2Self [38] are
two self-supervision strategies for image restoration. However,
they were shown to perform poorly on structured noise.
On the other hand, generative adversarial networks (GANs)
provide an alternative to solving the restoration problem in
a weakly supervised manner. Hou et al. [39] adopted the
cycle-adversarial strategy to reconstruct the image appear-
ance for enhancing the segmentation accuracy of CT images.
However, Liu et al. [40] showed that GAN-based methods

would create some artifacts in the recovered images. To tackle
this problem, they introduced a wavelet correction transfer
network (WaveCT). However, the spectral-based supervision
in [40] does not perform satisfactorily on structured noise
removal. It can be seen that the aforementioned methods are
not desirable for enhancing the quality of VPI images in
clinical applications, which motivates us to explore a more
effective denoiser for VPI images.

D. Multi-task Learning with Feature Selection

Instead of using the conventional cascaded approach to do
the restoration and then the segmentation tasks, we adopt a
multi-task approach to doing these two tasks in parallel for
higher inference efficiency. The feature selection strategy plays
the most important role in this multi-task learning, which has
been widely investigated in natural language processing. Ruder
et al. [41] proposed the Sluice Networks, in which a linear
combination approach was designed to control the information
flow between different tasks. Xiao et al. [42] took advantage
of gated recurrent units and proposed a leaky unit with the
property of remembering and forgetting knowledge. Zhao et
al. [43] enhanced the leaky units in [42] and introduced the
convolutional feature leaky units to perform feature selection
between facial expression recognition and facial expression
synthesis. In this paper, inspired by [42] and [43], we design a
two-branch framework with selective feature sharing to bridge
the helpful knowledge between the restoration task and the
segmentation task.
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(a) Visualization of the noisy patches based on the average vertical variance. (b) Distribution analysis on the noisy patches.

Fig. 7: The visualization and the distribution of the patches with different ranges of average vertical variance.

III. METHODOLOGY

In this section, we present the details of the proposed
framework for joint scan noise removal and spine segmentation
with selective feature sharing. We first overview the whole
working pipeline of the framework, and then introduce the
detailed design for each proposed component, including the
generation of training samples, the dual-adversarial strategy,
and the selective feature sharing mechanism.

A. Overview
The proposed selective feature-sharing multi-task frame-

work is depicted in Fig. 6, which consists of four main
components. i) A preprocessing module is employed to prepare
unpaired samples for weakly supervised denoising learning.
ii) A noise removal module is designed based on a generative
adversarial network. It is a generator following a simple U-
shape network architecture, which takes a noisy image as
input, and estimates its corresponding noise-free image. iii) A
spine segmentation module serves as a network for discrim-
inating different spine features. iv) Selective feature-sharing
(SFS) blocks are designed to connect the two modules (for
noise removal and spine segmentation) with feature selection.
It is worth noting that the preprocessing module and the
discriminator only affect the training stage.

B. Training Patch Preparation for Noise Removal
The preprocessing step aims to prepare unpaired training

samples for scan noise removal. We first extract the patches
from the images by a sliding window of size S × S pixels,
and split them into two categories, i.e., a noise-free group and
a corrupted group. As shown in Fig. 3, the scan noise in the
resulting VPI images follows a similar pattern. Owing to the
probing characteristic, the projected images suffer from the
corruption of horizontal dark lines. Based on this observation,
we employ an edge detector to compute the average vertical

variance g(x) of the extracted patches x, and then divide them
into the positive and the negative groups by two predefined
thresholds as follows:

f(x) =

{
0, if g(x) ≥ βn,
1, if g(x) ≤ βp,

with g(x) =
1

S2

S∑
i

S∑
j

|h(x)i,j |,
(1)

where x denotes an extracted image patch, βn and βp are the
negative and positive thresholds for selecting the corrupted and
clean patches respectively, h(·) represents the vertical edge
detection function. By this means, we can synthesize a large
amount of domain-transfer pairs for learning a denoiser in an
unpaired manner.

To validate the adopted patch preparation strategy for train-
ing, we visualize the patch distribution in terms of different
ranges of the average vertical variance, as shown in Fig. 7a.
The average vertical variance of each patch is normalized
by min-max feature scaling. As shown in Fig. 7a, the scan
noise becomes stronger and stronger as the value of the
average vertical variance rises. The patches in the range of
[0, 0.2] are basically noise-free, while the patches in the range
of (0.3, 1.0] contain severe scan noise. The patches in the
range of (0.2, 0.3] are noisy or noise-free. To avoid label
confusion during training, we discard the patches in the range
of (0.2, 0.3]. In other words, the negative and the positive
thresholds, i.e., βn and βp, are set to 0.3 and 0.2, respectively,
in this paper.

C. Noise Removal with Dual Adversarial Learning
The noise removal module aims to restore clean images

from the noisy inputs, which contains two main components,
i.e., the generator for processing the images and the discrimi-
nator for the images synthesized from the generator against the
images from the real training dataset. Given an unpaired input
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Fig. 8: An illustration of the proposed dual adversarial
learning for on-the-fly augmentation in generative adversarial
networks. (In and Ic are the unpaired noisy and clean images,
Îc denotes the estimated noiseless image, În represents the
synthesized corrupted sample.)

couple {In, Ic}, where In and Ic denote the unpaired noisy
and clean images respectively, a generator G is employed to
obtain the noiseless estimation, denoted as Îc = G(In). The
discriminator Dclean is employed to discriminate the noiseless
estimation Îc and the real clean image Ic. Thus, the learning
objective is formulated as follows:

Ladv =EIc [log(Dclean(Ic))] + EÎc
[log(1−Dclean(Îc))],

with Îc = G(In),
(2)

where Ladv denotes the adversarial loss to be minimized, and E
refers to the expectation. As shown in Fig. 7b, the samples in
noisy and noise-free groups are highly imbalanced. Therefore,
we use a dual adversarial strategy to serve as an on-the-fly
augmentation to enhance the adversarial training. As shown in
Fig. 8, consider the estimated noiseless image Îc, we compute
the residual between the input noisy image and the output
estimation as Rn = In − Îc, which represents the noisy
patterns in the input image. Then, we add the noisy residual
back to another clean image Ic, denoted as În = Ic + Rn,
which synthesizes a new corrupted sample În. Therefore,
the generator aims to mislead another discriminator Dnoisy
for classifying the synthetic noisy and real noisy images as
follows:

Ldua =EIn [log(Dnoisy(In))] + EÎn
[log(1−Dnoisy(În))],

with În = In − G(In) + Ic,
(3)

where Ldua denotes the dual adversarial loss. Therefore, the
overall learning objective Ldenoise for the noise removal branch
is defined as follows:

Ldenoise = Ladv + Ldua + α||In − Îc||22, (4)

where || · ||22 refers to the L2 distance, which is employed to
regularize the generator to preserve the image content, and
α denotes a hyperparameter controlling the trade-off between
noise removal and content preservation.

D. Spine Segmentation
The spine segmentation branch aims to perform semantic

segmentation to effectively separate different bone features.
Since the bone features are of different scales, we adopt
a commonly used segmentation head, i.e., Feature Pyramid

Fig. 9: An illustration of the proposed selective feature-sharing
(SFS) blocks in our framework. (F i−1

x and F i−1
y are the fea-

tures in the main task and the auxiliary task respectively, ri−1xy

denotes the leaky gate that selects the information from the
auxiliary task, zi−1

xy denotes the memory gate that determines
the features from the main task, F̃ i

xy denotes the fused features
from the two tasks.)

Network (FPN) [44], to do semantic segmentation. FPN fuses
the features from different scales of the input image, which
benefits the segmentation of small foreground objects, such
as thoracic vertebrae. Given an input image I ∈ R1×H×W ,
where H and W denote its height and width respectively,
the FPN backbone F , together with the segmentation head,
is employed to predict the foreground segment mask, denoted
as ŷ = F(I). ŷ ∈ RN×H×W is the output logit tensor whose
number of channels N is equal to the number of classes.
Here, we consider three foreground objects, i.e., rib, thoracic
process, and lumbar, together with one background, making
N = 4. To supervise the learning of spine segmentation, we
adopt the segmentation loss Lsegment based on the pixel-wise
cross entropy (`CE) loss as follows:

Lsegment =
1

HW

H∑
i=1

W∑
j=1

`CE(ŷij ,yij),

`CE = − log

(
exp(ŷ[class])∑

k exp(ŷ[k])

)
,

(5)

where y denotes the ground-truth segment masks, with a
onehot logit vector at each pixel position. ŷ[k] and ŷ[class]
refer to the k-th and the ground-truth elements of the predicted
logit vector ŷ, respectively.

The overall learning objective L for training the whole
framework is defined as:

L = Lsegment + λLdenoise, (6)

where λ denotes the hyperparameter controlling the trade-off
between the two different tasks.

E. Selective Feature-Sharing (SFS) Blocks
Different from the cascaded structure in previous studies of

joint noise removal and segmentation, we propose to adopt
a parallel learning strategy with selective feature sharing to
improve model efficiency. Inspired by the gate recurrent units
for controlling the information flow in handling sequential
data [45], we design feature-sharing blocks to control the



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2021

information flow between different tasks. The structure of the
feature-sharing block is illustrated in Fig. 9. We consider to
transfer features from the auxiliary task y to the main task x
at the i-th sharing step. A spatial rescaling operator is first
employed to normalize the spatial size of the feature in the
auxiliary task F i−1

y to be the same as the features in the main
task F i−1

x . After that, we define a leaky gate ri−1xy to select
the information in the auxiliary task, which is beneficial to the
main task, as follows:

ri−1xy = σ(W i−1
r ∗ [F i−1

x ,F i−1
y ]), (7)

where σ(·) is the sigmoid function, W i−1
r denotes the learn-

able convolutional kernels to generate the leaky gate scores,
and [·, ·] refers to channel concatenation. Having obtained the
leaky gate ri−1xy , we employ it to fuse the features from the
two tasks as follows:

F̃ i
xy = tanh(W i−1 ∗ (ri−1xy � F i−1

y ) +U i−1 ∗ F i−1
x ), (8)

where W i−1 and U i−1 denote the learnable convolutional
kernels, � is the element-wise multiplication operator. More-
over, a memory gate zi−1

xy is further designed to determine the
features that should be memorized from the (i − 1)-th step
to the i-th step in the main task x, which is formulated as
follows.

zi−1
xy = σ(W i−1

z ∗ [F i−1
x ,F i−1

y ]), (9)

where W i−1
z denotes the learnable convolutional kernels to

generate the memory gate scores. Finally, we construct the
output features for the main task by aggregating the informa-
tion controlled by the leaky and memory gates as follows:

F i
x = (1− zi−1

xy )� F i−1
x + zi−1

xy � F̃ i
xy. (10)

By this means, we effectively build the connections between
the main task and the auxiliary task with meaningful feature
selection. It is worth noting that, as shown in Fig. 6, the
feature-sharing blocks are placed in pairs in the noise removal
module and the spine segmentation module. Thus, the infor-
mation flow is bidirectional between these two tasks.

F. Training Scheme

We train the whole framework in an end-to-end manner
under the learning objective defined in Eq. (6) to jointly
learn the two tasks and optimize those feature-sharing blocks.
Our proposed framework consists of two main modules, i.e.,
a noise removal module and a spine segmentation module.
From the perspective of task complexity, the segmentation
task is more complicated than the noise removal task in
learning, since the segmentation task is a pixel-wise multi-
class classification task while the noise removal task is a
binary classification task. In addition, when we independently
solve the two problems, it takes about 8 hours to train up
a segmentation network, while training a denoising network
only requires about 4 hours. Therefore, in each iteration, we
empirically train the noise removal module once and the spine
segmentation module twice. When training the noise removal
module, we update the discriminator for three optimization
steps through experimental findings, and then update the

generator for one step. It is worth mentioning that, whichever
module is trained, the feature-sharing blocks are optimized to
select beneficial features from the representations in the two
tasks. This training scheme is summarized in a PyTorch-like
pseudo code in the Appendix.

IV. EXPERIMENTS

In this section, we introduce the experiments for evaluating
the performance of the proposed multi-task framework. We
first describe the experimental settings, including the prepa-
ration of the collected data samples and the implementation
of the proposed framework. Secondly, we present and analyze
the results, and compare them with those from other state-
of-the-art methods. Finally, we show the ablation studies for
validating the proposed designs in our framework.

A. Dataset
In our experiments, we acquired 2D VPI images using the

Scolioscan system (Model SCN801, Telefield Medical Imag-
ing Ltd, Hong Kong). The frame rate of the system is 60 fps.
The ultrasound probe scans from bottom to top along the spine
with an average scanning speed of 2.0 cm/s. Our experimental
procedures involving human subjects were approved by the
Institutional Review Board 1. The subjects gave informed
consent to their inclusion in this study as required, and the
work adheres to the Declaration of Helsinki. We collected
109 images from 109 patients (82 females and 27 males) with
an average age of 15.6 ± 2.7 years. The mean of the body
mass index (BMI) of the subjects was 18.3± 2.1 kg/m2. All
the patients had no neuromuscular or congenital problems and
received standard diagnosis and treatment. The patients suffer
from different degrees of spine deformity, which presents
further challenges to the generalization of our proposed frame-
work. Having obtained the sequence of 2D ultrasound slices,
the system employs the squared distance weighted (SDW)
interpolation to reconstruct the 3D volume data as shown in
Fig. 5. Based on different imaging depths, nine 2D coronal
images can be obtained from the 3D ultrasound voxels. Among
those nine observations, only the image with the best quality
was manually selected by the experts for our experiments.
The bone features are annotated by three ultrasound experts,
one has more than 2-year experience while the other two
have 5-year experience. These images were of different sizes,
but basically have a resolution of about 2, 600 × 640 pixels
with a spacing of 0.15mm× 0.15mm. To spatially normalize
the collected images, we resize them into 2048 × 512 pixels
for both training and validation. In the training stage, we
further extracted image patches of size 128×128 pixels as the
training samples. Random rescalings with the ratio uniformly
sampled from the range (0.5, 2.0), random crop, and random
flip over were performed as data augmentation. To perform a
general test on the proposed framework, we employed the 5-
fold subject-independent cross-validation. The whole dataset
was uniformly divided into 5 folds. In each round, we trained

1This study was performed in line with the principles of the Declaration of
Helsinki. Approval was granted by the Ethics Committee of The Hong Kong
Polytechnic University (06 Sep 2018/HSEARS20180906005)
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the network on 4 folds and validated the remaining 1 fold.
We repeated the procedure 5 times to validate the framework
with the whole dataset, and the final results were obtained by
averaging the accuracy over the 5 rounds.

B. Implementation Details
We implemented our framework with PyTorch and MM-

Segmentation2. ResNet1013 [46] was adopted as the backbone
network for feature extraction in the spine segmentation mod-
ule. The Feature Pyramid Network4 (FPN) [44] was employed
as the segmentation head to fuse multi-scale features for
segmentation. For the noise removal module, we established a
simple U-Net architecture, as shown in Fig. 6, as the generator.
A four-layer plain convolutional network, followed by two
fully connected layers, was built as the discriminator. All the
convolutional kernels in the framework were of size 3 × 3,
except for those in the residual connections, where 1 × 1
convolutional filters were used. We utilized ReLU as the
activation function following each convolutional layer.

There are algorithms proposed to stabilize the training
of GANs, such as spectral normalization [47], orthogonal
regularization [48], and adaptive discriminator augmentation
[49]. In our noise removal task, the noisy and clean patches
are all extracted from ultrasound VPI images, which indicates
they follow a similar distribution. To reduce the computational
complexity in deployment, we adopted a simple baseline of
GAN for our denoising task.

In the training stage, we employed Adam to optimize the
noise removal network and the spine segmentation network
jointly. The hyperparameter in the objective function, i.e., α
in Eq. (4) and λ in Eq. (6) were empirically set to 10−4 and 1.0
by grid search. We trained both networks for 8×104 iterations
with the learning rate gradually decreasing from 10−3 to 10−5

based on the cosine annealing schedule [50] 5. The weight
decay was set to 5× 10−4 for regularization. The mini-batch
size for both tasks was fixed at 8.

The training was performed on two Nvidia GeForce
RTX 3090 GPUs, and it took about 12 hours to finish
a round of learning. Our implementation and some
samples from the collected dataset are available at
https://github.com/jacksonhzx95/Joint_
segmentation_denoise_for_scoliosis.git.

C. Metrics
To evaluate the performance of our proposed framework

on spine segmentation, we adopt the widely used metrics of
Dice similarity score (Dice), precision, and average Hausdorff
distance (AHD), which are formulated as follows.

Dice =
2TP

2TP + FP + FN
, (11)

Precision =
TP

TP + FP
, (12)

2https://github.com/open-mmlab/mmsegmentation
3https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
4https://github.com/jwyang/fpn.pytorch
5https://github.com/pytorch/pytorch/blob/master/torch/optim/lr scheduler.py

AHD(A,B) = max(d(A,B), d(B,A)), (13)

where TP , TN , FP , and FN refer to true positive, true
negative, false positive, and false negative points, respectively.
A and B denotes the ground-truth and predicted segmentation
masks, respectively. d(A,B) is the directed average Hausdorff
distance given by

d(A,B) = 1

V

∑
a∈A

min
b∈B
‖a− b‖ , (14)

where V is the total number of the bone feature pixels from
A.

As introduced in Sec. I, it is difficult to obtain the paired
samples of noisy and noise-free images, and thus the con-
ventional image quality measurements, e.g., Peak Signal-to-
Noise Ratio (PSNR) and Structure Similarity Index (SSIM),
are not available in this study. Instead, we designed a scan
noise removal rate (SNRR) metric to quantitatively evaluate
the noise removal performance, which is defined as follows:

SNRR =
|N −N ′|

N
, (15)

where N , N ′ denotes the number of the noisy patches
detected by a vertical edge detector from the original and
denoised images, respectively. The details of the noisy patch
detector are summarized in Algorithm 2 in the Appendix.

D. Results on Spine Segmentation

We first evaluate our proposed framework on spine segmen-
tation by comparing it with other state-of-the-art segmentation
methods under the same settings, including the benchmark
methods of UNet [51], FPN [44] and HRNet [52], the state-of-
the-art algorithms of nnUNet [54] and UNet++ [53] for medi-
cal image segmentation, the multi-task algorithms of MASSL
[55] and DCR [25], and the methods of DAGAN [16] and
SEAM [24] especially designed for ultrasound VPI images.
It is worth noting that our previous work DAGAN [16] also
aims to recover those scan noises in VPI images. However,
it performs restoration and segmentation independently. All
the comparing methods are established with the source codes
provided by their original authors and are applied to our spine
segmentation task, except for DCR [25] and MASSL [55].
We re-implemented DCR [25] and MASSL [55] following the
descriptions in their papers.

The comparison results are tabulated in Table II. It can
be seen that our proposed feature-selective joint-learning
framework outperforms the three baseline methods, i.e., UNet
[51], FPN [44] and HRNet [52], by a large margin on all
the evaluation metrics. This shows the effectiveness of the
proposed joint learning scheme for the spine segmentation
task. Comparing with the state-of-the-art methods designed for
medical image segmentation, i.e., nnUNet [54] and UNet++
[53], we observe an improvement of over 1% on the average
Dice score and 3% on the average precision, respectively.
We consider the reason to be that the strong scan noise in
the VPI images corrupts the discriminative patterns of spine

https://github.com/jacksonhzx95/Joint_segmentation_denoise_for_scoliosis.git
https://github.com/jacksonhzx95/Joint_segmentation_denoise_for_scoliosis.git
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TABLE II: Quantitative segmentation results in terms of the Dice score (Dice (%)), Precision (Pre. (%)), and Average Hausdoff
Distance (AHD (mm)) based on different methods (Mean ± Standard Deviation (SD)).

Methods Lump Thoracic Rib Ave. FPSDice Pre. AHD Dice Pre. AHD Dice Pre. AHD Dice Pre. AHD
UNet [51] 80.26±6.06 78.40±8.47 9.92±7.54 73.64±5.88 79.10±7.15 2.55±1.61 76.02±6.10 79.13±7.98 2.93±2.61 76.64±6.01 78.88±7.87 5.14±3.92 4.0
FPN [44] 83.31±5.70 81.77±7.73 5.21±5.37 74.84±5.45 79.37±6.61 2.08±1.64 76.86±5.91 80.06±7.14 2.35±1.65 78.34±5.69 80.40±7.16 3.21±2.89 4.2

HRNet [52] 83.03±5.43 85.63±5.88 1.97±1.61 76.00±4.90 75.41±7.68 1.63±0.78 77.27±5.14 78.05±6.47 1.65±0.84 78.77±5.16 79.69±6.67 1.75±1.07 2.4
UNet++ [53] 82.28±6.89 83.82±7.96 3.16±3.66 73.46±5.72 77.81±7.18 3.19±2.69 76.84±5.74 76.28±8.22 2.79±2.13 77.52±6.12 79.30±7.79 3.05±2.82 3.2
nnUNet [54] 83.11±5.41 81.59±7.62 2.11±0.79 77.06±4.60 77.90±7.05 1.69±1.34 78.32±4.71 80.46±7.45 1.77±1.29 79.47±4.91 79.98±7.37 1.86±1.14 0.3
DAGAN [16] 83.92±5.42 83.03±6.51 4.54±4.8 76.01±4.74 77.45±6.41 2.11±1.41 78.06±5.27 81.50±6.19 2.37±2.14 79.33±5.14 80.66±6.37 3.01±2.78 1.7
SEAM [24] 84.40±6.21 85.05±7.04 2.95±4.38 76.36±4.82 76.50±6.85 1.90±1.10 77.79±5.64 80.11±7.05 2.07±1.49 79.52±5.56 80.55±6.98 2.31±2.32 3.8

MASSL [55] 82.11±5.76 82.57±5.83 5.03±5.21 76.03±4.78 77.71±6.38 2.39±2.05 77.56±5.98 82.36±5.83 2.25±1.30 78.57±5.51 80.88±6.30 3.22±2.85 1.5
DCR [25] 83.01±5.34 78.94±7.53 2.34±1.48 76.56±4.60 75.62±6.79 1.53±0.42 78.03±4.83 79.60±6.17 1.60±0.72 79.20±4.92 78.06±6.83 1.81±0.87 1.2

Ours (UNet) 82.80±5.23 84.40±6.54 2.15±1.39 76.31±4.56 78.39±6.26 1.56±0.44 78.08±5.41 79.37±7.15 1.86±1.03 79.06±5.00 80.72±6.65 1.86±0.95 1.9
Ours (HRNet) 85.60±5.01 85.29±6.29 2.34±2.58 77.27±4.71 77.10±7.15 1.65±0.79 77.88±5.10 81.81±6.52 1.54±0.80 80.25±4.94 81.40±6.65 1.84±1.39 1.2
∼ w/o NR 83.31±5.70 81.77±7.73 5.21±5.37 74.84±5.45 79.37±6.61 2.08±1.64 76.86±5.91 80.06±7.14 2.35±1.65 78.34±5.69 80.40±7.16 3.21±2.89 4.2
∼ w/o DA 85.09±5.02 84.47±6.71 2.49±2.20 77.13±4.88 77.78±7.06 1.92±1.23 77.49±5.49 81.39±6.71 2.24±1.75 79.90±5.13 81.21±6.83 2.22±1.72 2.3
∼ w/ CC 84.44±4.88 84.13±6.37 3.12±3.19 76.15±5.41 79.52±6.91 2.16±1.82 75.56±6.03 82.18±6.41 2.38±1.36 78.71±5.44 81.95±6.57 2.55±2.12 2.6

Ours 85.57±4.98 86.47±6.55 1.69±1.05 78.00±4.25 79.12±6.26 1.37±0.47 78.50±5.51 83.17±5.62 1.54±0.67 80.69±4.91 82.92±6.14 1.53±0.73 2.3

(a) Input (b) Manual (c) UNet (d) FPN (e) DCR (f) nnUNet (g) SEAM (h) DAGAN (i) Ours

Fig. 10: A visualization of the segmentation results based on different methods. The red regions denote the segmented thoracic
processes, the green regions denote the segmented ribs, and the blue ones denote the segmented lumps in the lumbar region.
Highlighted in the red boxes are the challenging areas around the boundary of the thoracic and lumbar regions. Highlighted
in the yellow boxes are areas with the most notable differences.

bones, which restricts those methods from fully investigating
the discriminative features for segmentation. Our proposed

framework also surpasses those previous studies especially
designed for spine segmentation, i.e., DAGAN [16] and SEAM
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TABLE III: The p-value of the proposed method vs. three
candidate algorithms respectively (nnUnet [54], DAGAN [16],
FPN [44]).

Methods Dice Precision AHD
FPN [44] 0.0001 0.0001 0.0001

nnUNet [54] 0.0001 0.0001 0.0002
DAGAN [16] 0.0001 0.0001 0.0001

[24], by approximately 1.1% and 1.4% respectively on the
average Dice score, which shows its superiority in performing
spine segmentation from ultrasound VPI images.

To further demonstrate the advantages of the proposed
method, we visualize two samples from the testing split of
the dataset to illustrate the segmentation improvement of our
proposed method. The results are presented in Fig. 10. It
can be seen that the baseline methods, i.e., UNet [51] and
FPN [44], are significantly affected by the corrupted patterns
from the scan noise, and predict unsatisfactory results in the
third lumbar vertebra. Another challenging area is around the
boundary of the thoracic and lumbar regions, as shown in
the red boxes of Fig. 10. Apparently, the multi-task algorithm,
i.e., DCR [25], the state-of-the-art medical image segmentation
method, i.e., nnUNet [54], as well as the spine segmentation
method, i.e., DAGAN [16], tend to predict a false alarm
of lumbar vertebra at this place. SEAM [24] can produce
comparable results with our proposed method to eliminate this
false alarm, because SEAM [24] further considers the structure
supervision in learning. Our proposed method, benefiting from
the proposed selective feature-sharing joint-learning strategy,
can accurately predict the spine features without structure su-
pervision. Moreover, as the structure knowledge is inaccurate
at the boundary of the images, SEAM tends to make incorrect
predictions at the top and bottom regions, while our proposed
method can predict more appealing segmentation masks in all
regions of the image.

To statistically evaluate the significance of the obtained
comparison results, we perform the paired sample t-test [56]
on our dataset. Specifically, we compare the adopted evalua-
tion metrics, i.e., Dice, Precision, and AHD, of our method and
the benchmark methods, including FPN, DA-GAN, nnUNet.
The obtained p-values with a threshold of 0.01 for validating
the statistical significance are tabulated in Table III. The results
indicate the differences in performance are statistically signif-
icant, which means our proposed method improves the spine
segmentation performance over those benchmark methods.

We also compare the runtime results based on different
methods as shown in the last column of Table II. Frame per
second (FPS) is adopted to measure the speed for inference.
Our proposed method is more efficient than the cascaded
method, i.e., DAGAN [16], for jointly solving the two prob-
lems. It is also faster than the state-of-the-art medical image
segmentation method, i.e., nnUNet [54]. Although its speed is
lower than the baseline methods, we consider the FPS of 2.3
is sufficient for real-time clinical applications.

TABLE IV: Qualitative scores for user study and quantitative
results for scan noise removal rate (SNRR (%)). A higher
Mean Opinion Score (MOS) indicates better visual quality, and
a higher SNRR indicates better noise removal performance.

Methods Org. N2V DIP CYC GSD NPGTV DAGAN Ours
MOS 5.04 4.925 1.72 5.25 3.63 2.93 6.02 6.56
SNRR - 48.02 97.75 70.22 92.45 85.24 80.48 97.61

E. Results on Scan Noise Removal

To validate the effectiveness of our proposed method on
scan noise removal, we performed user studies and scan noise
removal rate based on the comparison with other weakly
supervised denoisers that do not require the paired clean-
noisy images for learning, such as Noise2Void (N2V) [37],
Deep Image Prior (DIP) [57], Cycle-GAN (CYC) [58], and
the total variance based denoising algorithms such as Graph-
based Sinogram Denoising (GSD) [27], and non-local patch
graph total variation (NPGTV) [30], as well as our previous
work DAGAN [16]. In the user study, we randomly selected 15
testing images, and invited 8 ultrasound experts to assess the
restored image quality. The restoration results from different
methods were presented in random order. For each testing
sample, the experts were asked to give a score based on its
visual quality, with 6 and 1 indicating the highest and lowest
quality respectively. We averaged the scores for the same
method over the selected 15 images. A higher value of mean
opinion score (MOS) implies better perception, and is more
desirable to facilitate the scoliosis diagnosis. Before doing the
user study, all the experts are asked to do a validation test (8
testing samples) to show whether the MOS of the participants
in the user study is consistent with the objective metrics (e.g.,
SSIM and PSNR). The results and analysis of the validation
test are included in the Appendix.

The results are listed in Table IV. We adopt the Mean
Opinion Score (MOS) and scan noise removal rate (SNRR)
to measure the quality of the images. The MOS denotes the
average opinion scores from all the medical experts based on
the 15 testing samples. In this user study, we also included
the original images to indicate the baseline performance. It is
worth noting that the original images are reconstructed from
an adaptive interpolation method, i.e., the squared distance
weighted (SDW) interpolation [18], which can be regarded
as an interpolation baseline of 3D reconstruction methods.
It can be seen from the table that DIP obtains the lowest
MOS (1.72) while it gets the highest SNRR (97.75%). This
implies that DIP [57] deteriorates the original image content.
Although the TV-based algorithms, i.e., GSD [27] and NPGTV
[30], achieve comparable performance with ours on SNRR,
their MOS are even lower than that of the original image.
This shows that the TV-based algorithms can remove noise
but fail to preserve the content of the original image. It is
seen that our proposed method produces the highest MOS of
6.56, and the second-highest SNRR of 97.61%, which implies
our proposed model can more effectively restore the image
content to facilitate the scoliosis assessment. More importantly,
our proposed method also surpasses DAGAN [16] by about
0.5 on MOS and around 17% on SNRR, respectively. This
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(a) Original (b) GSD (c) NPGTV (d) N2V (e) DIP (f) CYC (g) DAGAN (h) Ours

Fig. 11: Visualization of the noise removal results based on different methods.

TABLE V: Quantitative segmentation results of Folder 1 of
dataset in terms of the Dice score (Dice (%)), Precision (Pre.
(%)), and Average Hausdoff Distance (AHD (mm)) based on
different training schemes. (Training scheme: segmentation
training vs. noise removal training)

Training Dice Pre. AHD
Scheme

1: 3 74.42 82.43 3.65
1: 2 78.04 82.76 2.50
1: 1 80.85 83.14 2.34
2: 1 81.27 83.52 1.45
3: 1 80.21 83.86 2.17

demonstrates that the proposed joint-learning strategy, based
on feature selection, can promote the scan noise removal task
by transferring the beneficial supervision from segmentation.

To better show the visual quality of the restored images
from different methods, we present two examples in Fig. 11,
and compare our proposed methods with the other weakly su-
pervised denoisers. It can be observed that the self-supervised
methods N2V [37] and DIP [57] fail to reduce the structured
noise. CYC [58] can reduce the scan noise, but the result
is not satisfactory enough. GSD [27] and NPGTV [30] can
remove scan noise but at the cost of smoothing the content
of the original image. DAGAN [16] produces a comparable
visual quality of the proposed method. When focusing on the
details of the recovered area, our proposed method can recover
the noisy area more effectively. Overall, our proposed method
achieves the most appealing visual results.

F. Ablation Study

To validate the effect of different training schemes in the
proposed framework, we tried different training schemes and
tests in Folder 1 of our dataset, as shown in Table V. It is seen
that the best experimental results can be obtained by training
the denoising branch once and the segmentation branch twice
in an iteration.

To show the effectiveness of the different designs in the
proposed framework, we performed ablation studies. Specifi-
cally, we iteratively eliminate the noise removal module and
the dual-adversarial strategy in the framework, denoted as
“∼ w/o NR” and “∼ w/o DA” respectively, and compare
the results with those of the proposed full network. It is
worth noting that the model without the noise removal module

(a) Original (b) ∼w/o DA (c) Full

Fig. 12: Visualization of the noise removal results for the
ablation study, using the proposed full framework and the
framework without dual-adversarial (DA) learning.

Fig. 13: Visualization of the learned gate values on one testing
sample. The visualization is achieved based on the method in
Grad-CAM [59].

becomes a single-task network for spine segmentation, and its
performance should be the same as the FPN baseline. We also
replace the proposed selective feature-sharing (SFS) blocks
with a simple channel concatenation module, denoted as “∼
w/ CC”, to validate the effect of SFS. Moreover, to verify
the benefits from the auxiliary noise removal task and the
flexibility of the adopted segmentation backbones, we replaced
the original segmentation network, i.e., FPN, with UNet and
HRNet. The results on spine segmentation are summarized
in Table II. It can be seen that our joint learning framework
is beneficial to the segmentation performance, as the Dice
score improves about 2.3%, 2.4% and 1.5% as compared to
the FPN, UNet and HRNet baseline, respectively. In addition,
different feature-sharing strategies also affect the segmentation
performance. We can see that the results from the model
using channel concatenation for feature sharing drop by about
2% as compared to the full framework. This demonstrates
the advantage of the proposed selective sharing blocks for
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multi-task learning. We also investigate the proposed dual-
adversarial (DA) learning. Since our proposed method is a
multi-task framework, the performance of one task will also
affect the performance of the other task. It is obvious that
when eliminating the DA strategy, the segmentation results
decrease about 0.7%. Although DA is targeted to improve
the GAN-based noise removal task, it is also important to
the segmentation in the proposed feature-sharing multi-task
framework. We visualize a sample trained without DA in Fig.
12 to show the effect of DA on noise removal.

To clearly elaborate the ability of the proposed selective
feature sharing module, we visualize the gate value obtained
from a testing sample by Grad-CAM [59]. The results are
shown in Fig. 13. In terms of the leaky gate r, the feature
selection in the noise removal task is constructed by focusing
on the noisy area that needs to be recovered. In contrast, the
segmentation task pays more attention to the most informative
regions associated with the spine features, aiming to learn
the relationship between the source and manual annotation.
Similarly, the memory gate z aims to selectively transfer the
features from the previous layers. Thus, the segmentation task
still focuses on the expressive spine feature region, while the
noise removal task recognizes the noise feature required to
be recovered. In conclusion, the gates in the selective feature
sharing module can be considered as a task-based attention
strategy in multi-task learning.

V. CONCLUSION

In this paper, we have proposed a multi-task framework with
selective feature-sharing mechanism to handle both the scan
noise removal and spine segmentation tasks simultaneously.
Our proposed framework employs a two-stream network with
the proposed feature-sharing blocks to selectively transfer
features between these two tasks, which enables the frame-
work to deliver only the beneficial features, while filtering
out the useless or harmful information in task interactions.
To overcome the difficulty in acquiring paired clean-noisy
samples, we present a weakly supervised denoiser based on
generative adversarial networks, which learns effective scan
noise removal with unpaired training samples. To enhance
the denoising performance, we introduce a dual-adversarial
strategy to augment the sample pairs in an on-the-fly manner.
We evaluate the performance of our framework in terms of
both visual quality and segmentation accuracy on clinical VPI
images. The results demonstrate that our method shows ap-
pealing performance on both tasks, which makes it a potential
approach in clinical diagnosis.

VI. APPENDIX

Validation test for user study
Before performing the user study in our experiments for

evaluating the visual quality of different restored images, all
the experts were asked to do a validation test (8 testing
samples) to show whether the MOS of the participants in the
user study is consistent with the objective metrics (e.g., SSIM
and PSNR). For the validation test, we employed 4 traditional
image processing algorithms to the original VPI images, such

as 4×4 downsampling (4DS), 8×8 downsampling (8DS),
adding Gaussian noise with σ of 0.2 (GN), and average blur
filtering (AB) with the filter size of 10 × 10. The resulting
images from different algorithms (including original images)
were presented in random order. According to the results of
the validation test (shown in Table VI ), the MOS from the
participants in the user study matches well to the objective
metrics, which implies that a higher MOS can generally
indicate better visual quality.

Metric Original 4DS 8DS GN AB
PSNR ∞ 25.78 24.35 15.74 25.40
SSIM 1 0.80 0.74 0.10 0.75
MOS 4.03 3.06 2.27 2.68 2.97

TABLE VI: Quantitative results in terms of the PSNR (dB),
SSIM and qualitative results in terms of Mean Opinion Score
(MOS) based on different image processing algorithms.

Algorithm 1 PyTorch-like Pseudo Code of Our Training
Scheme in One Iteration

# (I_n, I_c, y): a mini-batch of training samples
consisting of noisy images, unpaired clean images,
and the ground-truth segmentation masks of I_n.

# (true, fake): tensors consisting of one and zero
values for supervising GAN-based learning.

# f: our proposed framework for joint learning noise
removal and spine segmentation.

# (f_d_c, f_d_n): discriminators for GAN-based noise
removal learning.

for (I_n, I_c, y) in loader:
# Training noise removal branch
for _ in range(2):

# Training discriminator in noise removal branch
I_c_hat = f(I_n)
I_n_hat = I_c + I_n - I_c_hat
I_c_hat.detach()
I_n_hat.detach()
for _ in range(3):

for i in (c & n):
pre_t = f_d_i(I_i)
pre_f = f_d_i(I_i_hat)
error = (BCEWithLogitsLoss(pre_t, true) +

BCEWithLogitsLoss(pre_f, fake)) / 2
error.backward()
f_d_i.update()

# Training generator in noise removal branch
I_c_hat = f(I_n)
I_n_hat = I_c + I_n - I_c_hat
pre_c = f_d_c(I_c_hat)
pre_n = f_d_n(I_n_hat)
loss = BCEWithLogitsLoss(pre_c, true) +

BCEWithLogitsLoss(pre_n, true) + alpha *
MSELoss(I_n, I_c_hat)

loss.backward()
f.update()

# Training segmentation branch
y_hat = f(I_n)
loss = CrossEntropyLoss(y_hat, y)
loss.backward()
f.update()
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Algorithm 2 Pseudo code of noisy patch detector for quanti-
tative measurement on noise removal task.

Initialization: The number of noisy patches: N = 0; The
sliding window size: s× s; The stride of the slide window: p;
The threshold of the noisy patch: T ; The position of the slide
window: vertical vs, horizontal hs;
Output: The number of noisy patches: N

for all testing images imgi do
get the width wi and height hi of imgi
for vs = 0 to (hi − s) with stride s do

for hs = 0 to (wi − s)with stride s do
crop sub-image imgsub from imgi:
imgsub = imgi[vs : vs + s][hs : hs + s]
calculate the average vertical energy eave:
eave = g(imgsub) . (Eq. 1)
if eave > T then

N = N + 1
end if

end for
end for

end for

REFERENCES

[1] L. Ramirez, N. G. Durdle, and V. J. Raso et al., “A support vector
machines classifier to assess the severity of idiopathic scoliosis from
surface topography,” IEEE Transactions on Information Technology in
Biomedicine, vol. 10, no. 1, pp. 84–91, 2006.

[2] J. COBB, “Outline for the study of scoliosis,” Instr Course Lect AAOS,
vol. 5, pp. 261–275, 1948.

[3] Y. Wong, K. K. Lai, and Y. P. Zheng et al., “Is radiation-free ultrasound
accurate for quantitative assessment of spinal deformity in idiopathic
scoliosis (is): A detailed analysis with eos radiography on 952 patients,”
Ultrasound in Medicine & Biology, vol. 45, no. 11, pp. 2866–2877, 2019.

[4] W. Chen, E. H. Lou, and P. Q. Zhang et al., “Reliability of assessing the
coronal curvature of children with scoliosis by using ultrasound images,”
Journal of Children’s Orthopaedics, vol. 7, no. 6, pp. 521–529, 2013.

[5] M. Young, D. L. Hill, and R. Zheng et al., “Reliability and accuracy
of ultrasound measurements with and without the aid of previous
radiographs in adolescent idiopathic scoliosis (ais),” European Spine
Journal, vol. 24, no. 7, pp. 1427–1433, 2015.

[6] T. T. Lee, K. K. Lai, and J. C. Cheng et al., “3d ultrasound imaging
provides reliable angle measurement with validity comparable to x-ray
in patients with adolescent idiopathic scoliosis,” Journal of Orthopaedic
Translation, vol. 29, pp. 51–59, 2021.

[7] C. W. J. Cheung, G. Q. Zhou, and S. Y. Law et al., “Ultrasound volume
projection imaging for assessment of scoliosis,” IEEE Transactions on
Medical Imaging, vol. 34, no. 8, pp. 1760–1768, 2015.

[8] P. U. Pandey, N. Quader, and P. Guy et al., “Ultrasound bone
segmentation: A scoping review of techniques and validation practices,”
Ultrasound in Medicine & Biology, vol. 46, no. 4, pp. 921–935, 2020.

[9] R. C. Brink, S. P. Wijdicks, and I. N. Tromp et al., “A reliability and
validity study for different coronal angles using ultrasound imaging in
adolescent idiopathic scoliosis,” The Spine Journal, vol. 18, no. 6, pp.
979–985, 2018.

[10] D. Mahapatra, B. Bozorgtabar, and R. Garnavi, “Image super-resolution
using progressive generative adversarial networks for medical image
analysis,” Computerized Medical Imaging and Graphics, vol. 71, pp.
30–39, 2019.

[11] H. Zhao, Z. Ke, and N. Chen et al., “A new deep learning method
for image deblurring in optical microscopic systems,” Journal of
biophotonics, vol. 13, no. 3, pp. e201960147, 2020.

[12] S. V. M. Sagheer and S. N. George, “A review on medical image
denoising algorithms,” Biomedical Signal Processing and Control, vol.
61, pp. 102036, 2020.

[13] H. S. Park, J. Baek, and S. K. You et al., “Unpaired image denoising
using a generative adversarial network in x-ray ct,” IEEE Access, vol.
7, pp. 110414–110425, 2019.

[14] S. Ishii, S. Lee, and H. Urakubo et al., “Generative and discriminative
model-based approaches to microscopic image restoration and segmen-
tation,” Microscopy, vol. 69, no. 2, pp. 79–91, 2020.

[15] D. Auroux, “From restoration by topological gradient to medical
image segmentation via an asymptotic expansion,” Mathematical and
Computer Modelling, vol. 49, no. 11-12, pp. 2191–2205, 2009.

[16] Z. Huang, R. Zhao, and F. H. F. Leung et al., “Da-gan: Learning
structured noise removal in ultrasound volume projection imaging for
enhanced spine segmentation,” in IEEE International Symposium on
Biomedical Imaging. IEEE, 2021, pp. 770–774.

[17] B. Lichtenbelt, R. Crane, and S. Naqvi, Introduction to volume
rendering, Prentice-Hall, Inc., 1998.

[18] Q. H. Huang, Y. P. Zheng, and M. H. Lu et al., “Development of
a portable 3d ultrasound imaging system for musculoskeletal tissues,”
Ultrasonics, vol. 43, no. 3, pp. 153–163, 2005.

[19] F. Berton, F. Cheriet, and M. C. Miron et al., “Segmentation of the
spinous process and its acoustic shadow in vertebral ultrasound images,”
Computers in Biology and Medicine, vol. 72, pp. 201–211, 2016.

[20] W. Chen, L. H. Le, and E. H. Lou, “Ultrasound imaging of spinal
vertebrae to study scoliosis,” Open Journal of Acoustics, vol. 2, no. 3,
pp. 95–103, 2012.

[21] T. Ungi, H. Greer, and K. Sunderland et al., “Automatic spine
ultrasound segmentation for scoliosis visualization and measurement,”
IEEE Transactions on Biomedical Engineering, 2020.

[22] G. Q. Zhou, W. W. Jiang, and K. L. Lai et al., “Automatic measurement
of spine curvature on 3-d ultrasound volume projection image with phase
features,” IEEE Transactions on Medical Imaging, vol. 36, no. 6, pp.
1250–1262, 2017.

[23] Z. Huang, L. W. Wang, and F. H. F. Leung et al., “Bone feature
segmentation in ultrasound spine image with robustness to speckle and
regular occlusion noise,” in IEEE International Conference on Systems,
Man, and Cybernetics. IEEE, 2020, pp. 1566–1571.

[24] R. Zhao, Z. Huang, and T. Liu et al., “Structure-enhanced attentive
learning for spine segmentation from ultrasound volume projection
images,” in IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, 2021, pp. 1195–1199.

[25] J. Lyu, X. Bi, and S. Banerjee et al., “Dual-task ultrasound spine
transverse vertebrae segmentation network with contour regularization,”
Computerized Medical Imaging and Graphics, vol. 89, pp. 101896,
2021.

[26] S. Banerjee, J. Lyu, and Z. Huang et al., “Light-convolution dense selec-
tion u-net (lds u-net) for ultrasound lateral bony feature segmentation,”
Applied Sciences, vol. 11, no. 21, pp. 10180, 2021.

[27] F. Mahmood, N. Shahid, and P. Vandergheynst et al., “Graph-based
sinogram denoising for tomographic reconstructions,” in Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, 2016, pp. 3961–3664.

[28] F. Mahmood, N. Shahid, and U. Skoglund et al., “Adaptive graph-based
total variation for tomographic reconstructions,” IEEE Signal Processing
Letters, vol. 25, no. 5, pp. 700–704, 2018.

[29] W. Wei, B. Zhou, and D. Połap al., “A regional adaptive variational
pde model for computed tomography image reconstruction,” Pattern
Recognition, vol. 92, pp. 64–81, 2019.

[30] Y. Zhang, J. Wu, and Y. Kong et al., “Image denoising via a non-local
patch graph total variation,” PloS one, vol. 14, no. 12, pp. e0226067,
2019.

[31] A. Guo, L. Fang, and M. Qi et al., “Unsupervised denoising of optical
coherence tomography images with nonlocal-generative adversarial net-
work,” IEEE Transactions on Instrumentation and Measurement, vol.
70, pp. 1–12, 2020.

[32] T. Matsui and M. Ikehara, “Gan-based rain noise removal from
single-image considering rain composite models,” in European Signal
Processing Conference. IEEE, 2021, pp. 665–669.

[33] T. L. Bobrow, F. Mahmood, and M. Inserni et al., “Deeplsr: a deep
learning approach for laser speckle reduction,” Biomedical optics
express, vol. 10, no. 6, pp. 2869–2882, 2019.

[34] H. Shan, Y. Zhang, and Q. Yang et al., “3-d convolutional encoder-
decoder network for low-dose ct via transfer learning from a 2-d trained
network,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp.
1522–1534, 2018.

[35] Q. Yang, P. Yan, and Y. Zhang et al., “Low-dose ct image denoising
using a generative adversarial network with wasserstein distance and
perceptual loss,” IEEE Transactions on Medical Imaging, vol. 37, no.
6, pp. 1348–1357, 2018.

[36] J. Lehtinen, J. Munkberg, and J. Hasselgren et al., “Noise2noise: Learn-
ing image restoration without clean data,” in International Conference
on Machine Learning. PMLR, 2018, pp. 2965–2974.



ZIXUN HUANG et al.: JOINT SPINE SEGMENTATION & NOISE REMOVAL WITH SELECTIVE FEATURE SHARING 15

[37] K. Alexander, B. Tim-Oliver, and J. Florian, “Noise2void-learning
denoising from single noisy images,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE, 2019, pp. 2129–2137.

[38] J. Batson and L. Royer, “Noise2self: Blind denoising by self-
supervision,” in International Conference on Machine Learning. PMLR,
2019, pp. 524–533.

[39] Y. Huo, Z. Xu, and S. Bao et al., “Adversarial synthesis learning
enables segmentation without target modality ground truth,” in IEEE
International Symposium on Biomedical Imaging. IEEE, 2018, pp.
1217–1220.

[40] Z. Liu, X. Yang, and R. Gao et al., “Remove appearance shift for
ultrasound image segmentation via fast and universal style transfer,” in
IEEE International Symposium on Biomedical Imaging. IEEE, 2020, pp.
1824–1828.

[41] S. Ruder, J. Bingel, and I. Augenstein et al., “Latent multi-task
architecture learning,” in AAAI Conference on Artificial Intelligence,
2019, vol. 33, pp. 4822–4829.

[42] L. Xiao, H. Zhang, and W. Chen et al., “Learning what to share: Leaky
multi-task network for text classification,” in International Conference
on Computational Linguistics, 2018, pp. 2055–2065.

[43] R. Zhao, T. Liu, and J. Xiao et al., “Deep multi-task learning for facial
expression recognition and synthesis based on selective feature sharing,”
in 2020 25th International Conference on Pattern Recognition (ICPR).
IEEE, 2021, pp. 4412–4419.

[44] T. Y. Lin, P. Dollár, and R. Girshick et al., “Feature pyramid networks for
object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. IEEE, 2017, pp. 2117–2125.
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