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Cohesive Subgraph Search Using Keywords in
Large Networks

Yuanyuan Zhu, Qian Zhang, Lu Qin, Lijun Chang, Jeffrey Xu Yu

Abstract—Keyword search problem has been widely studied to retrieve relevant substructures from graphs for a given set of keywords.
However, existing well-studied approaches aim at finding compact trees/subgraphs containing the keywords, and ignore a critical
measure, density, to represent how strongly and stablely the keyword nodes are connected in the substructure. In this paper, given a
set of keywords Q = {w1, w2, . . . , wl}, we study the problem of finding a cohesive subgraph containing Q with high density and
compactness from a graph G. We model the cohesive subgraph based on a carefully chosen k-truss model, and formulate the
problem of finding cohesive subgraphs for keyword queries as minimal dense truss search problem, i.e., finding minimal subgraph
that maximizes the trussness covering Q. However, unlike k-truss based community search that can be efficiently done based on local
search from a given set of nodes, minimal dense truss search for keyword quires is a nontrivial task as the subset of keyword nodes
to be included in the retrieved substructure is previously unknown. To tackle this problem, we first design a novel hybrid KT-Index to
keep the keyword and truss information in a compact manner, and propose an efficient algorithm which carries search on KT-Index
directly to find the dense truss with the maximum trussness Gden without repeated accesses to the original graph. Then, we develop
a novel refinement approach to extract minimal dense truss from the dense truss Gden, by checking each node at most once based
on the anti-monotonicity property derived from k-truss, together with several optimization strategies including batch based deletion,
early-stop based deletion, and local exploration. Moreover, we also extend the proposed method to deal with top-r search. Extensive
experimental studies on real-world networks validated the effectiveness and efficiency of our approaches.

Index Terms—Cohesive subgraph, Subgraph Search, Keyword search, Graph Database.

F

1 INTRODUCTION

K EYWORD search, as a user-friendly query scheme,
has been widely used to retrieve useful information

in graph data, such as knowledge graphs, information
networks, social networks, etc. Given a query consisting
of a number of keywords, the target of keyword search
over a graph is to find substructures in the graph rele-
vant to the query keywords.

In recent decades, keyword search has been exten-
sively studied in the literature [1]. Most of the earlier
works aim to find minimal connected trees containing
the keywords based on a weight function [2] [3] [4].
These trees returned may be compact, but each of them
only gives a partial view of relationships between the
keywords. Thus, connected subgraphs covering the key-
words were subsequently proposed, such as r-radius
subgraph [5], community [6], and r-clique [7]. Besides,
keyword search can also be considered as a special case
of partial topology query [8] [9] where label propagation

• Y. Zhu and Q. Zhang are with the School of Computer Science, Wuhan
University, China.
E-mail: yyzhu@whu.edu.cn.

• L. Qin is with the Center for OCIS, University of Technology, Sydney,
Australia.
E-mail: lu.qin@uts.edu.au.

• L. Chang is with School of Computer Science, The University of Sydney,
Australia .
E-mail: llijun.chang@sydney.edu.au.

• J. Yu is with Systems Engineering and Engineering Management, Chinese
University of Hong Kong, Hong Kong, China.
E-mail: yu@se.cuhk.edu.hk.

are utilized to find matched components. However, these
methods only focus on the compactness of retrieved
substructure by evaluating the distance between (key-
word) nodes in a connected tree/subgraph, and fail to
explore how densely these keywords are connected. In
many applications, density is a critical measure to reflect
the stability of the relationships between keywords, e.g.,
forming a team such that the members are stablely close
with each other so that the whole team can cooperate
well [10]. This means that there are multiple communi-
cation paths between two members so that they cannot
be disconnected easily, which implies the high density.
There are also some recent works on diversified keyword
search [11] [12] [13], but they also neglect the density
of retrieved substructures. Two recent works considered
density in the keyword based community search, but
their target is to maximum the keyword cohesiveness
[14] or contextual density that combines the keyword
cohesiveness and structural cohesiveness [15], which
are inherently different from finding dense subgraph
covering the keywords in this paper.

In this paper, for the first time, we study the problem
of finding cohesive subgraphs that are highly dense
and compact for keyword queries. Various cohesive sub-
graph models have been proposed in the literature, such
as k-core [16] [17] [18] [19] [20], k-truss [21] [22] [23], k-
edge connected component [24] [25], to name a few. We
choose k-truss, within which each edge is contained in
at least (k − 2) triangles, to model the substructures for
keyword queries due to its good properties as follows
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Fig. 1: A Motivating Example

[26]. (1) Stable relationship. k-truss is defined based on a
higher order graph motif, triangle, rather than primitive
vertices/edges, which is a fundamental building block
of networks and can ensure us to find strong and stable
relationship between keyword nodes in an answer. (2)
Bounded diameter. The diameter of a connected k-truss
with n vertices is bounded by b 2n−2k c. This ensures the
compactness of the retrieved subgraphs. (3) High density.
A connected k-truss is also a (k − 1)-core and a (k − 1)-
edge connected subgraph, i.e., all nodes have degree
at least k − 1 and remain connected whenever fewer
than k − 1 edges are removed. This property ensures
that the keyword nodes in the retrieved subgraphs are
densely connected. We illustrate the differences between
k-truss and existing keyword search approaches (e.g.,
Steiner tree [2] [3], community [6], and r-clique [7]) by
the following example.

Fig. 1(a) shows a co-authorship and citation graph
G with 4 authors and 3 papers. The weight of an
edge between an author and a paper is the rank of
the author in the paper, and the weight of an edge
between two papers is the citation frequency. For a query
Q = {James,Green}, the top-3 connected trees T1, T2,
and T3 with weight 3, 4, and 5 are identified respectively
by [2] [3] as shown in Fig. 1(b). Fig. 1(c) shows the
communities identified by [6], which are multi-centered
subgraphs with the distance between a center node and
each keyword node no larger than a given threshold
(e.g., 3). They are ranked based on the minimum to-
tal edge weight from a center node to each keyword
node on the corresponding shortest path. The score of
community C1 with center node paper1 is 1 + 2 = 3.
The score of community C2 is 4 as it has two center
nodes paper2 and paper3 with total weights 2 + 3 = 5
and 1 + 3 = 4, respectively. In the r-clique model with
diameter no larger than r (e.g., r = 3) [7], T1 and T2
are returned, as only Steiner trees of qualified r-cliques
are finally extracted. All these approaches return sub-
structures containing James Wilson and John Green as
the top-1 answer. However, James Wilson and Jim Green
coauthored more papers together with Jack White, which
implies a more stable and closer relationships. Based on
our truss model, they can be properly discovered in the
form of 4-truss (the dashed line area in Fig. 1(a)).

1.1 Challenges
To attain highly dense and compact substructure for a
keyword query Q, a natural way is to find the subgraph
with maximum trussness and minimum size containing
Q, which is called as minimum dense truss. However, as
we will discuss in Section 2, finding minimum dense
truss containing the query keywords is NP-hard. More-
over, this problem is also APX-hard, which means we
cannot find a polynomial-time algorithm that approxi-
mates the minimum dense truss search problem within
any constant ratio unless P = NP. Thus, in this paper,
we study a relaxed version, called minimal dense truss
search, i.e., find the subgraph with maximum trussness
containing Q such that it does not contain any subgraph
with the same trussness containing Q. Note that our
model is different from the closest truss model [22]
with maximum trussness and minimum diameter, as the
diameter of a k-truss with n nodes is bounded by b 2n−2k c
while a k-truss with minimum diameter may have an
arbitrary large number of nodes. Moreover, closest truss
search is NP-hard [22], while minimal dense truss search
can be done in polynomial time.

Despite rich studies on related problems such as
community detection [26] [27] [28] [29] and community
search [21] [23], finding minimal dense truss for a key-
word query is a nontrivial task. The main reason is that
minimal dense truss search for query keywords is in-
herently different from these two problems. Community
detection is query independent aiming to detect maximal
k-truss communities for each k, which can be done by
truss decomposition in O(|E|1.5) time [27]. Community
search aims to find maximal communities that maximize
the trussness and contain a given set of query nodes,
which can be done by local search with proper indexes
in O(|A|) time (A is the answer) [21] [23]. One recent
work [30] studied attributed community search to rank
communities based on attribute score, but it also require
the input of a subset of nodes. The main difficulty of
minimal dense truss search for a keyword query is that,
unlike community search where the query nodes are
given, the subset of nodes containing all the keywords
to be included in the dense truss to be retrieved is
unknown in advance, and therefore we do not know
from which nodes to start if we adopt the local search
approach in [21] [23]. One possible solution is that, for a
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3

keyword query Q = {w1, w2, . . . , wl}, we explore all the
combinations of keyword nodes in S = V1×V2×· · ·×Vl to
find the subgraph with the maximum trussness, where
Vi is the node set containing wi. Such search space is in-
exhaustible for very large graphs even when we use the
local search method with essentially optimal time O(|A|)
in [21] [23], due to the huge number of combinations.
Moreover, suppose we have already obtained a truss
with the maximum trussness containing Q, verifying
the minimality of such truss is also time consuming,
because we need to check all of its subgraphs containing
Q to make sure that there is no subgraph with the same
trussness.

1.2 Contributions

In this paper, we tackle the minimal dense truss search
problem for a keyword query Q by dividing it into two
subtasks. The first is finding the dense truss Gden with
the maximum trussness containing Q. The second is re-
fining Gden to obtain a minimal dense truss H containing
Q. For this problem, we can either solve it in a bottom-
up manner or top-down manner, which differ in the
solution for the first subtask. Due to the limit of space,
we only give a basic solution of the top-down manner
framework in the preliminary version based on KT-Index
[31] and did not give the through analysis and optimiza-
tion techniques. In this version, we will first give the
hardness analysis of the problem studied in this paper.
Then we discuss and thoroughly compare the bottom-
up framework and top-down framework. Furthermore,
we discuss the extension of proposed method to top-
r search. Moreover, although we only need to check
each node at most once based on the anti-monotonicity
property of k-truss in the preliminary version [31], the re-
finement process is still time consuming as we have to do
the k-truss verification for each deletion. Thus, we fur-
ther propose several optimization strategies to accelerate
the refinement process, including batch based deletion,
early-stop based deletion, and local exploration.We also
perform extensive experimental studies on more real-
word datasets and parameters to show that our newly
proposed method is faster than our previously proposed
method [31] by one order of magnitude. We summarize
the substantial improvements as follows.
• We study the problem of finding cohesive subgraph

for keyword queries, and formulate it as a carefully
chosen k-truss model. To the best of our knowledge,
this problem has not been studied in the literature.

• We analyze the hardness of the studied prob-
lem, and propose two different basic frameworks,
namely bottom-up framework and top-down frame-
work with through comparisons.

• We design a novel hybrid index KT-Index to keep
the keyword information and truss information,
which is space and time efficient, and propose
a novel top-down algorithm based on KT-Index,
which can efficiently find the dense truss with the

maximum trussness for a keyword query without
repeated accesses to the original graph G.

• We develop an efficient refinement algorithm to ex-
tract minimal dense truss containing Q from dense
truss, with several optimization strategies including
batch based deletion, early-stop based deletion, and
local exploration to further accelerate the refinement
process.

• We conducted extensive experimental studies on
multiple real-world networks and validate the effec-
tiveness and efficiency of our approach on discov-
ering cohesive substructures for keyword queries.

The rest of the paper is organized as follows. Section
2 gives the problem statement and hardness analysis.
Section 3 presents two basic algorithmic frameworks.
Section 4 illustrates the improved top-down algorithms
based on KT-Index, and a novel algorithm for refining
a dense truss to extract the minimal dense truss for
a keyword query. Our experimental results are shown
in Section 5. Section 6 discusses the related works and
Section 7 concludes this paper.

2 PROBLEM STATEMENT

In this section, we will first describe related notations
and definitions, and then analyze the hardness of the
minimum dense truss search problem for keywords.

2.1 Notations and Definitions

Given a set of labels Σ, a simple undirected vertex
labeled graph is represented as G = (V,E,L), where V
is the set of vertices, E ⊆ V × V is the set of edges, and
L is a labeling function which assigns each node a set of
labels L(v) ⊂ Σ. We use V (G) and E(G) to denote the set
of vertices and the set of edges of graph G respectively,
and use |V (G)| and |E(G)| to denote the number of
vertices and number of edges in G respectively. For a
vertex v ∈ V , we denote the set of its neighboring
vertices by N(v) = {u ∈ V |(u, v) ∈ E} and its degree by
d(v) = |N(v)|. A triangle 4(u, v, w) in G is a substructure
such that (u, v), (v, w), (u,w) ∈ E.

Definition 2.1 (Edge Support). The support of an edge
e = (u, v) in graph G is the number of triangles in which
e occurs, defined as supG(e) = |{4(u, v, w)|w ∈ V (G)}|.

In the following, we use sup(e) and supG(e) inter-
changeably if the context is clear.

Definition 2.2 (Connected k-Truss). Given a graph G
and an integer k, a connected k-truss is a connected
subgraph H ⊆ G, such that ∀e ∈ E(H), supH(e) ≥ k− 2.

This means that in a connected k-truss, the end ver-
tices of each edge have at least k−2 common neighboring
vertices in this truss. Thus, the degree of each vertex in
a connected k-truss is at least k − 1, and a connected
k-truss is a also a (k − 1)-core.
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The trussness of a subgraph H ⊆ G is the minimum
support of all the edges in H plus 2, defined as τ(H) =
mine∈E(H) supH(e)+2. The trussness of an edge e ∈ E(G)
is the maximum trussness of subgraphs containing e,
i.e., τ(e) = maxH⊆G∧e∈E(H) τ(H). The trussness of a
vertex v ∈ V (G) equals to the maximum trussness of
its adjacent edges, i.e., τ(v) = maxu∈N(v) τ(u, v).

For example, in Fig. 2, the edge support of (v2, v3) is 3
as it is contained in 3 triangles 4(v1, v2, v3), 4(v2, v3, v4)
and 4(v2, v3, v5). Let H1 denote the subgraph induced
by vertices {v1, v2, v3, v4}. τ(H1) = 4 since the minimum
support of edges in H1 is 2. The trussness of edge
(v2, v3) is 4 because there is no other subgraph with
higher trussness containing (v2, v3). τ(v2) = 4 because
the maximum trussness of its adjacent edges (v2, v1),
(v2, v3), (v2, v4) and (v2, v5) is 4.

Definition 2.3 (Dense Truss Over Keywords). Given a
graph G and a keyword set Q, a dense truss over Q is a
connected truss Gden ⊆ G that maximizes the trussness
and contains Q.

Definition 2.4 (Minimum Dense Truss Over Key-
words). Given a graph G and a keyword set Q, the
minimum dense truss over keywords Q is a dense truss
Gden ⊆ G containing Q with minimum number of nodes.

Definition 2.5 (Minmal Dense Truss Over Keywords).
Given a graph G and a keyword set Q, the minimal
dense truss over Q is a dense truss Gden ⊆ G containing
Q such that any subgraph of Gden is not a dense truss
containing Q.

For example, consider a query Q = {DB,ML}. H1 and
H2 in Fig. 2 are 4-truss and 3-truss containing Q. Clearly,
H1 is a dense truss over Q. We also have another 4-truss
induced by {v1, v2, v3, v4, v5} containing Q, but it is not
minimal. Thus, H1 is the minimal dense truss for Q.

Problem 1 (Minimum Dense Truss Search by Key-
words). Given a graph G and a keyword set Q =
{w1, w2, · · · , wl}, find the minimum dense truss con-
taining Q. We refer to it as minimum dense truss search
problem when the context is clear.

2.2 Hardness of Minimum Dense Truss Search

We show the NP hardness of minimum dense truss
search problem by the reduction of maximum clique
problem as in [22]. The decision version of minimum
dense truss search problem can be defined as follows.

(k, h)-Truss Problem. Given a graph G, a keyword set
Q, integers k and h ≥ k, test whether G contains a con-
nected k-truss with h nodes covering all the keywords
in Q.

Theorem 2.1. (k, h)-truss problem is NP-hard.

Proof. We prove this by reducing the well known NP-
hard problem, maximum clique decision problem, to
(k, h)-truss problem. Given a graph G and a number
k, the maximum clique decision problem is to check
whether G contains a clique of size k. Now we construct
an instance of (k, h)-truss problem, consisting of a graph
G, parameters k and h = k, and query Q = ∅. Next, we
show that the instance of the maximum clique decision
problem is a YES-instance iff the instance of (k, h)-truss
problem is a YES-instance. Clearly, any clique with k
nodes is a connected k-truss with size h = k. On the
other hand, given a solution H for (k, h)-truss problem.
H must contain k nodes since H is a k-truss and h = k,
which implies H is a clique. 2

The above theorem implies the hardness of the min-
imum dense truss search problem. Next, we further
explore whether it can be approximated. For a given con-
stant c ≥ 1 and any instance G, an algorithm can achieve
an c-approximation to the minimum dense truss search
problem if it outputs a connected k-truss subgraph H
such that τ(H) = τ(H∗) and |V (H)| ≤ c×|V (H∗)| where
H∗ is the optimal solution. In the following, we prove
that the problem does not admit a polynomial-time
algorithm that can achieve any constant approximation
ratio unless P = NP. We obtain this result also based on
the reduction of the maximum clique decision problem.

Theorem 2.2. Unless P=NP, there does not exist any
polynomial-time algorithm that approximates the minimum
dense truss search problem within any constant ratio.

Proof. We prove this by contradiction. Assume that
there exists a polynomial time algorithm A for minimum
dense truss search problem with a given k that provides
a solution H with an approximation ratio c of the optimal
solution H∗. Now we consider the case when Q = ∅.
Clearly, based on the assumption we have a subgraph H
such that τ(H) = τ(H∗) and |V (H)| ≤ c×|V (H∗)|. Next,
we use this approximate solution to solve maximum
clique decision problem, i.e., run algorithm A on a given
instance G of maximum clique decision problem, with
parameters k, h = k, and query Q = ∅. We claim that
G contains a clique of size k iff A output a solution H
with τ(H) = k and |V (H)| = k. To see this, suppose that
|V (H)| = k. Then the optimal solution has |V (H∗)| ≤
|V (H)| = k, which shows H∗ is a clique of size k. On
the other hand, suppose that |V (H)| ≥ k + 1. Then we
have c× |V (H∗)| ≥ |V (H)| ≥ k + 1 for any c > 1. Thus,
we have |V (H∗)| ≥ k + 1. In this case, G cannot contain
a clique of size k, because if it did, that clique would
be the optimal solution to the minimum dense truss
search problem with parameter k and size h = k, which
contradicts the optimality of H∗. Thus using algorithm
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Algorithm 1: Bottom-up Framework

Input : A graph G, and a keyword query Q.
Output: A minimal dense truss.

1 compute edge and node trussness by truss
decomposition;

2 for each keyword wi ∈ Q do
3 Vi ← set of nodes containing wi;

4 S ← V1 × V2 × · · · × Vl;
5 for each S ∈ S do
6 τ ′(S)← minv∈S τ(v);

7 sort S in descending order of τ ′(S);
8 kmax ← 0; j ← 0;
9 while j + + ≤ |S| ∧ kmax < τ ′(Sj) do

10 Gj ← FindDenseTruss(G,Sj);
11 if kmax < τ(Gj) then
12 kmax ← τ(Gj);
13 Gden ← Gj ;

14 H ← FindMinDenseTruss(Gden, Q);
15 return H ;

A we can distinguish between the YES and NO instances
of the maximum clique decision problem. 2

The above theorems show that it is not only intractable
to to obtain a minimum dense truss for a keyword
query, but also hard to get its approximate solution
in polynomial time. Hence, in the following, we focus
on finding the minimal dense truss for keyword query,
which can be solved in polynomial time.

Problem 2 (Minimal Dense Truss Search by Key-
words). Given a graph G and a keyword set Q =
{w1, w2, . . . , wl}, find the minimal dense truss containing
keywords Q. We refer to it as minimal dense truss search
problem when the context is clear.

Note that some applications may require to find top-r
minimal dense trusses for keywords, which are ranked
by the trussness. For simplicity, we will first consider
the top-1 minimal dense truss search for keywords and
discuss how to extend it to top-r version later.

3 BASIC ALGORITHMIC FRAMEWORKS

As stated before, finding minimal dense truss for key-
word query Q can be naturally divided into two sub-
problems. The first is finding the dense truss Gden that
maximum the trussness containing Q. The second is
refining Gden to obtain a minimal dense truss containing
Q. In this section, we propose two basic algorithmic
frameworks, which mainly differ in solving the first sub-
problem. The details of tackling the second subproblem
will be introduced later in Section 4.

3.1 Basic Bottom-up Framework
To obtain the dense truss containing keyword query Q,
one naive method is to explore all the combinations of

Algorithm 2: Top-Down Framework

Input : A graph G, and a keyword query Q.
Output: A minimal dense truss.

1 compute edge and node trussness by truss
decomposition;

2 for each keyword wi ∈ Q do
3 Vi ← set of nodes containing wi;
4 τ ′(wi)← maxv∈Vi

(v);

5 Gden ← ∅;
6 kmax ← min1≤i≤l τ

′(wi);
7 while Gden = ∅ do
8 extract kmax-truss Gkmax = {e ∈ G|τ(e) ≥ kmax)};
9 for each connected component Ci in Gkmax do

10 if Ci contains all keywords in Q then
11 if |V (Ci)| ≤ |V (Gden)| then
12 Gden ← Ci;

13 kmax ← kmax − 1;

14 H ← FindMinDenseTruss(Gden, Q);
15 return H ;

keyword nodes in S = V1×V2× · · ·×Vl. Specifically, for
each keyword node set Sj ∈ S, we obtain a dense truss
Gj containing Sj that maximum the trussness. Then,
among all the dense trusses discovered, we return a truss
Gden with the largest trussness. Finally, we refine Gden
to extract the minimal dense truss H containing Q. Such
process is quite time consuming because we need to find
the dense truss for |V1| × |V2| × · · · × |V2| sets of nodes.

To find the dense truss Gden as early as possible, we
will utilize the upper bound for the trussness of a node
subset S. For a node subset S ⊆ V (G), the upper bound
of its trussness is defined as τ ′(S) = minv∈S τ(v).

Lemma 3.1. Given a graph G and a subset of nodes S ⊆
V (G), for any truss H containing S, we have τ(H) ≤ τ ′(S).

This lemma can be easily derived from the definition
of trussness of a subgraph (τ(H) = minv∈V (H) τ(v)), the
upper bound of the trussness for a node set S (τ ′(S) =
minv∈S τ(v)), and S ⊆ V (H).

The detailed bottom-up framework is shown in Algo-
rithm 1. Lines 1-8 initialize the variables. From line 9 to
line 13, we sequentially check each Sj ∈ S in descending
order of τ ′(Sj) to find the dense truss Gj containing Sj .
This process stops when the upper bound for current
node subset is no larger than the largest trussness kmax
found so far. After finding the dense truss Gden contain-
ing Q, we will refine Gden to find the minimal dense
truss H containing Q by procedure FindMinDenseTruss,
which will be discussed later in Section 4.

Function FindDenseTruss in line 10 is to find a
subgraph with the largest trussness containing Q. It
can be achieved by truss decomposition, which needs
O(|E(Gj)|1.5) time [27]. If a proper index is adopted [22],
it can be done in O(|E(Gj)|) time, which is optimal.
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6

Theorem 3.1. The time complexity of finding the dense
truss Gden containing Q in the Bottom-up Framework in
Algorithm 1 is O(max{|E|1.5, |V1|× |V2|× · · ·× |Vl|× |E|}).

Proof. First, the trussness of edges and nodes can be
computed by truss decomposition in O(|E|1.5) time [27].
For each Sj , the process FindDenseTruss can be com-
pleted in O(|E(Gj)|) time if the index based method
in [22] is adopted. Thus the whole loop needs O(|V1| ×
|V2| × · · · × |Vl| × |E|} time. Without the consideration
of the cost of finding the minimal dense truss (line
14), the time complexity of finding dense truss Gden is
O(max{|E|1.5, |V1| × |V2| × · · · × |Vl| × |E|}).

Such complexity implies that Bottom-up Framework
is impractical for real large graphs even for a small
l. Consider the case that l = 3 and |Vi| ≈ 103. The
complexity is even as large as O(109 × |E|).

Note that we can also sort the elements in S by
other measures like trussness of Steiner tree induced
by each S ∈ S in [22]. But such heuristics does not
change the stop condition and thus cannot reduce the
worst-case complexity. Meanwhile, it also needs extra
O(|E| + |V |log|V |) time [32] to approximately compute
the Steiner tree for each S ∈ S.

3.2 Basic Top-down Framework
To avoid enumerating all the combinations of keyword
nodes, we propose a top-down framework by starting
the search over the truss with the largest trussness kmax
in graph G. If it does not contain a connected kmax-truss
covering Q, we will gradually decrease kmax until we
find one. Such process can be accelerated by utilizing
the property of trussness for keywords as follows. Let Vi
be the set of nodes containing keyword wi. The upper
bound of the trussness for wi is defined as the maximum
trussness of nodes in Vi, i.e., τ ′(wi) = maxv∈Vi τ(v).

Property 3.1. Given a graph G and a keyword set Q =
{w1, w2, . . . , wl}, for any truss H containing Q, we have
τ(H) ≤ min1≤i≤l τ

′(wi).

Proof. For a truss H containing Q, there must exist a
node v′i containing wi for each wi ∈ Q. Obviously, we
have τ(H) = minv∈V (H) τ(v) ≤ min1≤i≤l τ(v′i). Moreover,
since τ(v) ≤ τ ′(wi) for any node v ∈ Vi, we have τ(H) ≤
min1≤i≤l τ(v′i) ≤ min1≤i≤l τ

′(wi). 2

Th detailed top-down framework is shown in Al-
gorithm 2. First, we obtain the trussness of all the
edges and nodes by truss decomposition [27] (line 1).
Then, for each keyword wi ∈ Q, we compute the
node set Vi, and obtain the upper bound of trussness
for this keyword by τ ′(wi) = maxv∈Vi

τ(v) (lines 2-4).
Based above property, we start searching from kmax-
truss where kmax = min1≤i≤l τ

′(wi). Specifically, we
extract Gkmax = {e ∈ G|τ(e) ≥ kmax} from G and check
each connected component Ci in Gkmax

contains all the
keywords (lines 6-13). If yes, we return the component
containing Q with the smallest size; otherwise, we search
(kmax−1)-truss and stop when we find a connected truss

Gden containing Q. Finally, we refine Gden to obtain a
minimal dense truss H (line 14) as Algorithm 1 does.

Theorem 3.2. The time complexity of finding the dense truss
Gden containing Q in the Top-Down Framework in Algorithm
1 is O(|E|1.5).

Proof. The complexity of lines 1-4 is bounded by truss
decomposition, which is O(|E|1.5) [27]. In lines 6-13, for
a kmax-truss, we need O(|E(Gkmax

)|) time to compute
the connected components and O(|V (Gkmax)| × l) time
to check whether each component contains all the l key-
words. Since l is usually very small, such process can be
done in O(|E(Gkmax

|) time. In the worst case, we need to
check all the possible values of kmax from min1≤i≤l τ

′(wi)
to 2. Since the maximum trussness of nodes in graph G
is no larger than

√
|E| [27], the complexity of lines 6-13

is O(
√
|E| × |E|) , and the overall time complexity of

finding Gden in Algorithm 2 is O(|E|1.5). 2

4 IMPROVED TOP-DOWN SEARCH ALGO-
RITHMS

In this section, we design a novel Keyword-Truss Index
(KT-Index) to keep the keywords and trussness informa-
tion, and propose a highly efficient algorithm to process
minimal dense truss search for keyword queries.

4.1 KT-Index Design and Construction
In the basic top-down search framework, trussness com-
putation for each edge is primitive. Since it is inde-
pendent with keyword queries, we can complete such
computation by truss decomposition [27] offline before
any query comes. Then, we build a hash table to keep
all the edges and their trussness.

Another time consuming part of basic top-down al-
gorithm is that we need to test many values of k to
find a k-truss containing Q with the largest k, with time
complexity O(|E|1.5). To speed up the computation of
this part, we design a KT-Index including two parts:
truss index and keyword index.

Truss Index. Truss index is a multi-layer structure,
where all the connected k-truss are indexed in the k-
th layer. Suppose that there are pk connected com-
ponents C1, C2, . . . , Cpk in the k-th layer. We sort all
the components in the descending order of their sizes
(number of nodes) and assign each component an ID.
For each component Ci, we only store the node set
V (Ci). Thus, we store the k-th layer in the form of list
(1, V (C1)), . . . , (i, V (Ci)), . . . , (pk, V (Cpk)).

Keyword Index. In the keyword index, we first store an
inverted keyword list to keep the node IDs that contain
each keyword, i.e., for each wi, we store the keyword
node set Vi containing wi. Meanwhile we record the
upper bound of trussness τ ′(wi) for each keyword. More-
over, for each keyword, we record the set of IDs of the
component CIDk it occurs in the k-th layer, in the form
of (k,CIDk).
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Algorithm 3: BuildKTIndex
Input : A graph G, and a keyword query Q.
Output: KTIndex.

1 compute τ(e) of each edge e by truss
decomposition;

2 kmax = maxe∈E τ(e);
3 for k = 2 to kmax do
4 Ek ← ∅;
5 for each edge e ∈ E do
6 if τ(e) = k then
7 Ek ← Ek ∪ {e};

8 build the keyword inverted list;
9 for k = 3 to kmax do

10 obtain Gk by deleting Ek−1 from Gk−1;
11 assign each connected component in Gk a CID

by the increasing order of component size;
12 for each connected component Ci in Gk do
13 output (i, V (Ci)) to build the truss index;
14 compute the set of keywords Wi contained

in Ci; for each w ∈Wi do
15 add i to CIDk for w;

The process of constructing KT-Index is shown in
Algorithm 3. First, we apply truss decomposition to
obtain the trussness of each edge and store it in a
hash table (line 1). Then we divide the edges into a
number of groups E3, E3, . . . , Ekmax

according to their
edge trussness (lines 2-7). Next, we build the inverted
keyword list by scanning the graph G (line 8). Then
for each k from 3 to kmax, we obtain the truss Gk in
k-th level by deleting edge set Ek−1. Then we sort the
component in Gk in ascending order of component size
and assign each component an ID (line 11). For each
connected component Ci in Gk, we output (i, V (Ci)) to
build the truss index (line 13). We also compute the set
of keywords Wi occurs in Ci and add the component id
to CIDk for each keyword w ∈Wi (lines 14-15).

Theorem 4.1. KT-Index can be constructed in O(|E|1.5) time
and O(m) space by Algroithm 3. The index size is O(m).

Proof. First, we analyze the time complexity. Obviously,
the complexity of lines 1-8 is O(|E|1.5), dominated by
the complexity of truss decomposition [27]. Since in
each loop of lines 10-15, we need O(|E(Gk)|) time, the
complexity of all the loops is O(

∑
1≤k≤kmax

|E(Gk)|).
Since each edge e occurs in at most τ(e) layers, we
have

∑
1≤k≤kmax

|E(Gk)| ≤
∑
e∈G τ(e) ≤

∑
e∈G sup(e) =

3×Ntri, where Ntri is the number of triangles in G. As
proved in [33], Ntri is bounded by O(α × |E|) where
α ≤

√
|E| is the arboricity of graph G. Thus the overall

time complexity of Algorithm 3 is O(|E|1.5).
Next, we analyze the space complexity. Since lines 1-

8 need O(|E|) space and lines 10-15 need O(|E(Gk)|)
space, the computational space of Algorithm 3 is

TABLE 1: An example for Truss Index

Truss value Component List
k = 4 (1, {v1, v2, v3, v4})
k = 3 (1, {v9, v10, v11}),(2, {v1, v2, v3, v4, v5, v6, v7, v8})
k = 2 (1,{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11})

TABLE 2: An example Keyword Index

Keyword wi τ ′(wi) Inverted List (k, CIDk)
AI 4 v5,v6 (3,2)
CV 3 v3,v10 (4,1),(3,1),(3,2)
DB 4 v1,v7,v11 (4,1),(3,1),(3,2)
DM 4 v2,v9 (4,1),(3,1),(3,2)
ML 4 v4,v8 (4,1),(3,2)

bounded by O(|E|). Then, we consider the index space.
Obviously, hash table for edge trussness needs O(|E|)
space. In truss index, for the k-th layer, we need to
record the nodes in Gk. Thus the nodes stored in all
layers is

∑
1≤k≤kmax

|V (Gk)|. Since each node v occurs
in at most τ(v) layers and τ(v) ≤ d(v), we have∑

1≤k≤kmax
|V (Gk)| ≤

∑
v∈V τ(v) ≤

∑
v∈V d(v) = 2×|E|.

Thus truss index needs O(|E|) space. In keyword index,
we need to store the inverted keyword list, which is
bounded by O(|V | × navg), where navg is the aver-
age number of keywords associated with each node.
Since navg is usually a small constant, the index size
of inverted keyword list is bound by O(|V |). For each
keyword, we also keep the set of component IDs CIDk

containing this keyword in the k-th layer. The needed
space can be easily bounded by O(|E|), since CIDk is
a usually very small number at most hundreds for real-
world graphs (far away from the number of nodes and
edges). Thus, the index size of KT-Index is O(|E|). 2

Consider the graph G as shown in Fig. 2. Based on
Algorithm 3, we fist obtain the trussness of each edge.
Since all edges are connected, all the nodes are in one
component with trussness 2 as shown in Table 1. We
then remove the edges with trussness 2 and obtain two
components with trussness 3. The CID of component
v9, v10, v11 is assigned to 1 because it is smaller than
the other one. The keyword index is shown in Table
2. For keyword AI, we record the upper bound of its
trussness 4, and nodes it occurs in v5 and v6, and the
second component of layer 3.

4.2 The Improved Top-down Search Algorithm

After KT-Index is constructed, we can directly carry out
the minimal dense subgraph search on this index.

The Top-Down-KT Search Algorithm. The search process
is shown in Algorithm 4. To avoid the worst case of
checking all the value of kmax, we check each layer of
truss index by a binary search, which can be completed
in log(kmax) iterations. In the k-th layer, we obtain the
set of component IDs CC that contains all the keywords
(lines 4-6). If CC is empty, we will search layers with
trusness smaller than current k; otherwise, we will search
layers with trussness larger than current k. After finding
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Algorithm 4: Top-Down-KT Search

Input : A graph G, and a keyword query Q.
Output: A minimal dense truss.

1 kmax ← min1≤i≤l τ
′(wi); kmin ← 3;

2 while kmax > kmin do
3 k ← bkmax+kmin

2 c;
4 for each keyword wi in Q do
5 SCi ← CIDk of wi;

6 CC ← ∩1≤i≤lSCi;
7 if CC 6= ∅ then
8 kmin ← k + 1;

9 else
10 kmax ← k − 1;

11 id← mincid∈CC cid;
12 Gden ← component Cid at the k-th layer;
13 H ← FindMinDenseTruss(Gden, Q);
14 return H ;

the set of component IDs CC that containing all the
keywords, we select the smallest component as dense
truss Gden. Then we extract the minimal dense truss H
containing Q from Gden by function FindMinDenseTruss,
which will be introduced in details later.

Theorem 4.2. Top-down search based on KT-Index in Algo-
rithm 4 needs O(log

√
|E| × ncmax) time to find the dense

truss Gden for a keyword query, where ncmax is the maximum
number of components among all the layers in KT-Index.

Proof. As we analyzed above, the number of itera-
tions based on binary search (lines 2-10) is bounded by
O(logkmax). In each iteration, we only need to compute
the component ID which contains all the keywords,
this can be done in O(pmax) time, where pmax is the
maximum number of components in each layer. Since
the maximum truss ness in graph G is no larger than√
|E| [27]. The overall complexity to find the dense truss

Gden containing Q is O(log
√
|E| × pmax). 2

Note that in practice, the number of connected com-
ponents in each layer is far smaller than the number of
nodes, which is usually at most hundreds for real-world
graphs. Thus our top-down search algorithm based on
KT-Index can identify the dense truss Gden efficiently.

Extension to Top-r Search. As stated before, some
applications may prefer to find top-r dense subgraphs
ranked based on their trussness. From the definition
of k-truss, we know that the subgraph contained in a
component of k-truss is also contained in a component
of (k − 1)-truss. Thus, to avoid repeatedly returning
dense truss containing the same set of keyword nodes,
we require that the minimal dense trusses identified
are not overlapped. Therefore, we marked a node if
it has already been identified. Then, the Top-Down-KT
Search in Algorithm 4 can be easily revised to return the
top-r minimal dense trusses. Instead of only returning

Algorithm 5: FindMinDenseTruss

Input : A dense truss Gden, and a keyword query
Q.

Output: A minimal dense truss.
1 k ← τ(Gden); Svis ← ∅;
2 while V (Gden) \ Svis 6= ∅ do
3 select a node v from V (Gden) \ Svis;
4 H ← FindkTruss(Gden, Q, k, v);
5 if H 6= empty then
6 Gden ← H ;

7 Svis ← Svis ∪ {v};
8 return Gden;

9 Procedure FindkTruss(G,Q, k, S)
10 Edel ← ∅;
11 for v ∈ S do
12 for (u, v) ∈ E do
13 Edel ← Edel ∪ {(u, v)};

14 for (u, v) ∈ Edel do
15 Edel ← Edel \ {(u, v)};
16 Remove (u, v) from G;
17 for w ∈ N(v) ∩N(u) do
18 sup(v, w)← sup(v, w)− 1;
19 sup(u,w)← sup(u,w)− 1;
20 if sup(v, w) < k − 2 ∧ (v, w) /∈ Edel then
21 Edel ← Edel ∪ {(v, w)};
22 if sup(u,w) < k − 2 ∧ (u,w) /∈ Edel then
23 Edel ← Edel ∪ {(u,w)};

24 remove isolated vertices from G;
25 if ∃ connected component H ⊆ G containing Q then
26 return H ;

27 return ∅;

one component ID with the smallest size in line 11 of
Algorithm 4, we return all the IDs in CC. If |CC| ≥ r,
we will extract the minimal truss from the r smallest
components in CC and return them as the answer. If
|CC| < r, we will extract the minimal truss from all
the components in CC and add them to the answer list,
update r by r−|CC|, and then check the (k−1)-th layer
repeatedly until will found r minimal dense trusses.

4.3 Minimal Dense Truss Extraction

Now, we move to the subtask of extracting minimal
dense truss from Gden. Before getting into the details
of function FindMinDenseTruss(Gden, Q) in Algorithms 2
and 4, we first discuss the anti-monotonic property of
k-truss, to provide essential guidelines for refinement.

Property 4.1. Given a connected k-truss H, a node v ∈
V (H) and set of its adjacent edges Ev = {(u, v) ∈ E(H)},
if graph G¬v = (V (H)\{v}, E(H)\Ev) does not contain a
connected k-truss, there does not exist a subgraph H ′ ⊆
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H such that G′¬v = (V (H ′) \ {v}, E(H ′) \ Ev) contains a
connected k-truss.

Proof. We prove this by contradiction. Assume that
∃H ′ ⊆ H such that G′¬v = (V (H ′) \ {v}, E(H ′) \ Ev)
contains a connected k-truss H∗. Clearly, H∗ ⊆ G′¬v .
Since V (H ′) \ {v} ⊆ V (H) \ {v} and E(H ′) \ Ev ⊆
E(H)\Ev , we have G′¬v ⊆ G¬v . Thus we have H∗ ⊆ G¬v
which contradicts with the assumption that G¬v does not
contain a connected k-truss. 2

This property shows that when we refine Gden by
deleting nodes, each node v in Gden only needs to be
checked once. If deleting v will result in a subgraph that
contains no connected k-truss containing Q, we will keep
v and will not check it again in the following deletions.

Algorithm FindMinDenseTruss. Based on above property,
we give the process of FindMinDenseTruss in Algorithm
5. The main idea is every time we randomly pick one
node v in graph Gden to check whether deleting node
v and its adjacent edges will still lead to a connected
k-truss G′ containing Q (lines 3-4). If yes, we update
Gden by G′ (lines 5-6); otherwise, we check the next node.
We use the set Svis to keep the set of nodes that have
been checked to avoid repeated examinations. Function
FindkTruss(Gden, Q, k, S) is used to check the existence
of a connected k-truss containing Q after deleting node
subset S and their adjacent edges from Gden. First, we
use Edel to maintain the set of edges to be deleted from
the graph. Then we gradually delete each edge (u, v) ∈
Edel and check whether it will result in new edges that
violate the edge support constraint for a k-truss (lines
17-23). If yes, we will continually add these edges into
Edel. Such process stops when Edel = ∅. Then we remove
isolated nodes from G (line 24). If there is a connected
component G′ containing Q, we will return G′ as a k-
truss; otherwise, we return ∅.

Theorem 4.3. The time complexity of Algorithm 5 is O(t×
(α − k) × |E(Gden)|) where t ≤ |V (H)| is the number of
iterations, k is the trussness of Gden, and α ≤

√
|E(Gden)|)

is the arboricity of Gden (minimum number of spanning
forests needed to cover all the edges in Gden).

Proof. First we analyze the complexity of FindkTruss. It is
mainly determined by how many times lines 18-23 are
executed. The worst case is that if v cannot be delete,
then the support of all the edges in Gden will be updated
to k− 3 and deleted. Thus the times of lines 18-23 being
executed is bounded by O(

∑
e∈E(Gden)

(sup(e)−(k−3))).
Since

∑
e∈E(Gden)

= 3×Ntri where Ntri is the number of
triangles bounded O(α × |E(Gden)|) (α is the arboricity
of Gden), we have O(t× (α− k)× |E(Gden)|) where t is
the number of iterations of lines 18-23. 2

We say a node is deletable if deleting it still leads to
a connected k-truss containing Q; otherwise, we say it
is un-deletable. From the above theorem, we can see
that the time complexity of FindMinDenseTruss mainly
depends on the number of iterations t and the size of
Gden in each iteration as α− k is a constant for a given

TABLE 3: Keyword queries for DBLP

KWF Keywords
.0003 parallelism, preprocessing, greedy, hadoop
.0006 benchmark, crowdsourcing, tolerance, spatially
.0009 topological, answer, multiprocessor, datadriven, evolve, stable
.0012 encryption, prototype, configuration, asynchronous
.0015 frame, attribute, iterative, label

graph. To reduce the complexity, we need to reduce
the number of iterations and delete the deletable nodes
as early as possible to reduce the size of the dense
truss quickly. In the following, we will introduce some
optimization strategies to accelerate such process.

Optimization I: Batch Based Deletion. To reduce the
number of iterations, one possible way is to delete the
nodes in batch instead of one by one. In fact, if there
is a subset S ⊆ V (Gden) which can be deleted from
Gden and the remaining part also contains a connected
k-truss covering Q, we can delete all the nodes in S
immediately. However, always deleting a large number
of nodes each time might result in no k-truss containing
Q. Therefore, we increase the deletion size step by step,
which means after one successful deletion, we will in-
crease the number of nodes to be deleted. When it meets
an unsuccessful removal, we reset the size to 1. By such
setting, we can always delete the nodes one by one in
the last steps of deletion and make sure that the minimal
dense truss is returned.

Optimization II: Eearly-stop Based Deletion. In addi-
tion to above optimization strategy, we can also acceler-
ate the computation by only find a approximate result
of minimal dense truss, i.e., we stop the search if the
number of consecutive unsuccessful deletions exceeds a
given threshold. In fact, with random deletion, we can
output an c-approximation of a minimal dense truss with
probability at least 1 − δ, if the threshold is set to be
log 1

δ /log c. We omit the proof as it is similar to the proof
in [25] of finding minimal Steiner maximum-connected
subgraph for a set of query nodes.

Optimization III: Local Exploration. In some cases, Gden
can be very large, which may need a large number of
deletions to obtain the minimal dense truss. Thus, we
can extract a small subgraph G′den from Gden containing
the keywords by local exploration. Specifically, we will
first construct a Steiner tree T in Gden to connect nodes
containing all the keywords. Then we expand T to
a subgraph GT in a BFS manner. At the beginning,
GT is initialized as T . We iteratively add the adjacent
vertices with the largest trussness until |V (GT )| exceeds
a threshold t. Then we add all the adjacent edges for each
node in GT and check whether GT contains a k-truss
G′den that covers all the keywords. If yes, we consider
G′den as the new densest subgraph and apply above
refinement process to G′den; otherwise, we expand GT
until |V (GT )| exceeds 2t. We repeat above process until
a k-truss G′den can be extracted.
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TABLE 4: Keywords queries for DBpedia and YAGO

Query Keywords
Q1 jaguar place
Q2 united states politician award
Q3 album music genre american music awards
Q4 fish bird mammal protected area north american
Q5 player club manager league city country
Q6 actor film award company hollywood

TABLE 5: Parameters

Parameter Range Default
KWF .0003, .0006, .0009, .0012, .0015 .0009
l 2, 3, 4, 5, 6 4
k 1, 5, 10, 15, 20 10

5 PERFORMANCE STUDIES

In this section, we will first introduce the setup of the
experiments and then discuss the experimental results.

5.1 Experimental Setup

To our best knowledge, there is no existing work on
cohesive subgraph search based on k-truss for keyword
queries. Thus, we implemented the following versions
of our methods to thoroughly evaluate the efficiency
and effectiveness of KT-Index, search algorithms, and
optimization strategies.

1) basic. Basic Top-Down Framework in Alg. 1 with
FindMinDenseTruss implemented as Alg. 5.

2) KT. Top-Down-KT Search in Alg. 4 with
FindMinDenseTruss implemented as Alg. 5.

3) KTb. Alg. 4 + Alg. 5 + batch based deletion.
4) KTs. Alg. 4 + Alg. 5 + early-stop based deletion.
5) KTl. Alg. 4 + Alg. 5 + local exploration.
6) KTbs. Alg. 4 + Alg. 5 + batch based deletion + early-

stop based deletion.
7) KTbsl. Alg. 4 + Alg. 5 + batch based deletion + early-

stop based deletion + local exploration.
All the algorithms were implemented in C++, and all
the experiments were conducted on a Linux server with
Intel Xeon CPU 2.60GHz and 128GB memory.

Datasets. We evaluate the performance of the algo-
rithms on three real-world datasets that are widely used
in previous works on keyword search and attributed
community search [6] [13]. (1) DBLP1, a bibliographic
dataset with 2 million nodes and 9.9 million edges. In
the dataset, a node denotes an author and an edge
denotes the co-authorship between these two authors.
(2) DBpedia2, a knowledge graph including 5.90 million
nodes and 17.6 million edges. Each node represents an
entity with a type (e.g.,’animal’, ’architectures’, ’famous
places’) from in total 272 types, with a set of attributes
(e.g., ’jaguar’, ’Ford’). (3)YAGO3 is also a knowledge
graph with 2.64 million nodes and 5.23 million edges,
but it is much sparser than DBLP and DBpedia. Note

1. http://dblp.uni-trier.de/xml/
2. http://dbpedia.com/
3. https://www.mpi-inf.mpg.de/yago

TABLE 6: Construction time and size of index

Graph Graph size
(MB)

Index size
(MB)

Construction time
(Sec)

DBLP 133.0 192 348.9
DBpedia 280.2 386 593.7
YAGO 76.4 131 394.9

that we did not test another widely used dataset IMDB
since it is a tripartite graph where the maximum truss
value of subgraphs is at most 3.

Keyword Queries. (1) For DBLP, the sets of keyword
queries used in the evaluation are the same as those
in [6], which is shown in Table 3, with their associated
keyword frequency KWF. (2) For DBpedia and YAGO,
we use 6 query templates consisting of type keywords
and value keywords designed in [13], as shown in Ta-
ble 4. Since each value keyword only associates with
one node representing an entity, to generalize the query,
we modify the query templates by replacing the value
keyword (e.g., american music awards) with one of its
corresponding type that contains the most number of
entities (e.g., TelevisionShow).

Parameters. We test the performance of all the algo-
rithms by varying three parameters, including the num-
ber of keywords l, the r value of top-r search, and the
keyword frequency KWF. The ranges and default values
of these parameters are shown in Table 5.

5.2 Experiment Results

Exp-1: Index Construction. We start the experiments
with the construction of indexes by BuildKTIndex in
Alg. 3. This process is typically performed offline before
keyword search is carried out. Once the indexes are built,
they will reside in main memory to efficiently support
keyword search in large graphs. We report the space
consumed for the overall index structures in memory,
and the time spent for index construction in Table 6.
It shows that our KT-Index can be constructed within
hundreds of seconds efficiently for all the datasets. The
size of KT-Index is no more than 2x of the original
graph size, which is consistent with the space complexity
O(|E|) in our previous theoretical analysis.

Exp-2: Effectiveness and Efficiency on DBLP. We test
the performance of all the algorithms on DBLP by vary-
ing parameters l, r, and KWF respectively.

The average size of minimal dense trusses is reported
in Fig. 3(a)-3(c). From Fig. 3(a), we can see that the size
increases as the number of keywords increases. This is
because a larger substructure is returned to include more
keywords. The results of all the evaluated algorithms
have similar size, where KT achieves the minimum size
among all these algorithms. Fig. 3(b) shows that the
average size of the top-r results remain stable as r
increases. It is because the trussness is stable for a small
value of r as there are multiple components contains the
keywords at each truss layer. Fig. 3(c) shows the size

Page 10 of 20Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

0

100

200

300

400

500

2 3 4 5 6

Siz
e

basic
KT
KTb
KTs

KTl
KTbs
KTbsl

(a) Vary l (Effectiveness)

0

100

200

300

350

1 5 10 15 20

Siz
e

basic
KT
KTb
KTs

KTl
KTbs
KTbsl

(b) Vary r (Effectiveness)

0

100

200

300

400

500

0.003 0.006 0.009 0.012 0.015

Siz
e

basic
KT
KTb
KTs

KTl
KTbs
KTbsl

(c) Vary KWF (Effectiveness)

10-1

0

101

102

103

104

105

2 3 4 5 6

Ru
nn

ing
 Ti

me
 (s

)

basic
KT
KTb
KTs

KTl
KTbs
KTbsl

(d) Vary l (Efficiency)

0

101

102

103

104

105

1 5 10 15 20
Ru

nn
ing

 Ti
me

 (s
)

basic
KT
KTb
KTs

KTl
KTbs
KTbsl

(e) Vary r (Efficiency)

0

101

102

103

104

105

0.003 0.006 0.009 0.012 0.015

Ru
nn

ing
 Ti

me
 (s

)

basic
KT
KTb
KTs

KTl
KTbs
KTbsl

(f) Vary KWF (Efficiency)

Fig. 3: Effectiveness and efficiency on DBLP
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Fig. 4: Effectiveness and efficiency on YAGO and DBpedia

of returned minimal dense trusses for different keyword
frequency. When query keywords are not very frequent
(e.g., KWF = 0.003), the keyword nodes will distributed
sparsely in the graph and we need a large subgraph to
include all the keywords. When the keywords frequently
occur in the graph (e.g., KWF = 0.015), we may only
need a very small subgraph to include all the keywords.
However, due to different distributions for each keyword
query, it does not always decrease for all the cases.

Fig. 3(d)-3(f) shows the running time of all the al-
gorithms when varying different parameters. Fig. 3(d)
shows that as l increases, the running times for all
the algorithms increase slowly. This is because the time
complexity is mainly determined by sizes of graph G
and dense truss Gden, and checking more keywords will
not cause too much overhead. KT-Index based top-down
search algorithm KT is faster than basic without indexes
by almost 2 orders of magnitude. Each of the three opti-
mization techniques can also accelerate the computation
by 2-5 times. KTbsl based on their combinations is even
10x faster than KT. Fig. 3(e) shows that as r increases,

all the methods need more time to return more results.
The increasing becomes slow when r is larger, because
less time is needed to refine truss with smaller trussness.
Fig. 3(f) shows that the running time decreases slowly
as the keyword frequency increases, because a smaller
truss Gden can cover all the keywords which will lead
to less refinement time.

Exp-3: Effectiveness and Efficiency on DBPedia and
YAGO. We evaluate the performance on DBpedia and
YAGO by the queries in Table 4. Note that we cannot
vary l and KWF as keyword query sets are fixed.

The average size of retrieved sugraphs is reported
in Fig. 4(a)-4(d). Fig. 4(a) shows that basic and KT
always obtain the results with smaller size than other
algorithms, as they examine every possible deletable
word one by one, while other algorithms based on
optimization techniques also do not loose too much
quality. The size of the returned subgraphs on DBpedia
is not as large as that in DBpedia because DBpedia is
sparser than DBLP. Similarly, the retrieved subgraphs
for DBpedia are also smaller than that of YAGO in Fig.
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Fig. 5: Trussness and Diameter of the results on DBLP, YAGO and DBpedia

Fig. 6: A case study (Q = {”biometric”, ”recognition”,
”face”,”periocular”, ”kohonen”})

4(b) because of the same reason. Fig. 4(c)-4(d) show the
size of top-r query on DBpedia and YAGO, which also
remains stable as r increases, because their trussness will
not change too much for a small r as there are multiple
components contains the keywords at each k-truss layer.

The running time is reported in Fig. 4(e)-4(h). Fig. 4(e)
shows that basic always needs more time than other
algorithms, and KT is faster than basic by 1-2 orders
of magnitude. KTbsl always needs the least time, which
is about 10x faster than KT. Fig. 4(f) has similar trend
as that in 4(e), where KTbsl still performs the best and
basic performs the worst, but all the algorithms needs
less time because YAGO is smaller than DBpedia. Fig.
4(g)-4(h) show the running time on DBpedia and YAGO
when we vary top-r, which also increases along with
the increase of r. KTbsl achieves the best performance
among all the evaluated algorithms.

Exp-4: Statistics of Trussness and Diameters. We also
report the trussness and diameter of results for queries
given in Tables 3 and 4. We only report most efficient
algorithm KTbsl as other algorithms obtain similar re-
sults. As shown in Fig. 5, DBLP obtain higher trussness
than YAGO and DBPedia because of its high density.
Moreover, the trussness increases as query keyword fre-

quency increases, which implies that frequent keywords
are more probably to be included in a denser truss. All
the diameters of returned results for all the datasets are
not larger than 3, which confirms our previous analysis
on the tight bound of diameter of the k-truss.

Exp-5: A Case Study on DBLP. We also performed a case
study on DBLP to evaluate the effectiveness of our meth-
ods. To find cohesive subgraph with stable coauthor re-
lationship, we only consider the edges between authors
with at least two coauthored papers. Suppose that an AI
company needs to build a team for the task of biometric
recognition based on kohonen neural networks, espcially
for face and periocular facial recognition. For a possible
form of the query Q = {”biometric”, ”recognition”,
”face”,”periocular”, ”kohonen”}, a minimal dense truss
covering Q with trussness 9 is shown in Fig. 6, where
larger nodes represent authors with more publications.
In this subgraph, Gerry V. Dozier, Karl Ricanek, and
Damon L. Woodard are experts (with more than 50
publications) on biometric recognition, face recognition
and periocular biometric recognition, respectively. Mean-
while, each two of them has coauthored more than
10 papers. Joshua Adams and Lasanio Small, the stu-
dents of Gerry V. Dozier, have published papers on
face recognition based on kohonen neural networks, and
also coauthored several papers with Damon L. Woodard.
Other persons are students or colleges of Gerry V. Dozier
in the biometric recognition research area, and they also
coauthored some papers with other researchers in this
subgraph. From above analysis, we can see that it is a
densely and stably connected subgraph that can meet
the query requirement.

6 RELATED WORK

The related work to our study includes keyword search
over graphs and community search based on k-truss.

Keyword Search Over Graphs. Keyword search has
been extensively studied in the literature, with query re-
sults usually modeled as individual minimal connected
trees/graphs containing query keywords [1]. Tree-based
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methods popularly use Q-SUBTREE to describe a key-
word query answer, where the ranking function is usu-
ally defined based on Steiner tree-based semantics or dis-
tinct root-based semantics. Since finding optimal Steiner
tree (top-1 Q-SUBTREE under the Steiner tree-based
semantics) is NP-complete, a heuristic algorithm BANKs
[2] was proposed to find approximate solution based on
backward search. To find optimal Steiner trees, a param-
eterized DP algorithm DPBF [34] was proposed where
the parameter is determined by the number of Steiner
trees. Then, an algorithm producing Steiner trees with
polynomial delay was developed [35]. Another method
STAR [36] can achieve an O(log(n))-approximation of
the optimal Steiner tree in pseudo-polynomial run time.
Recently, an improved DP algorithm PrunedDP was
proposed [37], based on optimal-tree decomposition
and conditional tree merging. Another two approaches
BANKS-II [3] and BLINKS [4] were also proposed to
find Q-SUBTREE under distinct root semantics, where
the tree weight is the sum of the shortest distance from
the root to each keyword node. BANKS-II is a forward
search method that starts from the promising root nodes,
and BLINKS is an improved algorithm based on a bi-
level index through partitioning graph.

To overcome the drawback that each connected tree
only gives a portion of the relationships between query
keywords, connected subgraphs such as r-radius sub-
graph [5], community [6], and r-clique [7] were proposed
subsequently. EASE is proposed [5] to find subgraph
containing query keywords with radius no larger than r,
based on a ranking function of both structural compact-
ness and textual relevancy. [6] presents a polynomial de-
lay algorithm to generate ranked communities which is a
multi-centered subgraph such that the distance between
center node and each keyword node is no larger than
a threshold. [7] prosed a polynomial delay algorithm
to approximately find r-cliques with distances between
keyword nodes no larger than r. In addition, some other
works [11] [12] [13] studied diversified keyword search
based on connected trees/subgraphs. Besides, keyword
search can also be considered as a special case of par-
tial topology query [8] [9] where label propagation are
utilized to find the top-k matched components under a
certain ranking score.

However, above methods only focus on evaluating
the distance between (querying) nodes to ensure the
compactness of query results, but none of them consider
density. Recently, two approaches consider the density
for keyword search, where one is to maximum the con-
textual density that combine the contextual cohesiveness
and structural cohesiveness [15], and the other is to
maximum the contextual cohesiveness of the k-core for
a specific k [14], which are inherently different from the
problem studied in this work.

Community Search based on k-truss. Community
search based on k-truss model aims to find communities
that maximize the truss value and contain a given set

of query nodes. [21] constructs TCP-Index to support
efficient search of all the k-truss communities containing
a given query node. [23] proposed a more compact
index EquiTruss to accelerate the computation of k-
truss communities for a query node. To avoid the free
rider effect, [22] studied the problem of finding truss
with maximum truss value and minimum diameter, and
provided an approximate solution. Two recent works
[20] [30] studied attributed community search for given
nodes and attributes, and proposed different ranking
functions regarding the attributes. All these algorithms
require a given set of query nodes, which cannot be
directly adopted in this paper since the subset of nodes
containing keywords to be included in the dense truss
is previously unknown.

Besides community search, there are also some re-
lated works on query independent community detection,
which aim to detect maximal k-truss for each k. More
information can be referred to [27] [28] [29].

7 CONCLUSION

In this paper, we study the problem of finding cohe-
sive subgraph that are highly dense and compact for
given set of keywords. We model the cohesive subgraph
based on k-truss model, and formulate the problem of
finding cohesive subgraph as minimal dense truss search
problem for keyword queries. We tackle the minimal
dense truss search problem for keyword queries by
dividing it into two subtasks. One is finding the dense
truss that maximize the truss value containing keywords,
and the other is refining the dense truss to obtain a
minimal dense truss containing keywords. To deal with
large networks efficiently, we design a novel hybrid
graph indexing scheme KT-Index to keep the keyword
information and truss information in a compact manner
efficiently, and propose an efficient algorithm which car-
ries search on KT-Index directly to find the dense truss
without repeated accesses to original graph. To extract
minimal dense truss, we also develop a novel refinement
approach by checking each node at most once based on
the anti-monotonicity property of k-truss, and further
optimize the refinement by batch based deletion, early-
stop based deletion, and local exploration. Extensive
experimental studies on real-world graphs show the
effectiveness and efficiency of our approaches.

.
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Abstract—Keyword search problem has been widely studied
to retrieve related substructures from graphs for a keyword set.
However, existing well-studied approaches aim at finding compact
trees/subgraphs containing the keywords, and ignore a critical
measure, density, to reflect how strongly and stablely the keyword
nodes are connected in the substructure. In this paper, we study
the problem of finding a cohesive subgraph containing the query
keywords based on the k-truss model, and formulate it as minimal
dense truss search problem, i.e., finding minimal subgraph with
maximum trussness covering the keywords. We first propose an
efficient algorithm to find the dense truss with the maximum
trussness containing keywords based on a novel hybrid KT-Index
(Keyword-Truss Index). Then, we develop a novel refinement
approach to extract the minimal dense truss based on the anti-
monotonicity property of k-truss. Experimental studies on real
datasets show the outperformance of our method.

I. INTRODUCTION

Keyword search, as a user-friendly query scheme, has been

widely used to retrieve useful information in various graph

data, such as knowledge graphs, information networks, social

networks, etc. Given a query consisting of a number of

keywords, the target of keyword search over a graph is to

find substructures in the graph related to the query keywords.

In recent decades, keyword search problem has been ex-

tensively studied [1], aiming to find minimal connected trees

(Steiner tree [2] and distinct root tree [3]) or subgraphs (r-

radius subgraph [4], community [5], and r-clique [6]) con-

taining the keywords. Besides, keyword search can also be

considered as a special case of partial topology query [7] [8]

where label propagation are utilized to find matched compo-

nents. However, these methods only focus on the compactness

of retrieved substructure, and fail to explore how densely these

keywords are connected, which is critical to reflect the stability

of the relationships between keywords in many applications,

e.g., forming a team such that team members are stably close

with each other so that the whole team can cooperate well.

In this paper, for the first time, we study the problem of

finding cohesive subgraphs that are highly dense and compact

for keyword queries based on k-truss model in which each

edge is contained in at least (k − 2) triangles. We illustrate

the differences between k-truss and existing keyword search

approaches by the following example.

Fig. 1(a) shows a co-authorship and citation graph G, where

the weight between an author and a paper is the author rank,

and the weight between two papers is the citation frequency.

For a query Q = {James,Green}, the top-3 connected trees

with weight 3, 4, and 5 respectively are identified by [2]

[3] as shown in Fig. 1(b). Fig. 1(c) shows the communities

identified by [5], which are multi-centered subgraphs with the

distance between a center node and each keyword node no

larger than a given threshold (e.g., 3). They are ranked based

on the minimum total edge weight from a center node to each

keyword node on the corresponding shortest path. The score

of community C1 with center node paper1 is 1 + 2 = 3. The

score of community C2 is 4 as it has two center nodes paper2

and paper3 with total weights 2 + 3 = 5 and 1 + 3 = 4,

respectively. In the r-clique model with diameter no larger than

r (e.g., r = 3) [6], T1 and T2 are returned, since only Steiner

trees of qualified r-cliques are finally extracted. All these

approaches output the substructure containing James Wilson

and John Green as the top-1 answer. However, James Wilson

and Jim Green coauthored more papers together with Jack

White, which implies a more stable and closer relationships.

Based on the truss model, they can be properly discovered in

the form of 4-truss (the dashed line area in Fig. 1(a)).

To attain highly dense and compact substructure for a

keyword query Q, a natural way is to find the subgraph

with maximum trussness and minimum size containing Q.

However, such problem is NP-hard and APX-hard, which can

be proved through the reduction of maximum clique problem

in a similar manner as the proof in [9]. Thus, in this paper we

study a relaxed version, called minimal dense truss search, i.e.,

find the subgraph with maximum trussness containing Q such

that it does not contain any subgraph with the same trussness

containing Q. Note that our model is different with the

closest truss model [9] with maximum trussness and minimum

diameter, as the diameter of a k-truss with n nodes is bounded

by �2n−2
k � while a k-truss with minimum diameter may have

an arbitrary large number of nodes. Moreover, closest truss

search is NP-hard [9], while minimal dense truss search can

be done in polynomial time.

Despite rich studies on community search, finding minimal

dense truss for keyword queries is nontrivial due to its inherent

difference from community search. Community search aims to

find maximal communities that maximize the truss value and

contain a set of query nodes, which can be done by local

search with proper indexes in O(|A|) time (A is the answer)

[10] [11]. The main difficulty of minimal dense truss search

for keyword queries is that, unlike community search where

the query nodes are given, the subset of nodes containing all

the keywords to be included in the dense truss is unknown in
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Fig. 1. A Motivating Example

advance, and therefore we do not know from which nodes to

start in the local search [10] [11]. One possible solution is that,

for a keyword query Q = {w1, w2, . . . , wl}, we explore all the

combinations of keyword nodes in S = V1 × V2 × · · · × Vl

to find the subgraph with maximum trussness, where Vi

is the node set containing wi. Such search space will be

inexhaustible for large real-world graphs due to the huge

number of combinations. Another difficulty is verifying the

minimality of a truss, which is also costly as we need to check

whether it contains any subgraph with the same trussness.

We tackle these difficulties by dividing the minimal dense

search problem into two subproblems. For the first subprob-

lem, we propose a top-down framework based on novel hybrid

graph indexing scheme KT-index to find the dense truss Gden

efficiently. For the second subproblem, we develop a novel

approach to extract minimal dense truss H covering Q from

Gden based on the anti-monotonic property of k-truss.

II. PROBLEM STATEMENT

Given a set of labels Σ, a simple undirected vertex labeled

graph is represented as G = (V,E, L), where V is the set of

vertices, E ⊆ V × V is the set of edges, and L is a labeling

function which assign each node a set of labels L(v) ⊂ Σ. We

use V (G) and E(G) to denote the set of vertices and the set of

edges of graph G respectively. For a vertex v ∈ V , we denote

the set of its neighboring vertices by N(v) = {u ∈ V |(u, v) ∈
E} and its degree by d(v) = |N(v)|. A triangle �(u, v, w)
in G is a substructure such that (u, v), (v, w), (u,w) ∈ E.

Definition 2.1 (Edge Support). The support of an edge e =
(u, v) in graph G is the number of triangles in which e occurs,

defined as supG(e) = |{�(u, v, w)|w ∈ V (G)}|.
Definition 2.2 (Connected k-Truss). Given a graph G and an

integer k, a connected k-truss is a connected subgraph H ⊆ G,

such that ∀e ∈ E(H), supH(e) ≥ k − 2.

The trussness of a subgraph H ⊆ G is the minimum

support of all edges in H plus 2, defined as τ(H) =
mine∈E(H) supH(e) + 2. The trussness of an edge e ∈ E(G)
is the maximum trussness of subgraphs containing e, i.e.,

τ(e) = maxH⊆G∧e∈E(H) τ(H). The trussness of a vertex

v ∈ V (G) equals to the maximum trussness of its adjacent

edges, i.e., τ(v) = maxu∈N(v) τ(u, v).
For example, in Fig. 2, the edge support of (v2, v3) is 3 as

it is contained in 3 triangles �(v1, v2, v3), �(v2, v3, v4) and
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Fig. 2. An Example Graph G

�(v2, v3, v5). Let H1 denote the subgraph induced by vertices

{v1, v2, v3, v4}. τ(H1) = 4 since the minimum support of

edges in H1 is 2. The trussness of edge (v2, v3) is 4 because

there is no other subgraph with higher trussness containing

( v2, v3). τ(v2) = 4 because the maximum trussness of its

adjacent edges (v2, v1), (v2, v3), (v2, v4) and (v2, v5) is 4.

Definition 2.3 (Dense Truss Over Keywords). Given a graph

G and a keyword set Q, a dense truss over Q is a connected

truss Gden ⊆ G that maximizes the trussness and contains Q.

Definition 2.4 (Minmal Dense Truss Over Keywords). Given

a graph G and a keyword set Q, the minimal dense truss over

Q is a dense truss Gden ⊆ G containing Q such that any

subgraph of Gden is not a dense truss containing Q.

For example, consider a query Q = {DB,ML}. H1 and

H2 in Fig. 2 are 4-truss and 3-truss containing Q. Clearly, H1

is a dense truss over Q. We also have another 4-truss induced

by {v1, v2, v3, v4, v5} containing Q, but it is not minimal. Thus

H1 is the minimal dense truss for the query Q.

Problem (Minimal Dense Truss Search by Keywords). Given

a graph G and a keyword set Q = {w1, w2, . . . , wl}, find the

minimal dense truss containing Q.

For simplicity, we consider the top-1 minimal dense truss

search for keywords and our approaches can be extended to

top-r version where the rank is based on the trussness.

III. OUR APPROACHES

In this section, we first propose a basic top-down algorithm

in Section III-A, then introduce the KT-index and the improved

algorithm in Section III-B, and finally introduce the details of

the refinement process in Section III-C.

A. Basic Top-down Search Framework

To avoid enumerating all the combinations of keyword

nodes in S = V1 × V2 × · · · × Vl, we propose a top-down

search framework by starting the search over the truss with

the largest trussness kmax in graph G. If it does not contain a
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connected kmax-truss covering Q, we will gradually decrease

kmax until we find one. Such process can be accelerated by

utilizing the property of trussness for keywords as follows. For

a keyword wi, let Vi be the set of nodes containing wi. The

upper bound of the trussness for wi is defined as the maximum

trussness of nodes in Vi, i.e., τ ′(wi) = maxv∈Vi
τ(v).

Property 3.1. Given a graph G and a keyword set Q = {w1,
w2, . . . , wl}, for any truss H containing Q, we have τ(H) ≤
min1≤i≤l τ

′(wi).

The main steps of top-down search algorithm are as fol-

lows. First, we obtain the trussness of all edges and nodes

by truss decomposition [12]. Second, for each keyword wi,

we compute the node set Vi, and obtain the upper bound

of trussness by τ ′(wi) = maxv∈Vi
τ(v). Third, based on

above property, we start searching from kmax-truss where

kmax = min1≤i≤l τ
′(wi). Specifically, we extract Gkmax

=
{e ∈ G|τ(e) ≥ kmax} from G and check whether each

connected component Ci in Gkmax contains all the keywords.

If yes, we return the component containing Q with smallest

size; otherwise, we search (kmax−1)-truss and stop when we

find a connected truss Gden containing Q. Finally, we refine

Gden to obtain a minimal dense truss H .

The complexity of truss decomposition is O(|E|1.5) [12].

For a specific value of kmax, the process of computing the

connected components Gkmax
covering the keywords can be

done O(|E(Gkmax
)|) time. In the worst case, we need to check

all the possible values of kmax from min1≤i≤l τ
′(wi) to 2.

Due to the fact that τ(v) ≤ √|E| for any v ∈ V [12], the

overall complexity of finding Gden is O(|E|1.5).
B. Improved Algorithm on KT-Index

1) Keyword-Truss Index (KT-Index): In the basic top-down

search framework, trussness computation for each edge is

primitive. Since it is independent with keyword queries, we

can complete such computation by truss decomposition [12]

offline before any query comes. Then, we build a hash table

to keep all the edges and their trussness.

Another time consuming part of basic top-down algorithm

is that we need to test many values of k s to find a k-

truss containing Q with the largest k, with time complexity

O(
√|E|× |E|). To speed up the computation of this part, we

design KT-Index including two parts: truss index and keyword

index.

Truss Index. Truss index is a multi-layer structure, where

we index the information of all the connected k-truss in

the k-th layer. Suppose there are nk connected components

C1, C2, . . . , Cnk
in the k-th layer. We sort all the components

in the descending order of their size (number of nodes) and

assign each component an ID. For each component Ci, we

only store the node set V (Ci). Thus, we store the k-th layer in

the form of list (1, V (C1)), . . . , (i, V (Ci)), . . . , (nk, V (Cnk
)).

Keyword Index. In the keyword index, we first store a

inverted keyword list to keep the node IDs that contain each

keyword, i.e., for each wi, we store the keyword node set

Vi containing wi. Meanwhile we record the upper bound

Algorithm 1: Improved-KT Search

Input : A graph G, and a keyword query Q.
Output: A minimal dense subgraph.

1 kmax ← min1≤i≤l τ
′(wi);

2 kmin ← 3;
3 while kmax > kmin do
4 k ← � kmax+kmin

2
�;

5 for each keyword wi in Q do
6 SCi ← CIDk of wi;

7 CC ← ∩1≤i≤lSCi;
8 if CC �= ∅ then
9 kmin ← k + 1;

10 else
11 kmax ← k − 1;

12 id ← mincid∈CC cid;
13 Gden ← extract compoent Cid at the k-th layer from G;
14 H ← FindMinDenseTruss(Gden, Q);
15 return H;

of trussness τ ′(wi) for each keyword. Moreover, for each

keyword, we record the IDs of the component CIDk it occurs

in the k-th layer, in the form of (k,CIDk).
Obviously, the index size of KT-Index is O(|E|) and it can

be constructed in O(|E|1.5) time.

2) The Improved Algorithm: The search algorithm is shown

in Algorithm 1. To avoid the worst case of checking all the

value of kmax, we check each layer of truss index by a binary

search, which can be completed in log(kmax) iterations. In

the k-th layer, we obtain the set of component IDs CC that

contains all the keywords (lines 5-7). If CC is empty, we

will search layers with truss value smaller than current k;

otherwise, we will search layers with truss value larger than

current k. After we find the set of component IDs CC that

containing all the keywords, we select the component with

the minimum size as dense truss Gden. Then we extract the

minimal dense truss H containing Q from Gden by function

FindMinDenseTruss, which will be introduced in detail later.

Algorithm 1 needs O(log
√|E|×ncmax) time to find Gden,

where ncmax is the maximum number of components among

all the layers in KT-Index. Note that the number of connected

components in each layer is far smaller than the node number,

which is usually at most hundreds for real-world graphs. Thus

our improved algorithm can identify Gden very efficiently.

C. Minimal Dense Truss Extraction

Now, we move to the subproblem of extracting minimal

dense truss from Gden. Before going into the details of

function FindMinDenseTruss(Gden, Q) aforementioned in Al-

gorithm 1, we will first give the anti-monotonic property of

k-truss, to provide essential guidelines for refinement.

Property 3.2. Given a connected k-truss H, a node v ∈ V (H)
and set of its adjacent edges Ev = {(u, v) ∈ E(H)}, if graph

Gv = (V (H)\{v}, E(H)\Ev) does not contain a connected

k-truss, there does not exists a subgraph H ′ ⊆ H such that

G′v = (V (H ′)\{v}, E(H ′)\Ev) contains a connected k-truss.
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Algorithm 2: FindMinDenseTruss

Input : A dense truss Gden, and a keyword query Q.
Output: A minimal dense subgraph.

1 k ← τ(Gden);
2 Svis ← ∅;
3 while V (Gden) \ Svis �= ∅ do
4 select a node v from V (Gden) \ Svis;
5 G′ ← FindKTruss(Gden, Q, k, v);
6 if G′ �= empty then
7 Gden ← G′;

8 Svis ← Svis ∪ {v};

9 return Gden;

This property show that when we refine Gden by deleting

nodes, each node v in Gden only needs to be checked once. If

deleting v will result in a subgraph that contains no connected

k-truss containing Q, we will keep v and will not check it

again in the following deletions.

Algorithm FindMinDenseTruss. Based on above property, we

give the process of FindMinDenseTruss in Algorithm 2. The

main idea is every time we randomly pick one node v in graph

Gden to check whether deleting node v and its adjacent edges

will still lead to a connected k-truss G′ containing Q (lines

4-5). If yes, we update Gden by G′ (lines 6-7); otherwise, we

check the next node. We use the set Svis to keep the set of

nodes having been checked to avoid repeated examinations.
Function FindKTruss(Gden, Q, k, S) is used to check the

existence of a connected k-truss containing Q after deleting a

set of nodes S and their adjacent edges from Gden. First, we

use Edel to maintain the set of edges to be deleted from the

graph. Then we gradually delete each edge (u, v) ∈ Edel and

check whether it will result in new edges that violate the edge

support constraint for a k-truss. If yes, we will continually

add these edges into Edel. Such process stops when Edel =
∅. Then we remove isolated nodes from Gden. If there is a

connected component G′ containing Q, we will return G′ as

a k-truss; otherwise, we return ∅.
The time complexity of Algorithm 2 is O(t × (α − k) ×

|E(Gden)|) where t ≤ |V (H)| is the number of iterations, k is

the trussness of Gden, and α ≤ √|E(Gden)|) is the arboricity

of Gden (minimum number of spanning forests needed to

cover all the edges in Gden).

IV. PERFORMANCE STUDIES

We implemented the following two algorithms for com-

parison: Basic (Basic top-down search framework), and KT
(Improved algorithm Alg. 1). Function FindMinDenseTruss
in these two algorithms is implemented as Alg. 2. All the

algorithms are implemented in C++, and run on a PC with

3.60GHz CPU and 8GB memory.
Datasets and Queries. We use two real datasets popularly

used in previous keyword search works [13]: DBpedia1 and

YAGO2. We use 6 query templates designed in [13], consisting

1http://dbpedia.com/
2https://www.mpi-inf.mpg.de/yago

TABLE I
RUNNING TIME COMPARISON (SEC)

Dataset Alg. Q1 Q2 Q3 Q4 Q5 Q6

DBpedia
Basic 2594.7 1099.8 2845.1 2488.7 2015.4 1963.5
KT 4.8 0.5 5.9 9.5 7.0 3.5

YAGO
Basic 1559.0 1005.7 2963.5 2845.2 2777.6 1359.8
KT 1.8 0.3 6.9 2.5 5.5 1.3

of type keywords and value keywords. Since each value

keyword is associated with one node representing an entity,

to generalize the query, we replace the value keywords (e.g.,

AmericanMusicAwards) with its type (e.g., TelevisionShow).

Refer to [13] for details of the datasets and queries.

Experimental Results. Table I shows the running time for all

the queries. We can see that KT can answer the query in a

few seconds while Basic needs thousands of seconds, which

validates the efficiency of our improved search algorithm.

V. CONCLUSION

In this paper, we study the minimal dense truss search

problem for keyword queries based on the k-truss model. We

develop an efficient approach based on hybrid index KT-index

and a novel refinment scheme to solve this problem.
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Cover Letter 
Cohesive Subgraph Search Using Keywords in Large 

Networks 
Yuanyuan Zhu, Lu Qin, Lijun Chang, Jeffrey Xu Yu 

	  
Dear Editor-in-Chief, Prof Lin, 
 
We are writing for the submission of our paper entitled “Cohesive Subgraph Search 
Using Keywords in Large Networks” to the prestigious journal, TKDE, for possible 
publication. 
 
This submission is a substantial extension of our preliminary ICDE'18 short paper 
“Querying Cohesive Subgraphs by Keywords”. 
 
In the conference version, we study the problem of finding cohesive subgraph 
containing the query keywords based on the k-truss model, and formulate it as 
minimal dense truss search problem, i.e., finding minimal subgraph with maximum 
trussness covering the keywords. We divided the problem into two sub-problems. The 
first is to find the dense truss Gden with the maximum trussness containing Q. 
The second is to refine Gden to obtain a minimal dense truss H containing Q. We 
first proposed a top-down search framework to find the dense truss with the maximum 
trussness containing keywords based on our newly proposed KT-Index, and then 
developed a refinement approach to extract the minimal dense truss based on the 
anti-monotonicity property of k-truss.  

However, the refinement process is still time consuming, as we have to do k-truss 
verification for each single node deletion. Thus, in this journal submission, we further 
proposed several optimization techniques to accelerate the refinement process. 
Besides, we also provided more theoretical analysis for the studied problem, and 
extended the method proposed in the conference version to answer the top-r search 
problem. We also conducted more experimental studies on more real-world graphs to 
thoroughly evaluate the efficiency and effectiveness of our approaches. We 
summarize the major new materials in this submission as follows: 

1. We provided a thorough theoretical analysis on the hardness of the problem studied 
in this paper (Section 2.2). 

2. We discussed another possible choice to find the dense truss Gden in the bottom-up 
manner, and provide the complexity analysis to show why the top-down framework is 
preferred (Section 3.1).  
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3. We extended the method proposed for top-1 search in the conference version to 
answer top-r search (Section 4.2).  

4.We proposed several optimization strategies to accelerate the refinement process, 
including batched based deletion, early-stop based deletion, and local exploration 
(Section 4.3).  

5. We conducted more experiments by evaluating all the proposed algorithms on more 
real-world datasets, and showed that our newly proposed method is faster than our 
previously proposed method by one order of magnitude (Section 5). 

We rewrite the whole paper by providing more theatrical analysis, algorithm details, 
illustrating examples, and experimental results, and extended it with new materials in 
about 10 pages in this submission. We attached our ICDE paper for reference.  
 
Best Regards, 
 
Yuanyuan Zhu, Lu Qin, Lijun Chang, Jeffrey Xu Yu	  
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