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Abstract— A multi-modal framework to generate user inten-
tion distributions when operating a mobile vehicle is proposed
in this work. The model learns from past observed trajectories
and leverages traversability information derived from the visual
surroundings to produce a set of future trajectories, suitable to
be directly embedded into a perception-action shared control
strategy on a mobile agent, or as a safety layer to supervise the
prudent operation of the vehicle. We base our solution on a con-
ditional Generative Adversarial Network with Long-Short Term
Memory cells to capture trajectory distributions conditioned on
past trajectories, further fused with traversability probabilities
derived from visual segmentation with a Convolutional Neural
Network. The proposed data-driven framework results in a
significant reduction in error of the predicted trajectories
(versus the ground truth) from comparable strategies in the
literature (e.g. Social-GAN) that fail to account for information
other than the agent’s past history. Experiments were conducted
on a dataset collected with a custom wheelchair model built onto
the open-source urban driving simulator CARLA, proving also
that the proposed framework can be used with a small, un-
annotated dataset.

I. MOTIVATION AND INTRODUCTION

Intention recognition is one of the greatest challenges in
intelligent Human Robot Interaction (HRI) [1]. As humans,
when interacting with one another, an intuitive understanding
of the other agents’ intentions is learnt allowing better
collaborative working conditions. When a user and a ma-
chine work in a cooperative fashion, the same principles
apply so that tighter shared controls can be exercised and
instinctively assist each other in achieving the common
goal, bypassing the explicit need for extensive and reliable
communication between robot and user [2]. Defining user
intention is however a challenging proposition. Moreover,
it is non-deterministic: given the same situation and user,
there could be multiple plausible actions followed through,
and they should all be allowed due consideration within a
Human-Robot Collaboration (HRC) shared control scheme.

In this work we present a HRC framework for navigational
tasks, with the incentive of providing assistance to frail
and less able users in driving personal mobility devices
(PMDs), such as wheelchairs and scooters. In this context,
shared control is perceived differently to other situations
where human and robot operate collaboratively on a common
workspace, such as assembling pieces together, since actions
have a direct impact on the safety and comfort of the rider,
and new and unstructured environments are commonplace.

We propose a multi-modal data-driven probabilistic ap-
proach where the behaviour of a PMD user captured via
the kinematics of the vehicle are combined with contextual
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Fig. 1: First person view from the on-board camera depicting
the ground truth trajectory subsequently followed by the user,
alongside the equally probable predicted user intentions over
the same time horizon, projected onto the image.

awareness provided by the scene captured from an on-board
monocular camera to estimate the user intention. A condi-
tional Generative Adversarial Network (GAN) with Long-
Short Term Memory (LSTM) encoding and decoding blocks
is employed to capture trajectory distributions conditioned
on past trajectories. Rejection sampling is then conducted on
future trajectory samples from this distribution to fuse scene
traversability information derived from visual segmentation
with a Convolutional Neural Network (CNN). The final out-
come is a set of equally-probable user intention trajectories,
graphically illustrated in Fig. 1, suitable for integration into
a HRC shared control framework for active vehicles, unlike
other alternatives where random selection or an oracle are
assumed [3], [4].

It is rare to find an annotated, considerably large dataset
to train generative models of one’s domain of work. Our
method was developed with the intention of capitalizing on
the data available in small, un-annotated datasets.

The paper contributions can be summarised in the devel-
opment of three components:
• a probabilistic approach for multi-modal user intention

estimation (Sec. III),
• a wheelchair implementation in the simulation envi-

ronment CARLA [5] for safe collection of datasets in
realistic urban scenarios (Sec. IV-A), and

• a modular framework able to leverage existing work in
the visual segmentation space, suitable to small-scale
navigation datasets with no visual annotations (Sec. IV-
A and Sec. IV-C).
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II. BACKGROUND

1) User Intention Estimation: User intention can be inter-
preted in numerous ways and is not always straightforward
to estimate. Demeester et al. [6] were the first to break free
from the standard definitions of user intention in navigation
at that time, which in the context of a robotic wheelchairs
were mostly specific assistance algorithms such as “follow-
corridor”, “avoid-obstacle”, or “pass through door”, to rep-
resent them instead as a set of trajectories each with a
goal state. In addition, user intention has been reported in
the literature as the immediate controls for the mobility
device [7], the future trajectory (or control commands of
the trajectory) for a predefined time period, or the final
goal pose [8]. In this work we consider the intended future
trajectory to be the user intention.

2) Multi-modal Trajectory Prediction: Trajectories cap-
ture the spatial and temporal relationships of an object.
Classical methods such as Kalman filters [9] and time-series
analysis [10] have been used in the past to estimate them
from past and current observations. However, the complex
nature of human behaviours impose the need to disregard
hand tailored deterministic models as they fall short in
capturing the wide range of plausible future trajectories that
represent the user intentions. This has given rise to data-
driven approaches proven suitable in predicting complex and
multi-modal distributions.

Generative models fall under stochastic approaches for
data-driven trajectory prediction [11]. Stochastic approaches
choose from multiple possibilities based on a random sam-
pling. Given their flexibility and proven ability to model com-
plex distributions, a generative-model-based approach for
trajectory prediction was the chosen paradigm implemented
in our work.

3) Generative Models: Generative models are optimised
to capture the underlying data distribution. With the advent of
deep learning methods, a new set of generative models were
introduced: Deep Generative Models (DGMs), including
GANs.

In the context of trajectory prediction, GANs have been

extensively utilised in recent literature. [3] was a pioneer in
using GANs in the context of identifying and predicting the
behaviour of interacting agents with Social-GAN. [4] uses
a GAN with an additional information loss to allow for a
disentangled representation between the input to the genera-
tor and the sampled output. However, both these methods do
not include the scene information in their prediction. More
recently, [12] uses a GAN along with scene information to
predict the future path of the agents. However, they use a
top-down view of the scene which is not possible in our
case, or generally for that matter.

Because of instabilities of GANs, predicting trajectories
from high dimensional image spaces is difficult. Especially
with a small dataset, the chance of over-fitting is high. Thus,
it makes sense to use data-driven methods for kinematic-
based trajectory prediction and separately perform vision-
based scene information integration, where rule-based ap-
proaches and pre-trained networks reduce the learning dif-
ficulty as they don’t need specialisation for the specific
hardware or scenario.

4) Segmentation networks: To develop a solution which
does not rely on a large, annotated image dataset, and
leverage separate advances in this domain, it is advantageous
to make use of pre-trained networks. Thus for the rule-
based trajectory selection approach, we chose a pre-trained
image segmenting network. For a detailed description of the
evolution of deep neural network based image-segmentation
methods, the reader is referred to [13]. For the purpose of
trajectory selection, it is adequate to understand the different
classes in a scene. Thus in this work we focus on semantic
segmentation techniques trained on a moving vehicle dataset.

III. METHODOLOGY

For this work we define the user intention to be the
trajectory the user intends to follow. This definition itself is
vague since the trajectory depends on how long it is executed
and also the intended destination. Thus it is sensible to define
the user intention to be the intended trajectory leading to a
point in space at time t = t + N where N is the number
of time steps considered into the future. The choice of N



could depend on the Field Of View (FOV) of the user or
the safe travel distance or time recommended for the mobile
platform.

Mathematically, we denote the position of the wheelchair
at discretized time index t by xt = (xt, yt) where xt and yt
denote the 2-dimensional position at time t. Given the past
M positions X = xt+1−M :t, we wish to predict the next
N positions X̃ = xt+1:t+N . We also wish to inform our
prediction using scene information: an image I captured at
time t from a camera facing forward from the vehicle. Thus,
we are interested in modelling the distribution

Pr(X̃ |X, I). (1)

We assume that X and I are independent, and also
conditionally independent given X̃:

X⊥⊥ I ,

(X⊥⊥ I) | X̃ .
(2)

Given an uninformative uniform prior on X̃, these assump-
tions allow us to calculate the posterior distribution as pro-
portional to the product of the two conditional probabilities:

Pr(X̃ |X, I) ∝ Pr(X̃ |X) Pr(X̃ | I) . (3)

A conditional GAN is trained to learn the specific user
behaviour via the kinematics of the driven vehicle: Pr(X̃|X).
A segmentation network is used to incorporate scene in-
formation: Pr(X̃|I). These two sources of information are
fused probabilistically to produce a generative model. This
approach allows the generative model to be scene compliant
when trained with only a small dataset.

A. Trajectory Generative Model

We use a conditional GAN [14] model inspired by [3] to
model the user intention from past positions. A GAN frame-
work consists of two adverserial networks: a generator G
and a discriminator D, which are jointly optimized such that
the generator learns the underlying data distribution, in our
case the user intention as a predicted trajectory distribution.
The objective function of a GAN can be written as

min
G

max
D

V (D,G) = Ex∼Prdata(x)[logD(x)]+

Ez∼Prz(z)[log(1−D(G(z)))]
(4)

where Prdata(x) is the original data distribution and Prz(z)
is a normal distribution from which a noise value is sampled.
The discriminator D is fed with either a real data sample x
or a generated sample G(z).
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Fig. 3: Conditional GAN inspired from Social-GAN [3]
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Fig. 4: Scene information. (left): original image. (middle):
segmented image, coloured by the most likely class. Legend
names the 12 most prominent classes. (right): probability of
traversability. White indicates the highest probability of 1.

A conditional GAN is an extended GAN, where the
generator and the discriminator are both conditioned on extra
information: in our case the observed past trajectory. This
framework is shown in Fig. 3. LSTM blocks are used to
capture the temporal relationships of positions. The objective
function of the GAN is modified as

min
G

max
D

V (D,G) = Ex∼Prdata(x)[logD(x|y)]+

Ez∼Prz(z)[log(1−D(G(z|y)))]
(5)

where y conditions both networks G and D.
The input for our GAN is the past observed trajectory

X = xt+1−M :t in the form of consecutive relative positions.
In addition to this, a noise vector z is independently sampled
from a normal distribution and fed as an input. The output of
the generator is a future trajectory in the form of consecutive
relative positions, X̃ = xt+1:t+N . Different noise inputs
result in different predictions, leading to a distribution of
possible output trajectories. Resulting trajectories of this
network are shown in blue in Fig. 2 where k = 20 samples
were generated.

The data distribution the GAN framework optimizes to
learn is Pr(X̃ |X) and with different noise values, it outputs
different samples from this learnt distribution,

X̃ = G(z,X) ∼ Pr(X̃ |X) . (6)

The main drawback in this framework is that it does not
take into account the scene understanding.

B. Incorporating Scene Information

We integrate the visual information by segmenting the
image, generating a probability distribution over pixel-wise
classes C. Gated-SCNN [15] was used as the image segmen-
tation network. Further details of the implementation is given
under Sec. IV-C. Fig. 4 shows the original and segmented
images as the left and middle images respectively.

The segmentation network S estimates the conditional
probability of the scene pixel classes C given the image I ,

C ∼ S(I) = Pr(C | I) . (7)

The N waypoints of a predicted trajectory X̃ are mapped
onto the image plane via projective transform H(·). Vehicle
positions are assumed to be 2-dimensional lying on the



ground plane (z = 0) as motion is safely assumed to
happen over relatively flat terrain. The image coordinate u
of trajectory position x is given by[

u
1

]
= K

[
R t
0 1

]−1 x0
1


u = H(x) ,

(8)

where K is the intrinsic camera matrix and R and t
correspond respectively to the 3-dimensional rotation and
translation of the camera in world-coordinates.

Out of the 19 class labels that the Gated-SCNN was trained
on (more details in Sec. IV-C), “road” and “sidewalk” were
considered traversable and all other class were categorized as
non-traversable. Based on this we can assign a probability of
traversability to each pixel. An example is shown as the right
image of Fig.4. By projecting a position x into the image
frame, this constraint can be enforced as the conditional
probability distribution

Pr(x |C) ∝


1, if C(H(x)) ∈ CTraversable

1, if x is at the foot of the robot
0.5, if x is outside the visible area
0, otherwise

(9)

where CTraversable is the set of traversable segmentation
classes {Croad,Csidewalk}. The notation C(H(x)) gives the
segmentation class for the pixel at position x projected into
the image frame.

Pixels in the segmented image are assumed to be indepen-
dent, therefore the joint probability of the future trajectory X̃
is computed as the product

Pr(X̃ |C) ∝
∏
x∈X̃

Pr(x |C) (10)

Thus, Pr(X̃|I) can now be found by,

Pr(X̃ | I) =
∑
C

Pr(X̃ |C) Pr(C | I) . (11)

C. Probabilistic Fusion

We fuse the information about the future trajectory X̃ from
the past trajectory X and the camera image I to refine Eq. (3),

Pr(X̃ |X, I) ∝ Pr(X̃ |X)︸ ︷︷ ︸
G(z,X)

∑
C

∏
x∈X̃

Pr(x |C)︸ ︷︷ ︸
traversability

constraint

Pr(C | I)︸ ︷︷ ︸
S(I)

(12)
Rejection sampling is used to form a generative model

from the posterior distribution Pr(X̃ | X, I). Treated as a
proposal distribution, the conditional distribution Pr(X̃ |X)
is sampled from the GAN conditioned on the past trajectory
G(z,X). The second conditional probability Pr(X̃ | I) is
evaluated using the segmentation of the camera image S(I)
and considering the traversability constraint Pr(X̃ |C). The
sample is accepted proportional to Pr(X̃ | I). This procedure
is repeated until the required number of accepted samples
are generated. As rejection sampling is scale invariant, the

proportionality relationships of previous equations are suffi-
cient for evaluation. The overall framework is illustrated in
Fig. 2 with the proposed trajectories shown in red.

IV. DATASET AND IMPLEMENTATION

A. CARLA Dataset

The dataset used for training the GAN framework (Sec. IV-
B) was generated within CARLA [5], an open-source simu-
lation environment for realistic and safe testing of vehicles
driving in urban layouts, with humans and vehicles on
the road following natural behaviours. A personal mobility
device was created and added to the environment for the pur-
pose of this work. A Robotic Operating System (ROS) [16]
bridge was used to interface CARLA with ROS and an
external joystick was used to control the wheelchair. The
wheelchair was driven around the environment collecting
data for training.

The dataset consists of six ROS bags each with an average
duration of 10 minutes. One bag was kept for validating and
one for testing, the remaining four were used for training.
The training data was organised in 0.5s sampling intervals
which resulted in 5252 training instances, 1308 validating
instances and 1261 testing instances. Even though 5252
training instance were selected, the environment itself is
fairly homogeneous, lacking variation. The wheelchair was
driven around city blocks resulting in a relatively small area
which produced similar urban imagery in the dataset. This
lack of diversity in the training instances is believed to be the
culprit for the over-fitting we experienced when end-to-end
GANs with images as sole input were first tested. Moreover,
the data is not annotated and manual labelling would have
been a significant time-consuming exercise.

B. GAN Network Implementation

The GAN framework was inspired by Social-GAN [3] as
in Fig. 3. The integration of LSTM cells allows the network
to learn temporal relationships. The generator network con-
sists of an encoder and a decoder network. The encoder en-
codes the past observed trajectory X as consecutive relative
positions as an encoded vector to which an 8 dimensional
noise vector is added. For this work, M was selected to be 8
with a 0.5s period between time steps. Thus, X consists of
4s of past vehicle trajectory up to the current time step. Each
dimension of the noise vector is randomly sampled from a
normal distribution independently.

The hidden layer of the decoder is initialized with the
encoded X and the noise vector. The LSTM cell outputs the
consecutive relative future positions as the output from the
generator network: X̃. As with X, N is selected to be 8,
such that the generator will output a trajectory 4s in length
starting from the immediate next time step.

The discriminator takes as input the past trajectory X with
either the ground truth or the predicted future trajectory X̃,
and sends them through LSTM cells to output a scalar value
which is then compared against 1 or 0: real or fake. As
an implementation detail, the labels are smoothed such that
fake ∼ Uniform(0, 0.3) and real ∼ Uniform(0.7, 1). D is



Selection No scene Proposed Improvement
information
Pr(X̃|X) Pr(X̃|X, I)

ADE (m)
random 1.8844 1.6094 -14.59%
mean 1.6020 1.3617 -15.00%
mink 0.5406 0.5079 -6.05%

FDE (m)
random 4.0259 3.3507 -16.77%
mean 3.3489 2.7988 -16.43%
mink 0.7416 0.6700 -9.65%

TABLE I: Prediction errors with respect to ground truth.

trained with the binary cross entropy loss of the generated
samples and fake labels; and ground truth trajectories and
real labels. G is trained using the binary cross entropy loss
between the generated samples and real labels. In addition
to this variety loss is also considered, where the minimum
L2 loss of the generated k samples and the ground truth
trajectory is also back-propagated. The Adam optimizer was
used to train both networks. The network setup and training
procedure followed the Social-GAN framework [3]. The
implementation was done in PyTorch [17].

C. Segmentation Network Implementation

Gated-SCNN [15] was used as the image segmentation
network. This model is trainable end-to-end and is trained
on the urban Cityscapes dataset [18] which has 34 semantic
labels (of which 19 were used during the training process)
from images captured from a road-driving vehicle. Gated-
SCNN is a state-of-the-art model, outperforming similar
semantic segmentation models considering mean average
precision (mAP) as Intersection over Union (IoU) thresh-
old [13]. Moreover, the implementation and trained network
weights are publicly available and implemented in PyTorch.
However, any other semantic segmentation model can be
used to replace the Gated-SCNN and the accuracy will
change as per the selected model.

The model consists of 2 streams of networks: a regular
stream and a shape stream. The regular stream processes se-
mantic region information using a classical CNN. The shape
stream uses low-level feature maps from the regular stream to
process the boundary information using Gated Convolution
Layers (GCLs). The output of both streams are fed to a
fusion module, which outputs semantic regions with clear
boundaries. No training of the Gated-SCNN was conducted,
the pre-trained model weights were used to semantically
segment the image I at time t.

V. RESULTS AND ANALYSIS

Average Displacement Error (ADE) and Final Displace-
ment Error (FDE) are common metrics for uni-modal tra-
jectory prediction; ADE gives the mean Euclidean distance
along a fixed-duration trajectory while FDE gives the dis-
tance error associated to the trajectory endpoints. According
to [19], there is no agreed upon metric when it comes
to comparing multi-modal prediction frameworks. Table I
shows the improvement of the proposed method with scene
understanding to the original (no scene information) Social-
GAN framework with different trajectory selection strategies.
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Fig. 5: Analysis of the mink metric. ADE (left) and FDE
(right) of the trajectory closest to the ground truth selected
from k samples. Error with the original set-up (Pr(X̃|X))
and error with the proposed framework (Pr(X̃|X, I)) shows
that our improvement is consistent across the choice of k.

As with previous work [19], [3], [4], we shall use ADE
mink and FDE mink as evaluation metrics. Out of the k
samples, the sample which results in the lowest ADE and
FDE are used when comparing the results. With the proposed
method, there is a 6.05% decrease in the ADE mink error
and 9.65% decrease in the FDE mink metric as in Table I.
A comparison figure depicting how the ADE mink and FDE
mink changes with the number of samples selected is plotted
in Fig. 5, reflecting how the decreasing in the error with
the proposed method is consistent across any choice of k
samples.

In a real world deployment, if the system is to estimate
the user intention and provide the required control assistance
based on the estimated intention, one trajectory from the
generated k has to be selected. Picking the trajectory closest
to the ground truth becomes infeasible. One could either
select a random sample (equivalent to min1) or pick the
mean of all sampled trajectories. Our framework shows a
consistent decrease in both ADE and FDE under either
of these scenarios as per Table I under random and mean
selection respectively.

Two instances illustrating typical navigation scenarios are
shown in Fig. 6. If the system was to consider only the
kinematics of the assistive device, it would generate the blue
trajectories (hereafter the mean of a trajectory distribution
will be depicted in bold when projected onto the images).
Using the proposed method with consideration for the image
information results in (the same number of) equally probable
red trajectories, compliant with the traversability insights
embedded in the image.

Fig. 6 qualitatively hints at the potential advantage of
incorporating visual information into a trajectory generative
framework. Fig. 6a shows that by rejecting forward- and
right-directed trajectories that would have collided with the
seat or building, the model predicts more plausible left-
directed trajectories, closer to the ground truth. Fig. 6b
similarly shows a strong increase in left-directed trajectories,
but also highlights a weakness of the proposed framework.
It can be seen in the projected image that the ground-truth
trajectory passes behind a pole, which the segmentation
classified as non-traversable. The flawed assumption is that
all pixels in the segmented image lie on the ground plane.
Various image processing techniques or manipulations to the
traversability constraint Pr(X̃ |C) are likely able to correct



(a)

(b)

Fig. 6: Two examples illustrating the proposed methodology.
(left) all the trajectories in the world coordinate frame where
observed past trajectory, ground truth trajectory, predicted
and accepted trajectories (mean), predicted but rejected
trajectories (mean), (middle) the same trajectories projected
onto the segmented image plane. (right) all the trajectories
projected onto the real image plane.

this shortcoming, and this work is left for future work.
In this work we have assumed independence for

traversability, relying on the traversability generated from
the current image to produce Pr(X̃ | I). The framework
can be improved further by incorporating spatial dependence
along the generated trajectory, and utilising more environ-
mental features, which could be learned from historically
labelled ground-truth trajectories, e.g. with Conditional Ran-
dom Fields (CRFs) [20].

VI. CONCLUSION

A framework is developed to estimate user intentions in
the space of HRC between a mobility robotic agent and its
user. A crucial aspect of this setup is the possibility of having
multiple equally-probable estimates for the future trajectory.
The framework considers the user behaviour through the
kinematics of the vehicle and leverages the scene context
separately, probabilistically fusing both information sources
to generate the final trajectory distribution. This allows
leveraging on separate advances in the image segmentation
domain, whilst comparing favourably in its ability to generate
trajectories from a small-scale navigation dataset against
comparable data-driven schemes in the literature, generating
error improvements in the order of 6% or above.
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