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ABSTRACT The IoT, or Internet of Things has been a major talking point amongst technology enthusiasts
in recent years. The internet of thing (IoT) has been emerged and evolved rapidly, making the world’s fabric
around us smarter and more responsive. The smart home use one such transformation of IoT, which seems
to be the wave of the future. However, with the increasing wide adoption of IoT, data security, and privacy
concerns about how our data is collected and shared with others, has also risen. To solve these challenges, an
approach to data privacy and security in a smart home using blockchain technology is proposed in this paper.
We propose authentication scheme that combines attribute-based access control with smart contracts and
edge computing to create a secure framework for IoT devices in smart home systems. The edge server adds
scalability to the system by offloading heavy processing activities and using a differential privacy method to
aggregate data to the cloud securely and privately. We present several aspects of testing and implementing
smart contracts, the differential private stochastic gradient descent algorithm, and system architecture and
design. We demonstrate the efficacy of our proposed system by fully examining its security and privacy
goals in terms of confidentiality, integrity, and availability. Finally, we undertake a performance evaluation
to demonstrate the proposed scheme’s feasibility and efficiency.

INDEX TERMS Blockchain, Smart Home, Access Control, Smart Contract, differential privacy,Cyber

Threats

. INTRODUCTION

Echnologies have made it possible for residence build-
Ting with integrated Internet of Things (IoT) network
offering increased comfort, security and quality of life. As
such, an IoT infrastructure underpins a smart home network,
which connects various smart devices (such as smartphones,
smart metres, wearable gadgets, and so on). People’s ability
to live independently can be enhanced and enabled by smart
home technology. They include a variety of useful technolo-
gies, such as those for monitoring and assessing health, which
appeals to both users and device manufacturers. The value
of the worldwide smart home market is expected to hit $53
billion by 2022, which is not surprising. This prediction is
based on a nearly 21 percent annual growth rate predicted for
the market from 2018 to 2022 [1]. Although the advantages
of smart homes to homeowners and stakeholders are well
documented, there are a number of concerns to be aware of,
including cyber-attacks and threats to user data security and
privacy [2].
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Traditional techniques dealing with such threats rely on
centralised structures that are vulnerable to cyberattacks [3].
As aresult, the access control function is critical for prevent-
ing unauthorised users from accessing resources by explicit
or implicit requirements and only allowing authorised parties
access to resources. Traditionally, access controls have been
handled by centralised systems that are relatively easy to
operate [4]. This means that all access restrictions, such as
assigning access privileges, managing access (e.g., updates,
revocations), and access verification, are handled by a central
server. However, there is a risk that the server will fail as
a result of ‘natural’ (functional) or external factors (cyber-
attack), compromise the access control mechanism. Further-
more, [oT systems’ massive scale and distributed nature cre-
ate challenges for centralised strategies to regulate requests
for access to the desired resource [4].

Some of the limitations of centralised networks can be
overcome by distributed access control networks. Rather than
employing a single server, these networks use several nodes
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to handle access control activities. To provide trustworthy
and dependable access controls that can withstand malicious
attacks, the nodes ‘agree’ on the rights to be assigned, the
policies to provide access, and the verification results. As
a result, there is an interest in using emerging blockchain
technology for distributed and reliable access control.

The emerge of distributed and tamper-resistant ledger-
based blockchain techniques to protect data has opened up
new possibilities for smart home data privacy, security, and
integrity challenges. Blockchain is made up of a digital
ledger that records and shares transaction information that
passed the network. Each user has access to secure, crypto-
graphic public and private keys in order to interact with the
system. One user can initiate the transaction with his keys,
and the other users in the network can accept it with their
own keys. Once the nodes agree that the originating user
possesses the cryptocurrency they claim, the transaction will
be accepted. If not, it is denied [5].

Blockchain technology has proven to be effective in a
variety of smart home applications, including control over
access to the home, exchanging data, and so on. The use of
blockchain in smart home networks is also justified because
it works independently of current heterogeneous protocols
commonly used in smart homes (such as Z-Wave, Zigbee,
Bluetooth, and Thread) [6]. Nonetheless, using blockchain
directly in a smart home is always a challenge due to the high
level of resources consumed during mining and consensus
procedures and the limitations of node resources in smart
home devices.

In turn, Edge computing provides an alternative and com-
plementary technique for managing proof-of-work (PoW)
challenges while also supporting blockchain applications in
the smart home. Edge computing extends the spread of cloud-
based resources and services by computing at the network’s
extremes (edges). It has a multi-access system that allows
users to access cloud-like services for better computing,
apps, and storage. As a result, resource-constrained smart
home appliances may be able to expand their computational
capabilities by outsourcing mining and storage to specified
edge servers. Hence, the combination of blockchain with
edge computing creates a decentralised system for outsourc-
ing computation and storage security for scalable and safety
proof operations [7].

While blockchain is regarded as the future of data storage
due to its decentralized structure, several issues are still to
be resolved before it is implemented in daily life scenarios.
A significant parameter in blockchain applications that needs
further development is data preservation and transaction pri-
vacy. Blockchain user identification across the decentralized
network is supported by the public key. As a result, not
all identities remain private or anonymous. An adversary
in the role of a third-party may analyse the transactions
on the network and potentially infer the identities of other
users. In addition, blockchain’s decentralized structure al-
lows for unprotected blockchain scenarios to be observed.
Moreover, additional privacy features are needed to better
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protect personal data on the blockchain nodes. With finan-
cial blockchain systems for instance, the transaction details
are broadcasted across the decentralized network whenever
a transaction takes place [8]. This broadcasting occurs to
safeguard each blockchain node with up-to-date information.
Furthermore, the ledger recording the transaction remains
uniform across the network. An adversary may use this
information to monitor an individual and go back through
the transaction details to discover transaction information.
Moreover, with regards to blockchain-based IoT devices,
an adversary may compromise the information exchange
between devices for illegal purposes.

Furthermore, there are also privacy risks associated with
applying blockchain in other sectors such as financial, real
estate, and asset management [9]. That is, blockchain’s dis-
tributed nature means that the individual’s identity or per-
sonal information may be leaked during transactions. To date,
literature in the field on how to preserve the individual’s
privacy in blockchain has mostly focused on anonymization
strategies and their derivatives [10]. However, Studies show
[11] that, anonymization cannot ensure total privacy because
of the potential to combine anonymized data with similar
datasets to discover personal information.

To overcome the above mentioned issues and provide
privacy protections, it may be useful to integrate differen-
tial privacy based on machine learning with the use of the
latest blockchain technology. Differential privacy is efficient
at preserving privacy in statistical databases and real-time
settings [12]. Differential privacy is an approach to preserve
the confidentiality of data without risking its leakage by
adding noise to data without influencing the correct output
of the data analysis result.

The use of differential privacy can create a level of in-
distinguishability in statistical blockchain data, leaving the
analyst unable to predict with any certainty the accessibility
of individual blockchain nodes. Differential privacy is a
good fit to be used in blockchain technology in order to
preserve the individual’s identity during a broadcast. While
ensuring that the information remains useful for completing
transactions, differential privacy can still perturb the person’s
identity to the network and an adversary will not be able to
determine the sender’s or receiver’s actual identity. Thus, dif-
ferential privacy can help to keep private sensitive/personal
information in a dataset. Therefore, differential privacy in
blockchain applications may prove to be beneficial to protect
data privacy [12].

To address the concerns discussed above and motivated
by the advantages of integrated blockchain technology and
edge computing, we present a novel lightweight Ethereum
blockchain based multi-tier edge-smart home architecture. In
our framework, every single home has multi edge servers as
local blockchain miners and the smart contracts are utilized
to apply the policies and rules in an automated manner and
regulate the smart home IoT devices based on the Attribute
Based Access Control (ABAC) scheme. The edge servers
aggregate data from the IoT smart home devices to the
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cloud server for further storage and analysis after applying
a differential privacy mechanism and providing a privacy
preservation system.

In this paper, we extend our earlier work published in [13]
and expand the functional capabilities of our architecture by
adding differential privacy as a scheme to preserve privacy
of users. Hence, this paper presents a novel architecture
involving authentication scheme based on Ethereum smart
contract [13], integrated edge computing and differential
privacy enhancement model. The main contributions in our
paper are based on the following:

e We design a privacy-preserving and secure decentral-
ized Stochastic Gradient Descent (SGD) algorithm us-
ing blockchain.

« We apply machine learning on the differential privacy
mechanism to send data from private smart home to the
cloud.

« We present detailed analysis on our proposed scheme
and show how the proposed model can defend against
traffic analyses and data mining based attacks such as
linkage attacks.

« Complete design of the Ethereum smart contract includ-
ing implementation and testing scenarios are presented
to validate our proposed scheme.

o Performance evaluation of our proposed scheme by
comparing them with existing models with respect to
various performance metrics.

« Security analysis of our proposed scheme using threat
model to overcome Denial of Service (DoS) attack
scheme is presented by determine the efficiency of our
proposed model.

The remaining sections of this article are organized as
follows. Section II presents relevant background information
about core technology. Section III reviews existing works
in blockchain, smart home and differential privacy. The
proposed solution is implemented and described in Section
IV. We investigate the main results of security, privacy and
performance analysis in Section V. Finally, in Section VI, we
conclude the paper and provide direction for future works.

Il. RESEARCH BACKGROUND

This section provides the background information needed
to understand the proposed framework. It discusses the key
concepts of smart home, access control, blockchain technol-
ogy, Ethereum with smart contracts, ERC 20 token, Edge
computing and differential privacy that set the stage for the
rest of this paper.

A. SMART HOME

Despite countless publications attempting to define the cri-
teria for a standard definition of smart home, there is still
no consensus on what represents a smart home. The term
"smart home" is commonly used to describe a place of resi-
dence with technology capabilities to enable task automation,
monitoring of people and activities, and health-maintenance
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mechanisms. All elements in a smart home can communicate
with one another across a network and can be controlled both
locally (from within the home) and remotely (through the
Internet). Given its wide range of applications, this type of
system has a lot of promise to improve security, provide a
more energy-efficient alternative, and promote user comfort
[9]. In this paper, we use a holistic definition of a smart home;
one that uses Internet-connected devices to serve a variety
of functions. Smart TVs, smart temperature controls, smart
hubs, and other connected devices are examples of smart
home gadgets. Typically, companies that provide IoT devices
for smart homes need access to their interface in order to con-
trol the devices. As a result, smart homes with several devices
from various manufacturers may have several disconnected
interfaces, necessitating well-defined device management.
Because most of the device’s resources are used to perform
other functions, IoT devices lack the resources to carry out
security actions [14]. Hence, a security mechanism integrates
the necessary processes to address current IoT concerns
without utilizing significant resources.

B. ACCESS CONTROL SCHEME

Access control systems are usually based on access control
lists (ACLs), which provide users access permissions. When
there is an increase in the number of users seeking resources,
ACLs become more difficult to govern. As a solution to
this limitation of ACL systems, designers have created Role
Based Access Control (RBAC) systems, [15] which add an
intermediate layer to the process of distributing role per-
missions rather than giving them directly to users and then
assigning them their roles. This strategy can considerably
reduce the time and effort required to monitor access con-
trol rules. This is even when the number of subject roles
and resources are increased, or when the system contains
many administrative fields. Attribute Based Access Control
(ABAC) systems attempt to address the issues associated
with increase in the number of roles by allowing users to
apply the subject’s attributes directly, as well as resource and
environmental properties. This can be done to describe the
access policies and, as a result, reduce the number of rules
or rule updates. On the other hand, ABAC still requires to
access a consistent description of the field attribute and the
definition of attributes across many fields. [16].

Author [17] demonstrate the applicability of Attribute-
Based Encryption to share of audit-log information and
broadcast encryption. In their scenario, the data is stored
on the server in an encrypted form while different users
are still allowed to decrypt different pieces of data per their
security policy. This effectively eliminates the need to rely on
the storage server for preventing unauthorized data access.
Moreover, author [18] publish a guide to Attribute Access
Control with a definition of ABAC and a 149 descriptions
on the functional components of ABAC. Also, the guide pro-
vides planning, design, 150 implementation, and operational
considerations for employing ABAC within a large enter-
prise with the 151 goals of improving information sharing
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while maintaining control of that information. Furthermore,
attribute access control has been used in blockchain architec-
ture. Author of [19] present a new digital asset management
platform, called DAM-Chain, with Transaction-based Access
Control (TBAC) which integrates the distribution ABAC
model and the blockchain technology. They take transaction
as a bridge to integrate ABAC and blockchain into a new
platform for resource distribution and sharing. They claimed
that their proposed platform supports flexible and diverse
permission management as well as, verifiable and transparent
access authorization process in blockchain based architec-
ture.

Also, author in [20] propose a distributed Attribute-Based
Access Control (ABAC) system based on blockchain to pro-
vide trusted auditing of access attempts. Besides auditabil-
ity, the system presents a level of transparency that both
access requestors and resource owners can benefit from it.
They present a system architecture with an implementation
based on Hyperledger Fabric, achieving high efficiency and
low computational overhead. They validated their solution
through a decentralized access control management applica-
tion in digital libraries.

This paper examines attribute based access control par-
ticularly because it is deemed to be an appropriate de-
centralised model for IoT setup and provides scalability,
flexible and strong dynamics. Our access control scheme is
different from [21], in which the author used three types
of access control procedures; device-to-device (D2D) access
control, device-to-user (D2U) access control, and device-to-
fog server (D2FS) access control to authenticate users in
(internet of Everything )IoE. Our access control is based on
different policies which combines a set of subjects (users), a
set of Objects (IoT devices) and a set of Actions to state that
this user can perform the action in the IoT device. The policy
is invoked whenever there is an access request from any user
or device in the network using the smart contract. Moreover,
we integrate the token mechanism to further finalize the
permission to access the IoT devices. The smart contract
checks the policies and then tracks the token amount to ‘who
owns’ and ‘how much’ of that particular token to access
certain IoT device.

C. BLOCKCHAIN TECHNOLOGY

Blockchain is defined as a decentralised, distributed, and
immutable ledger that maintains a record of assets and
transactions on a peer-to-peer (P2P) network [8]. Thousands
of network-based mining nodes register and validate each
transaction digitally in the blockchain. All the transactions
are stored and organised in ‘blocks’ using timestamps. Sev-
eral blocks are then linked together to form a ‘blockchain’.
To ensure the authentication and integrity of the data, the
blockchain uses elliptic curve cryptography (ECC) and a
SHA-2 hashing technique for robust cryptographic proof.
Bitcoin is a well-known example of blockchain infrastructure
use. In general, the blockchain architecture that supports Bit-
coin is the same architecture that powers most cryptocurren-
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cies. In turn, the Ethereum blockchain’s growth and usage of
smart contracts result in infinite number of cryptocurrencies
[22].

D. ETHEREUM WITH SMART CONTRACT

Ethereum includes smart contract features as part of its de-
centralised platform. The Ethereum smart contract, invented
by Vitalik Buterin in 2013, supports event-directed, turing
complete scripting functionalities for verifying and process-
ing complex transactions to demonstrate the contract’s valid-
ity [23]. ) In terms of the smart contract, it works similarly
to an event-directed script in that it executes the script auto-
matically once the pre-defined criteria are met. All relevant
functions and processes must be in place before the smart
contract can be executed [24]. Externally Owned Accounts
(EOA) and Contract Accounts are the two types of accounts
in Ethereum. Each account type has its own unique address,
which is a 20-byte hexadecimal string. The EOA, which
includes an ether balance, is controlled by the owner’s private
key, which also transmits transactions (for example, sending
a message to prompt the initiation of a smart contract). An
EOA does not have a code assigned to it. On the other hand, a
contract account with an ether balance also has a related code
that is activated by another smart contract or a transaction.

E. ERC-20 TOKEN

ERC-20 stands for "Ethereum Request For Comments," and
the number 20 serves as a unique identifier to differentiate
from the other standards. It is a protocol that defines a set of
standards and rules for token issues on the Ethereum network
and is used to create blueprints for smart contracts based on
Ethereum. As a technical standard, ERC-20 has become one
of the most important and widely used tokens for all smart
contracts on the Ethereum blockchain [25]. ERC-20 defines
a set of six functionalities within the Ethereum system for the
benefit of other tokens.

1) totalSupply (): to figure out how many tokens were
created and exist in the system.

2) balanceOf (address owner): to returns the number of
tokens in an account for a given address.

3) allowance (address tokenowner, address spender): The
user’s balance is one of the most critical data needed
to complete a transaction. To carry out a transaction,
the user must have a certain number of tokens. If the
user does not have the required number of tokens, the
allowance () function is used to cancel the transaction.

4) approve (address spender, unit tokens): The contract
owner allows collecting the required amount of tokens
from the contract’s address once the user has the re-
quired amount of tokens for a transaction and the bal-
ance has been checked. By comparing the transaction
to the total token supply, this function ensures that there
are no additional or missing tokens.

5) transfer (address to, unit tokens): This transfer() func-
tion enables the contract owner to send tokens. It
enables the contract owner to transfer amounts of the
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token to other addresses. Also enables a definite num-
ber of token transfer between the total supply and a
user account.

6) transferFrom (address from, address to, uint256 to-
kenld): The contract owner can transmit tokens using
the transfer() function. It allows the contract owner to
send token amounts to different addresses. Also allows
a certain number of tokens to be transferred from the
overall supply to a user account.

F. EDGE COMPUTING

The ability of cloud computing to provide limitless pro-
cessing, data storage, and systems administration resources
has led to the development of many cloud-based apps and
the rapid expansion of Internet-based corporations such as
Amazon in recent years. The trend recently has been to move
cloud functions to network edges [26]. This is dependent
on delay-sensitive applications (for example, virtual reality)
with strict delay requirements. Edge computing has put more
strain on cloud resources and services in order to provide
mobility, location detection, and lower latency. As a result of
these benefits, network edge technology is critical to realise
the future IoT [27].

The edge computing structure has three levels: end device
(frontend), edge server (near-end), and core cloud (far-end).
The three-level hierarchy depicts the elements’ computing
capacity as well as their edge computing characteristics.
Sensors and actuators on the front-end provide extra and
improved user responsiveness. The resource requirements
have to be dispatched to the server, however, given their
restricted capacity. Near-end edge servers handle most net-
work traffic and a variety of resource needs (such as real-
time data processing and compute offloading). As a result
of deploying edge servers, end users benefit from improved
computation performance at the cost of increased latency.
Far-end cloud servers provide greater processing power (e.g.,
big data analytic) and additional data storage space. The
objective of this system architecture is to enable the edge
network to support computation-intensive and time-critical
applications. Furthermore, certain edge server apps offer data
synchronisation via cloud communications.

G. DIFFERENTIAL PRIVACY

One of the efficient privacy preservation strategies is differ-
ential privacy which is used to maintain the confidentiality
of data without risking data loss or data leakage. In 2006,
C. Dwork first introduced additional noise to the data as a
way to preserve privacy [28]. In terms of statistical databases,
attempts are made to protect privacy based on differential
privacy techniques adding noise to the data prior to query as-
sessment. Researchers subsequently started to use differential
privacy-related concepts in other domains to preserve privacy
in the user’s personal data. To achieve this outcome, differ-
ential privacy perturbs sensitive data through the addition
of a specified (calculated) noise value. As such, differential
privacy can guarantee that the presence or absence of a
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participant in a dataset will not affect the database’s query
output results. Researchers have also applied the concept of
differential privacy in other applications such as health data
monitoring in real-time and IoT data etc. Additionally, to
protect data from IoT nodes in the context of blockchain-
based IoT systems, they use data perturbation mechanisms
using differential privacy [29].

When including differential privacy in data it is important
to consider two key parameters: sensitivity measurements
and suitable noise additions. The added noise may conceal
the critical value leaving the adversary unable to make an
approximation of a particular individual’s presence or ab-
sence. The sensitivity value typically varies according to the
specifics of the scenario; for instance, applications that need
high level privacy utilise large sensitivity values and those
needing low level privacy utilise small sensitivity values.
Other solutions have also been proposed by researchers in-
cluding the choice of dynamic sensitivity values where sen-
sitivity values vary automatically based on analyst and data
provider requirements [30]. However, a high level of noise
needs a high sensitivity level. The use of a high sensitivity
value reduces data usefulness. Hence, a suitable trade-off
between the need for privacy and the need for truthfulness
must be maintained via adjustment to the sensitivity value.
Moreover, the noise addition method is essentially a pro-
tective event involving minimum noise value calculations
needed to protect data privacy. The noise output is related to
the sensitivity value. The base function in this method needs
the input to be of a certain parameter to calculate the amount
of noise.

There are three noise addition methods that researchers
use when calculating the noise value: Laplace mechanism,
Exponential mechanism, and Gaussian mechanism. As with
sensitivity, best choice noise addition method depends on
the nature of application. If it is a numerical output for
instance, the Laplace and Gaussian method will typically
be used, whereas the Exponential method is applied for
non-numerical output [31]. In this paper, we consider the
definition of differential privacy as follows:

Definition: e-differential privacy [28]: A randomized
mechanism f : D—R satisfies (e, §)-differential privacy if for
any adjacent datasets D and D’ and for any subset of outputs
S C R where R is the output space of f

Prif(D)=5) _ .
Py =5 =" .
H. PRIVACY ISSUES IN BLOCKCHAIN-BASED
INTERNET OF THINGS

Blockchain technology relies on authentication and encryp-
tion services to preserve data security (i.e., secure transac-
tions). Cryptography and the usage of a public key encryption
are linked to such blockchain services. This means that users
must have access to both the public and private keys in order
to manage their transactions. Public key cryptography works
on the basis of two key types: public keys, also known as
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distributed network keys, and private keys, also known as
personal individual keys. Public key infrastructure is the most
frequent technique providing key management functions for
cryptography in the blockchain (PKI). PKI techniques based
on blockchain are decentralised, which eliminates the need
for a centralised access point or a trusted third-party [12].
Furthermore, these methods do not require trustworthiness
to be established via nodes or system users in order to
make the public system more visible. Instant Karma PKI,
Blockstack, and Certcoin are only a few of the blockchain
approaches that have been mentioned in the literature to
enable PKI encryption and transaction security on blockchain
nodes. Blockchain privacy and security, on the other hand,
are only now beginning to be fully addressed. As explained
by S. Nakamoto in [32] any exposure of the private key
owner’s identity can lead to the disclosure of additional trans-
actions by that owner using linking techniques. Furthermore,
when exposed to certain types of attacks, the anonymity of
blockchain users may be compromised [33].

Moreover, as a means of privacy in Ethereum, Ethereum
uses cryptographic hash functions and transactions are se-
cured using cryptographic mechanisms-based privacy. How-
ever, since Ethereum is a public ledger, all users may access
the decentralized ledger. The transaction data is available
online, and the inclusion of these cryptographic frameworks
does not guarantee full privacy. Deanonymization attack is
the most well-known privacy attack on Ethereum, in which
data from a distributed ledger is deanonymized by linking
and tracing features with other databases [34].

Hence, the methods for preserving privacy in blockchain
applications is an important research issue. Some researchers
have sought to improve blockchain privacy through the use
of different strategies such as the use of two-level anonymity.
Additionally, Christidis and Devetsikiotis in [35] focused on
resolving confidentiality issues based on public blockchain
transaction to enhance blockchain trustworthiness. Another
potential solution is the use of a differential privacy pre-
serving strategy that utilises data perturbation methods for
the protection of private data in the blockchain. Differential
privacy provides the functionality of adding noise to the
stored distributed ledger records to address this problem. Dif-
ferential privacy’s randomness noise can be used in a variety
of ways such as adding the noise for non-trusted users or
users without a clear task in the network. It may be possible
to only allow query evaluation in the public ledger to analyze
any record or previous transaction and add noise to this query
evaluation to protect privacy. Also, Ethereum’s smart contract
gives developers the ability to add differential privacy to their
truncation’s [34]. The flexibility of choosing the suitable way
to add the noise based on the privacy and utility requirements
make the use of differential privacy optimal to overcome the
privacy issues in Blockchain based architecture.

lll. PREVIOUS WORKS
Data security and privacy with IoT devices in a smart home
is one of the major challenges as connected IoT devices
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are vulnerable to various attacks and they lack basic se-
curity features. To address these issues, numerous central-
ized solutions have been proposed [36]. Author in [37]
proposed an information-centric network-based system for
smart home services with a three-layered architecture in-
cluding remote cloud, fog layer with smart home servers
and end devices. The platform enables real-time systems to
be deployed, including smart monitoring and control appli-
cations. Another framework proposed by [38] to integrate
existing IoT architecture components. They looked at IoT
smart home challenges and solutions in order to bridge the
gap between current state-of-the-art smart home applications
and the possibility of integrating them into an IoT-enabled
world. Also, [39] promote the vision of Smart and Connected
Communities (SCC). They integrate IoT with cyber physical
cloud computing and big data for smart tourism to enhance
a community’s preservation, liveability, revitalisation, attain-
ability, and security. However, all these works are based on
central architecture where the communication and processing
overhead, access control and a single point of failure are
major challenges. Therefore, various researchers [12, 32-35]
have turned-out the attention towards distributed Frameworks
and proposed popular blockchain based solutions for vari-
ous IoT use cases. Furthermore, because in the design of
blockchain-based IoT systems, privacy is not pre-enforced
and private data can be leaked using certain attacking ap-
proaches, researchers proposed various privacy preservation
strategies such as differential privacy for different applica-
tions of blockchain based on cloud computing and machine
learning [49-61].

A. BLOCKCHAIN AUTHENTICATION, ACCESS
CONTROL AND EDGE COMPUTING IN SMART HOME
APPLICATION

Authors in [3] looked at the concerns surrounding ‘gate-
ways,” or connections between IoT devices, claiming that
such centralised arrangements present several security risks
such as integrity, certification, and availability. The authors
responded by proposing a blockchain-based smart home
gateway network that can protect against potential gateway
attacks. The blockchain technology network, which is made
up of three layers: device, gateway, and cloud, is utilised at
the gateway layer to facilitate decentralisation by storing and
exchanging data blocks. This maintains data integrity both
inside and outside the smart home and availability through
authentication and communication between network users.
On the other hand, their architecture has some limitations in
terms of the computing complexity imposed by blockchain
operations at the gateways.

Moreover, in [40] the author integrates both blockchain
and group signature to anonymously authenticate group
members, as well as message authentication code to effi-
ciently authenticate home gateway without leaking infor-
mation in smart home scenario. In HomeChain, all request
records from group members (or revocation requests from
the group manager) will be chained into the blockchain. Due
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to the immutability of blockchain and traceability of group
signature, these records are not easy to be tampered or deleted
and hence providing reliable behavior auditing. however,
they avoid using any access control policy, but only adopt
a revocation list to revoke authorities of malicious users.

The benefits of using Ganache, Remix, and web3.js ar-
chitecture for smart home based IoT blockchain (SHIB) to
overcome the difficulties of data privacy, trust access control,
and the ability to extend the system were advocated by the au-
thors in [41]. They presented an IoT gateway for connecting a
smart home’s cluster of IoT devices to a blockchain network.
Though their work is complicated by the fact that each user
and IoT device must be assigned to one and only one subject-
object pair, and the gateway may not have enough computer
power to handle large transactions.

In [42], authors presented a private blockchain-based ac-
cess control (PBAC) approach to solve data security and
privacy issues while using smart devices in smart home
systems. Within the IoT system, the proposed PBAC pro-
vides “an unforgeable and auditable foundation” that can
prevent unauthorised data access, protect data security from
threats, and enable accurate, robust, and instant access to
information. They only recommended one internet server
as an administrator. However, the entire system fails if the
administrator is inactive.

Authors in [36] proposed utilising a blockchain-based ap-
proach based on Proof-of-Authority to develop a consensus
mechanism for better managing home appliances in a de-
centralised framework. When compared to a standard Proof-
of-Work based system, the authors demonstrated additional
features to improve the effectiveness of a blockchain method
using Proof-of-Authority as the consensus mechanism to
address security concerns.

The implementation of IoT and blockchain-based Multi-
Sensory Frameworks in the context of in-home quality of life
(QOL) for recently diagnosed cancer patients was studied in
[43]. Multiple medical and ambient intelligent IoT sensors
can capture QOL data from the smart home environment
and securely share it with a specified community of interest
using the authors’ suggested blockchain and off-chain based
framework. The in-home secure monitoring system captures
QOL data, such as transactional records and multimedia-
based big data (e.g. physiological and mental state data),
which the authors may manage using blockchain-based data
analytics.

In [14], the author suggested a lightweight blockchain-
based architecture for IoT that considerably decreased the
overheads of traditional blockchain while retaining the ma-
jority of its security and privacy benefits. The design allows
high-resource devices to create an overlay network in order
to use a publicly available distributed blockchain that ensures
end-to-end security and privacy. Furthermore, it employs a
distributed trust to provide excellent security and privacy for
IoT applications, it minimises the time necessary to execute
block validation. However, no information on the establish-
ment of this scalable blockchain or the security certificates
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was provided.

In [44] the author implemented IoT-based architecture in
tandem with BC (Hyperledger Fabric) to assess the validity
of the communicating devices whether normal or malicious.
They tested their scheme in a smart home-based scenario.
However, the transaction size in Fabric are larger than other
blockchain platform because they also carry the certificate
information for approval. Therefore, the latency gets worse
with increase in block size in their scenario.

In [45] authors proposes an Attribute-Based Access Con-
trol (ABAC) framework for IoT systems by using the emerg-
ing Ethereum smart contract technology. The framework
consists of four different smart contracts to manage ABAC
policies, attributes of subjects and objects and perform access
control. However, the main drawback of their framework is
that, the average time for access control is high due to com-
plex interactions between the ACC and other smart contracts
for retrieving attributes and policies.

In [46] authors propose a smart contract-based frame-
work, which consists of multiple access control contracts
(ACCs), one judge contract (JC) and one register contract
(RC), to achieve distributed and trustworthy access control
for IoT systems. However, one ACC is deployed for only
one subject-object pair. Therefore, the gas cost will increase
linearly as the number of subject-object pairs of the system
increases which indicate a higher cost to implement the
framework. In our work, we address all these issue by imple-
menting Ethereum smart contract to decrease the transaction
size and the latency. We also proposed two smart contracts
to avoid the complexity and consume less gas and better cost
compared with other frameworks.

B. INTEGRATING DIFFERENTIAL PRIVACY INTO
BLOCKCHAIN

Blockchain data training using machine learning algorithms
are currently being used to generate useful solutions by
providing better insights to the available data across most
fields including, bioinformatics and wireless communication
[47]. In addition, a machine learning based approach com-
bines many practical applications including blockchain and
healthcare. This creates new possibilities in data analytics.
Machine learning includes the use of an available dataset to
train a computer. Traditionally, the dataset has a centralized
information but when used in blockchain, the training occurs
in a decentralized distributed information with multiple com-
puting nodes involved in the learning process [48]. Because
data are distributed across all computing nodes, learning can
be supported by a privacy preserving strategy. To resolve
this issue, Chen et al. in [49] recommended a decentralized
approach to machine learning based on differential privacy
that protects user privacy by utilising stochastic gradient
descent (SGD). Referred to as “LearningChain”, the authors
claim that the strategy facilitates both private learning and a
reduction in error rates. The strategy relies on the process of
perturbing normalized local gradient information prior to it
being mined into the blockchain. As such, data are protected
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and made tamper-proof, and only targeted and protected
records are mined in the blockchain. The authors also utilise
a public blockchain and conduct consensus via the use of a
proof-of-work (PoW) consensus tool.

To ensure that the system remains protected against byzan-
tine attacks, an l-nearest aggregation algorithm is applied
providing protection to private data prior to and during the
collection by rendering it impossible to differentiate from
its neighbours. An Ethereum network is used to develop the
final model and is analysed via the use of MNIST [50], and
Wisconsin breast cancer datasets [51]. Kim et al. in [52] also
discuss differential privacy integration in machine learning
scenarios using blockchain. Their work improves usability
and transaction latency as well as provide privacy protec-
tions by conducting experiments to add noise repeatedly via
differential privacy. Repeated-additive noise is utilised along
with local gradient to protect the privacy of blockchain users.
A private blockchain was used by the authors to mine the
blocks with a POW consensus tool. According to the authors,
the trust users have in distributed machine learning can be
strengthened with the introduction of an efficient perturba-
tion tool using differential privacy. Furthermore, the authors
stated that it increases user participation by overcoming
attacks across the blockchain network. With this in mind,
it may be concluded that a differential privacy protection
strategy is an efficient way to protects the privacy of users in
scenarios related to machine learning using a decentralized
blockchain.

Advances in smart grids are also developed and deployed
leading to new challenges in research and technology. One
challenge for instance is how to manage and perform smart
grid operations (e.g. communication, energy trading, renew-
able energy management, and so forth) effectively [53].
The research field is currently investigating how to address
these challenges while also supporting the smart grid trans-
formations to manage the challenges. A potential solution
to improve the management of smart grid operations is to
integrate it with blockchain technology. Various scenarios
are currently under consideration such as the deployment
of blockchain at specific layers of the smart grid (e.g. con-
sumption layer and generation layer) to make the technology
more secure for users. Researchers in [54] provide a case
study of the implementation of a blockchain-based micro-
grid in Kazakhstan, focusing on its potential to improve the
nation’s energy trading possibilities via blockchain. Indeed,
there is a wide discussion in the literature regarding smart
grid and blockchain integration. However, it is also clear that
the literature often neglects to focus on privacy preservation
issues in such scenarios. As a public distributed ledger, the
integration of privacy protection in these types of models is
paramount.

Most operations conducted via smart grid scenarios are
regarded as real-time data analytic. Hence, the integration of
differential privacy noise-additive tool is a possible solution
to these challenges. The authors in [55] conducted several
scenarios related to private energy trading in blockchain-
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based smart grids. A private energy trading model was de-
veloped by the authors by applying basic differential pri-
vacy implementation and by comparing their model with
current methods of differential privacy. The model relies
on a blockchain-based token bank to perform and store
transactions. In addition, the model provides differential pri-
vacy by inhibiting linkages and circumventing data mining
with minimal consumption of computational power. More-
over, the integration of differential privacy into a deregu-
lated blockchain-based smart grid is presented in [56]. The
authors enhanced the proof-of-authority (PoA) mechanism
through its integration with PageRank to generate reputation
ratings. Laplace noise was added to enhance user privacy
protections and thus promote user participation. According
to the authors, user trust is enhanced in their strategy by
overcoming issues of similarity, and double-spending attacks.
These examples demonstrate that user privacy should be a
key issue of focus when integrating blockchain with smart
grid. Hence, additional research is also needed to generate
evidence that blockchain-based smart grids can be trusted.

C. INTEGRATION OF DIFFERENTIAL PRIVACY,
MACHINE LEARNING AND BLOCKCHAIN-BASED
CLOUD COMPUTING
Cloud computing is increasingly utilised by all industries.
In turn, researchers continue to enhance this practice with
the development of more advanced cloud computing models.
An example of such a model is edge/fog computing and its
capacity to provide fast access to critical tasks [57].
Researchers have also developed models that use ma-
chine learning algorithms to extract cloud features. More-
over, efforts are being made to improve data storage, net-
work access and control reliability, and large-scale server
functionality by integrating blockchain with edge computing
[7]. This has prompted researchers to investigate edge and
cloud computing based on blockchain to improve efficiencies
and reduce time-delay [58]. Not withstanding these efforts,
some researchers point to privacy leakage as an issue in
cloud systems based on blockchain [59]. To address these
flaws, researchers now look to employ strategies around
the integration of privacy protection with blockchain-based
cloud as a possible solution. In [60], authors undertake the
integration to distribute autonomous privacy budget when
mining in blockchain. The integration resulted in increased
work-load while executing queries, with the authors claim-
ing that the method both provides answers to queries more
effectively as well as protect user privacy. Researchers also
utilise private/permissioned blockchain models with byzan-
tine fault tolerant (BFT) consensus mechanisms to guarantee
the cooperation and control of authorized nodes. Moreover,
the researchers also assert that their mechanism manages
all re-identification attacks effectively as a result of data
perturbation. Zhao et al. in [61], also present their exploration
of federated learning-based edge computing. Hence, consid-
ering the points discussed above, it is evident that edge and
cloud computing based on blockchain is not fully secured and
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private. As a result, further research is required to improve
privacy outcomes in decentralized cloud scenarios.

However, many of these works lack real implementation
and are established only in theory. Others still have limita-
tions in regards to communication and computation cost. In
a smart home scenario, there is a lack of privacy enhance-
ment mechanisms and in particular, when such systems are
connected to the cloud. Conversely, our work focus on devel-
oping and implementing an architecture which integrates the
access control scheme using two smart contracts deployed in
multi edge servers to achieve a secure distributed blockchain
for smart home IoT devices. The use of many edge servers
as an admin provides a complementary way to overcome the
computation cost and single point of failure. We also inves-
tigate one of the popular blockchain technology, Ethereum
smart contract and ERC-20 token generation for implement-
ing a real smart home scenario. To enhance the privacy in our
model, we introduce the concept of differential privacy using
Stochastic Gradient Descent (SGD) algorithm. To the best of
our knowledge, this is the first work that aims to implement a
privacy preserving strategy by integrating differential privacy
mechanism with a machine learning algorithm in blockchain
smart home scenario.

IV. PROPOSED ATTRIBUTE BASED ACCESS CONTROL
SCHEME FOR SMART HOME

The following section explains the key architecture and
design details of our proposed blockchain based system,
in which Ethereum smart contracts are used to register,
and manage Home user, IoT smart home devices and edge
servers.

A. SYSTEM ARCHITECTURE

Fig.1 shows the proposed system architecture which consists
of four participants with access to Ethereum smart con-
tracts through the Internet: end users (home users, services
accessors), IoT smart home devices, edge servers, and the
cloud servers. All the participants have a unique Ethereum
Address with public and private keys. The edge servers
and the cloud node connect directly with the smart contract
through an Ethereum client, while end users connect through
a wallet/front end application. The following summarizes the
key role of different architectural elements:

1) End user: Request access permission through the smart
contract to access a certain smart home device.The
home user device could be PCs, tablets, and smart-
phones that can request a service from the servers
such as checking the home temperature. Also, there are
service accessors involving service providers such as
health care, police or other parties who need to access
the smart home data to provide services to the end
users.

2) IoT devices: The IoT devices primarily include sensors
and actuators that can observe home data (e.g., tem-
perature) or perform some operations (changing the air
conditioner status).
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FIGURE 1. Proposed system architecture.

/

3) Smart home multi-edge servers (Admin Edge): An
Edge node is a device or a cluster of devices that
communicate directly with the IoT devices and the
cloud. It provides a range of services such as collecting
home data from the sensors and sending commands to
actuators to perform a task. Also, it can request or store
data in the cloud. Edge nodes process all incoming and
outgoing transactions and use a shared key for local
communications with IoT devices and local storage. It
maintains the smart contracts that manage registering
the end users and IoT devices, authenticates end users
to access the IoT devices. The mining work is only
done by the edge servers which have more resources
than the IoT devices. Moreover, the edge servers propa-
gate the data to the cloud for further storage or analysis
using differential privacy enhancement mechanism.

4) Cloud: Infrastructure which provides long-term data
analytic and storage. The resources in the cloud can
also be configured as nodes on blockchain to ensure
privacy and integrity of data in the system.

B. ATTRIBUTE BASED ACCESS CONTROL AND SMART
CONTRACTS

The proposed framework comprises of two Ethereum smart
contracts, the Register contract and the Access contract, to
avoid the complexity of a single smart contract. The first
contract stores and manages the subject and object attributes,
as well as policies (e.g., updating, adding, removing). The
Access contract controls IoT device access by producing
ERC-20 tokens and finalising authorisation to access IoT
devices. The smart contract’s description is as follows:
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1) Register contract: The policy is used to register and

maintain the attributes of individuals and IoT devices
on the blockchain. This contract can only be executed
by the administrator. Users, devices, and policies can
all be added by administrators as shown in Fig.2.

1. contract Add{

2. struct User {

3 uint256 id;
4. string name;
5
6
7
8

// other stuff

. bool set; // This boolean is used to differentiate between unset and
zero struct values

9.}

10. address owner;

11. modifier onlyOwner() {

12. require (owner == msg. sender)

14.)
16. mapping (address => User) public users
7.

18. function createUser (address _userAddress, uint256 _userld, string memoxry
userName) public onlyOwner [

19,7 User storage user - users(_userAddress];

20. // Check that the user did not already exist
21, require(luser.set):

22.  [/store the user

23, users[_userAddress] - User({

24. id: _userld,

25. name: _userName,

26. set: true

27. n:

28. )

29.)

30. function deleteUser (address userAddress) public onlyOwner (
1.

32. if (usex.length<2)

33

34. else {

35. unit i=0;

36. while(i< user.length) |

37. if (user(i] == user){

38. delete user[i]

39, userDeleted (user,msg. sendex) ;
0. )

41, iss

FIGURE 2. Add and Delete user functions

Each user and IoT device has its own unique identifier
(Ethereum account address) and a set of attributes re-
lated to it. This contract includes functions for adding,
deleting, and changing subject and object attributes. In
addition, based on the user type, this contract describes
the policy associated with each user and IoT device
Fig.3.

contract Request Access(
function checkAttrebute (addressOf User)

y_at = User) ;

function GetPolicy (addressOf User)

Policy my_po = Policy(addressOf user);

1f (my at.checkAttrebute () == true & my po.GetPolicy()== true)
Teturn my.sendToken ()

return FAILURE;

CounmawNE

FIGURE 3. Request Access function

A policy is a statement that states which user can do an
action on an IoT device by combining a set of subjects
(users), a set of Objects (IoT devices), and a set of
Actions. Table 1 is an example of a policy.

TABLE 1. Example of user attributes, loT attributes and permissions

User attributes | IoT Device attributes Action
UserAddress IoTAddress Execute
UserType ToTName Read
UserName IoTFun write

2) Access Contract: This contract governs access requests

from users (subject) to IoT devices (object). As shown
in Fig.4, the user executes this contract to request a to-
ken in order to communicate with an object. This con-
tract includes functions for validating subject attributes
and checking policy; the AC assesses whether the

1. contract Attribute is ERC20Interface, Owned(
2. string public Symbol;

3. string public decimals;

a. mapping (address => unit) balance;

5 mapping (unit256 —> AttributeData) checkAttribute:|
6. mapping (unit256 => Policy) GetPolicy;
7.

8. event Sendtoken(address from, address to, unit tokens)
9. struct AttributeData{

10. unit256 AttributelD;

1. string Attribute;

12. string approve;

13.

14.  struct Policyl

15. unit256 PolicyID;

16. string Policy

17. string approve;

18 )

19. function AttributeToken() public {

20 balances [msg. sender] = 100;

21. totalSupply = 100;

22. name = "ACoin";

23. decimals = 0;

24. symbol = "A";

1
26. function checkAttribute(unit256 AttributeID, string Attribute, string
approve)public returns (bool success){
27. checkAttribute [AttributeID]=

AttributeData (AttributeID,Attribute,approve) ;

28. return true

29. )

30. function GetPolicy (unit256 PolicyID, string Policy, string
approve) public

31, returns (bool success) {

32 GetPolicy[PolicyID]= Policy (PolicyID,Policy approve) ;

33 return true;

34

35. function sendToken (address to, unit tokens) public

36. returns (bool success) {

37. require (! frozenAccounttol) ;

8. emit sendtoken (msg.sender, to, tokens):

39, return true;

FIGURE 4. Main Access Contract function

subject has rights to do an action on the object based
on the policy received, and then sends a token to the
subject. The main functions of the contract are Check
attribute(), Get policy() and TransferToken().This con-
tract is also in charge of generating ERC-20 tokens.
Fig.5 illustrates how to use some Access contract func-
tionalities. To prevent a valid user from flooding the
network with access control requests, each user has a
specific number of valid tokens at a time dependent on
user type.

(a) Transfer function

(b) Approve function

(c) Token balance

FIGURE 5. Example of Access contract functions execution

C. SYSTEM DESIGN

The proposed system provides authentication for users us-
ing an attribute based access contract and token distribu-
tion. Fig.6 illustrates typical attribute-based access contract
transactions with this authentication mechanism. Users can
remotely access or control home devices using the fresh
generation token that only the requester is able to receive
the response from the legitimate home admin. There are
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| 2. Redirects tosmart contract

3. Callthe smart contact
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FIGURE 6. Typical transactions in proposed scheme

four phases in our system through which the transactions
are carried out; Initialization, Request Control, State Delivery
and Chain Transaction.

1) Initialization: For the sake of demonstration, we’ll
assume that family members make up a group of users
from whom a group administrator is picked. To add
more users and IoT devices, an admin uses the Register
Contracts command. For signing transactions, users
assign their Ethereum Address (EA) and private keys.
In turn, each home admin is in charge of the group
public key, which is used to verify transactions. To
avoid a single point of failure, the admin is run in many
miners on many edge nodes.

2) Request Access: A token is generated for a specific
period and with exact access time when a user wishes
to publish an access or control request with the home
admin. To avoid replay attacks and profiling, this is the
recommended strategy. The user constructs the trans-
action from his or her requirements after getting the
token by activating the TransferToken () from Access
Contract. For example, If a user requests the room tem-
perature, the transaction is computed when the user is
redirected to the smart contract and asks a token. In that
contract, three primary functions are invoked: Check
attribute(), Get policy(), and TransferToken ().The user
then sends the admin the received valid token along
with the request for access. If the user has a valid
token, they will be permitted access. The output of
valid and invalid user requests for accessing data on
room temperature is shown in Fig.7.

3) State Delivery: The smart contract is monitored by the
home admin for new requests. If the transaction passes
verification after a user asks new access or services, the
home admin validates the token validity and allows or
denies access to the IoT device.

4) Chain Transaction: Admin nodes (miners) are in charge
of obtaining transactions from the smart contract, and
they compete to be the first to solve the PoW for
chaining the block to the blockchain. Once the PoW
is solved, the miner broadcasts his or her solution to
the blockchain network in order to establish consensus.
The mining reward is given to the first miner who
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(a) The user with a valid token will only be permit-
ted to check the value of the sensor

(b) User without enough token or an unregistered
user requests for checking the temperature.

FIGURE 7. User request for room temperature data

successfully mines a block that reaches consensus.

D. DIFFERENTIAL PRIVACY ENHANCEMENT
MECHANISM

This paper implements privacy-preserving classification un-
der edge computing and blockchain scenario. As a privacy-
preserving Machine learning model, it should fulfill learning
accuracy. The proposed mechanism should train an accurate
Machine learning model to suit all IoT smart home data. The
model has to classify a given packet to an IoT device in the
smart home scenario as shown in Fig.8.

1. dict_labels = {'Pc': ©, 'Temperature sensor': 1, 'LED sensor': 2}
2. for i in range(y_train.shape[0]):

3. y_train[i] = dict_labels[y_train[i]]

4 y_train = y_train.astype('float')

FIGURE 8. Classification model

The aim is to provide a privacy-preserving data aggrega-
tion method, in the context of Smart Homes that agree to
provide their data to a cloud server, so that the cloud can
learn privately from data produced from IoT devices inside
the home and then deliver these data to external entity in
order to provide better services for home users.

As Fig.9 shows, we consider that a number of edge nodes
have private data from the IoT devices in the smart home
and collaborate with each other to return the results to the
cloud. These edge nodes assist the smart home in sharing
their data with the cloud by learning the model and train
the data before sending final result to the cloud. The edge
nodes first calculate the gradients based on the current model
while attempting to limit the privacy leakage. They em-
ploy a differential privacy scheme to perturb their data. The
cloud collects the gradients broadcasted by the edge nodes
and perform their desired scheme to analyse the data. In
the proposed model, we consider two different methods to
train the model using a machine learning algorithm on the
prepared data. First, without considering privacy, we train
a neural network with one-layer on the data and analyze
the method for validation accuracy. We call this approach
as a “plain algorithm”. Second, we train the same one-layer
neural network on our data based on the scenario explained
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FIGURE 9. Edge node functions for data privacy scheme

before. We use Stochastic Gradient Descent (SGD), as one
of the most popular optimization algorithms [49]. Stochastic
gradient descent (SGD) algorithms have received significant
attention recently because they are simple and satisfy the
same asymptotic guarantees as more computationally inten-
sive learning methods [62]. We call the second algorithm
“Private algorithm”.

1) Plain Algorithm
As mentioned before, this algorithm is without considering
any privacy and the data is completely handed over to the
cloud server as described through the algorithm in Fig.10.
The algorithm specification is as follows:

o Model: K-fold-one-layer neural network

o Loss function: categorical cross entropy

« Optimizer: adam (adaptive moment estimation)

« Number of epochs (training rounds): 10

. kfold = KFold(n_splits=10, shuffle=True)

. fold no = 1

. for train, test in kfold.split(X, y):

model = Sequential ()

model .add (Dense (no_classes, activation='softmax'))

model .compile (loss=loss_function,
optimizer=optimizer,
metrics=['accuracy'])

OO AWN R

FIGURE 10. K-fold-one-layer neural network-plain algorithm

2) Private Algorithm

The basic idea of this approach as Fig.11 shows, called
differentially private stochastic gradient descent (DP-SGD),
is to modify the gradients used in stochastic gradient descent
(SGD), which lies at the core of almost all deep learning
algorithms. Models trained with DP-SGD provide provable
differential privacy guarantees for their input data. We made
the following two modifications to the SGD algorithm in
order to accommodate privacy aspects with the data:

o First, the sensitivity of each gradient needs to be
bounded. In other words, we need to limit how much
each individual training point sampled in a minibatch
can influence gradient computations and the resulting
updates applied to model parameters. This is done by
clipping each gradient computed on each training point.

1. models.append (tf.keras.Sequential ([tf.keras.layers.Dense(2, ac
tivation='softmax')])
optimizers.append( DPGradientDescentGaussianOptimizer (
12 norm_clip=12 norm clip,
noise multiplier=noise multiplier,
num_microbatches=num microbatches,
learning_rate=learning_rate))
losses.append(tf.keras.losses.CategoricalCrossentropy (
from logits=True, reduction=tf.losses.Reduction.NONE))
. models[i] .compile (optimizer=optimizers[i], loss=losses[i],
0. metrics=['accuracy'])

HOoONau s WwN

FIGURE 11. K-fold-one-layer neural network-private algorithm

« Random noise is sampled and added to the clipped
gradients to make it statistically impossible to know
whether or not a particular data point was included in the
training dataset by comparing the updates which SGD
applies when it operates with or without this particular
data point in the training dataset.

« We select following parameters and specifications in the
design of our algorithm:

— Model: k-fold-one-layer neural network

— Loss function: categorical cross entropy

— Optimizer: DP-SGD (differentially private stochas-
tic gradient descent)

— Number of epochs (training rounds): 10

— 12-norm-clip: 1.5

— noise multiplier: 2

3) Dataset

The experiment has been conducted to detect and classify a
type of device in a private blockchain of the Smart home.
One such way is to observe how machine learning techniques
on captured packets (Stored in files like pcap files) are
applied in order to distinguish between different devices in
the network. The dataset was produced by generating a pcap
file using Wireshark to capture the network packets in our
private network. Our synthetic dataset consists of n = 11,000
samples. Using Tshark, we then filter the captured packets
and extract the headers of each packet. Then, processing
and creating the dataset is done using the Python script. We
selected our dataset as it is based on network traffic generated
by our private Ethereum network, thus providing accurate
representations of the devices we use in the experiment.

4) Implementation

Our system is developed on a secure network. The approach
is based on a private Ethereum network that consists of one
laptop (Dell XPS) that serves as an edge server, with two
miners connected to two single-board computers (Raspberry
Pi 3 Model B). The temperature sensors attached to the LEDs
and one home user laptop are then utilised to simulate the
aforesaid scenario. The edge server has four independent
CPU cores and 16 GB of RAM. One processor core is
dedicated to the mining environment, while the remaining
processor cores are dedicated to the edge computing service.
The miner has a 3.5 GHz CPU, 8§ GB RAM, and 1 TB storage
capacity. Two Raspberry Pis with a 1.2 GHz CPU, 1 GB
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RAM, and 32 GB storage are included in our IoT devices, to-
gether with accessory modules such as a temperature sensor
and an LED sensor. As a home user, we configure one laptop
with a 2.2 GHz CPU, 16 GB RAM, and 256 GB storage.

The smart contract is developed on the edge server us-
ing GO-ethereum as blockchain framework and Solidity as
programming language. The contracts are written and com-
piled using the Remix integrated development (IDE) (Remix
2020). The model additionally employs Web3.js (Ethereum
JavaScript API) for contract deployment and compilation, as
well as contract status monitoring. The HTTP connection
is used to interact with the corresponding geth client via
JavaScript. A basic html web page supports the interface
between the home users and the devices. The Raspberry
Pis run the Raspbian operating system with Go-Ethereum to
work in light mode without block mining functions. The first
laptop in the testbed supports two edge service providers and
a block miner that solves a PoW puzzle. The Raspberry Pis
and the second laptop function as blockchain clients, creating
and submitting resource requests transactions to the edge
server. According to the preceding configurations, the edge
server functions as a "complete" blockchain node, storing
all transactions, executing predefined smart contracts, and
mining new blocks. IoT devices, on the other hand, function
as "light" blockchain nodes that store transaction data.

The private blockchain is set up in a number of stages
that include choosing a compatible version of Ethereum,
launching geth with Windows power shell, and requiring
each node to meet numerous conditions before joining. This
includes: (1) creating the first block using the genesis file
(Test.json), (2) connecting to the same blockchain using the
network ID, and (3) creating the private blockchain using the
geth command. For each node, the miner creates an account
with a private and public key and indexes it according to its
address, from which it can communicate with other nodes
and smart contracts. The geth on each node is then started
with a command that includes various flags for various
functionalities. All nodes have the “no discovery” flag set to
prevent them from being exploited by external attackers. As
a result, they are unable to connect to other peers unless they
have specified addresses. The node ID is then retrieved via a
specific command, allowing syncing to take place. To build a
private blockchain with completely synchronised nodes, the
last step is repeated with the two Raspberry Pi and the home
user laptop.

The smart contracts assign varying permissions to different
devices based on the user type, with the edge server having
full access to all functionalities while other users and IoT
devices are only allowed to use a subset of them. If a user
or several vulnerable devices are compromised, this setting
limits the impact of the attacker’s malicious activity.

V. EVALUATION AND ANALYSIS

This section provides a discussion on the security, privacy
and performance analysis of the Attribute based smart con-
tract edge computing scheme. We also present the perfor-
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mance of our integrated scheme using differential privacy
enhancement model.

A. THREAT MODEL

Our goal is to collect Smart Home data from the edge nodes
within the smart home. Since all data stored in blocks will
be available to all blockchain users, we assume that, the
adversary in our model may have full access to the data. We
focus on side channel attacks where, adversaries use machine
learning algorithms to infer information of smart home IoT
devices by monitoring the incoming/outgoing network traffic
to/from smart home. Some unique IoT devices or traffic
patterns may help adversaries to correlate with their side
information on some residents, thus giving adversaries prior
information to aid the inference attack. As a result, they
can create a profile about smart home residents and launch
subsequent attacks (linkage attack).

In addition, we also consider other threats associated with
the malicious user where adversarial steal identity infor-
mation such as the information leak from the geographical
data about the edge node and allow adversary steals specific
tasks that edge node execute. Also, another assumption is
the adversary can legally communicate with the edge node
and as a result, leaking geographical information. Attackers
can easily measure the communication time and estimate the
physical distance from measuring/ comparing latency.

We assume that the cloud server deployed is secured as it is
one element of the described architecture in section 4.1. The
classification model is trained on different edge nodes with a
tailored machine learning algorithm to classify a given packet
to one of the IoT devices in the smart home.

B. SECURITY ANALYSIS

Confidentiality aims to ensure unauthorised users are pre-
vented from gaining access to IoT devices and their data
and making sure that private data is delivered only to the
intended users. One approach to achieve confidentiality is
message encryption and decryption using SSL session after
authenticating the user successfully [22]. As a powerful fea-
ture of blockchain, our framework assigns a unique 20-byte
Ethereum Addresses (EA) directly to any node (including
IoT devices) with almost no collision. EA has asymmetric
public key pairs that can be used to establish secure SSL
session for communication between any nodes such as au-
thenticated user or IoT device. During the private network
formation, the miner distributes private and public keys asso-
ciated with EA for each node. The temperature sensor or the
LED, as the sender node, utilises the private key to provide
a digital signature allowing the requested transaction to be
broadcast across the entire network.

In terms of availability, our architecture leverages the
inherent properties of the block chain technology which
offer reliability and robustness. Because of the decentralised
structure of the blockchain and the ledger replication in
multiple locations, there is no possibility for a single point
of failure and that all data is circulated via multiple nodes.
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A copy of the transaction history is stored in each admin
node, enabling it to be verified and linked back to the initial
transaction. Moreover, to increase smart home availability,
IoT devices are protected from malicious requests by limiting
the accepted transactions to those users who have a valid
token. So, every transaction received is authorised by the
admins before forwarding it to the IoT devices.

Furthermore, the use of valid Token increases the level of
security in our architecture. That can be observed as only the
admins can issue a valid token and only the intended user can
use that Token. Fig.12 shows the revert error when anyone
other than the admin tries to create a user or issue a token.
Also, token’s owner cannot transfer the token to any other
users, so if the public key of a user is compromised, the smart
contract construction prevents token transfer. The admin will
allow the only transaction that has a valid Token associated
with a valid user to be accepted in the network.

(a) Invalid user requesting create a new

(b) Invalid user requesting for token

FIGURE 12. Revert transaction

1) Denial of service (DOS) Attack: In this attack, the
attacker sends a large number of transactions to target
in order to disrupt its availability. The use of attribute-
based access control smart contracts in our architecture
reduces the effect of this attack since only authorized
transactions would be accepted. The admin has to
examine the address and policy for each user and
device to issue a valid Token to send a transaction.
If the admin receives several unsuccessful access re-
quests from an unauthorized entity, it can block that
transaction and reject it. Furthermore, the policy will
be enforced automatically by the smart contracts. If
hackers compromise and control the IoT devices for
malicious activities, such as making continuous re-
source requests, or initiating denial of service attacks,
the smart contracts will execute automatically based on
the preprogrammed policies of the total token supply,
the access time and duration. For example, in our
scenario we specify the total token supply by 100 form
each user, if users or devices request an access, the
request contract will issue one valid token by a time
and if the requests are exceeded the number of their
token supply for the transaction will be rejected.

2) Modification attack: In this attack, the attacker may
try to alter or delete stored data of a particular user or
device. To launch this attack, the attacker has to com-

promise the local storage security. Different cases of
modification attacks have been discussed in blockchain
based information sharing frameworks. Authors in [63]
[64] claimed that the implantation of smart contract
protocol prevent the adversary from break the security
of their proposed scheme. Similarly, in our scenario
only the admin has the right to store, delete or update
the date based on the policy in the smart contracts.
All the information about users, devices and policy are
shared between the edge nodes and the cloud, assuming
adversary want to change or modify the ID of a user or
any device, the change will be detected by the edge
nodes since every block contains its previous hash
block and change in one block will result in a break
in the chain.

The next class of threat is against authentication and
access control. It has been claimed by [9] that, it is
possible for an attacker to take control of a smart home
device or introduce a fake device to a home network.
Our design employs a hierarchical defence mechanism
against these attacks. First, there is an admin node
which controls all incoming and outgoing transactions
and prevents smart home devices from being directly
accessed from the Internet. If the admin detects a
transaction that does not follow the policies defined by
the contract, the transaction is dropped.

The second defence is that all devices in the home
are required to have a unique address and follow the
same genesis transaction in the local blockchain that
allows them to initiate communication with the admin
and other devices. A device without a corresponding
address and genesis transaction is isolated from the
network. This prevents an attacker from introducing
unauthorized devices to the network.

C. PRIVACY ANALYSIS

In our proposed model, we assume that all participants have
a verified identity that is managed and issued by the access
control scheme in the smart contract in a private blockchain.
Therefore, the identity privacy in our framework is out of the
scope of our work. We only consider privacy leakage from
data when a learning process is running.

We present security analysis on the proposed differential
privacy-based blockchain system, which are associated with
the pre-defined threat environment given in the threat model
section. Based on the threat assumption, adversaries have full
access to all data stored in blocks. In our model, for the first
type of threat, without adding noise, adversaries can easily
obtain real identities and behaviour of users through mining
information or launching a linkage attack. Fortunately, our
model uses a differential privacy protection method (Gaus-
sian distribution mechanism) to add noise into the real data,
such that a distortion is made to protect the target set. We
observe that, using the gaussian mechanism can successfully
screen and classify the IoT devices while insure and guaran-
tee the privacy of all data.
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In data mining-based attacks, from the adversary’s per-
spective, adding the noise can escalate the complexity of
the feature extraction and information retrieval. Moreover,
added noise also is essential to defend users’ and IoT devices’
identities to prevent the second type of threat, as matching
data are hardly done between blockchain data and other
supportive databases for processed data. Thus, our model can
efficiently improve the privacy-preserving capability.

D. PERFORMANCE ANALYSIS

To evaluate the performance of the proposed model, we
conduct experiments in a private Ethereum network where,
the edge server represents the home admin to add home user,
and the two sensors (temperature and LED). The home user
requests room temperature to turn on/off the AC (change the
state of LED) based on temperature. The admin checks the
user validity and then gives access to the user as described
previously in the system design section. We simulate two
types of transactions in a smart-home setting i.e. store and
access. Here, we investigate the store transaction (adding a
new user or [oT devices using the register contract) and the
request access transaction to invoke some data (using access
contract). We evaluate the block size, gas cost and time cost
by comparing our scheme with the works in [40], [44], [45]
and [46].

1) Block size: Ethereum’s block size is based on the
complexity of contracts being run and the number
of transactions known as a Gas limit per block, and
the maximum can vary slightly from block to block.
Depending on how much gas each transaction spends,
transactions are combined and shaped into form of
blocks. We investigate the number of transactions per
block. We find that, 1IMB block contains 280 store
and 300 access transactions. The sizes calculated are
2.80KB for store and 4.00KB for access transactions.
The average size of a block is 130KB and each block
can store up to 200 user or device registrations.

Since, the size of the block is the key factor that
impacts the overall latency, in our experiment, we find
block size varies between 118 KB to 145 kB based
on the contract being executed. We evaluate the in-
teraction delay of register contract and access contract
which are important to ensure system effectiveness.
Fig.13 shows the time for one transaction to be com-
pleted is less than 30ms in the Register contract and
50ms for the Access contract. Such a delay should
satisfy the latency requirement of the real-time appli-
cations.

However, the latency gets worse with register contract
as the block size is increased. The latency increases due
to the increased time needed to include the transaction
in the block and the increased bandwidth required
to propagate a bigger block in the network. How-
ever, the completion of new block validation and the
transmission is faster since the edge server has more
computing and bandwidth resource. On the other hand,
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FIGURE 13. Time to complete one transaction

when comparing with [44], [oT-BC is based on Fabric
architecture which in general has a larger transaction
size because they carry the certificate information for
approval. As a result, the total increase in transaction
latency in IoT-BC is 22.45% while in our scheme it is
around 20.23%.

The CPU and memory usage are also explored as illus-
trated in Fig.14. We realize that a very low percentage
of CPU resource is taken by the regular transactions
while the memory usage is slightly greater since the
blockchain client uses 8% even in normal state time.
However, we note that in a real smart home envi-
ronment, the number of IoT devices connected will
be increased and that will have a possible impact on
the blockchain overhead. Since the miner is located
at the edge server, mining, verifying and storing new
blocks will increase the computing resources usage.
Therefore, specifying the number of IoT devices to be
managed by one edge server, or launching more VM
as the miners to share the load of computation are
recommended.
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FIGURE 14. Resource usage for single transaction
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TABLE 2. Calculated gas cost

Proposed Scheme | Scheme in [46] | Scheme in [45]
AddUser 85,662 - 152,863
AddPolicy 360,273 128,777 363,964
DeployACC 1,377,071 1,706,290 1,301,972

2) Gas cost: The deployment of smart contracts on the

blockchain and execution of these contracts ABIs (Ap-
plication Binary Interface) require a fee to be paid
to the miner which mines the block. A unit called
gas is utilized by Ethereum to measure the amount
needed to complete a task, e.g., implementing a smart
contract or executing an ABI. In common, more gas is
consumed with a more complex task. Gas has a price
that differs with time. Thus, the fee needed to be paid
for completing a task is the result of the amount of used
gas and the gas price. Table 2 lists the amount of gas
paid for some functions, like adding a subject/object
or policy, deploying the AC and executing the AC.
In our proposed scheme, the gas amount required for
deploying the access contract is 1,377,071, which is
more than the existing schemes compared here. We
can observe from the table that the proposed ABAC
framework in [45] consumes less gas than our scheme.
This increased value is due to the relatively complex
interactions in our scheme for retrieving attributes and
policies between the Access contract and Admin policy
smart contract and Authority contract.
However, in [46] one ACC is deployed for only one
subject-object pair. The gas cost increases linearly as
the number of subject-object pairs of the system in-
creases. While in our proposed system there is no need
to deploy a new Access contract when the subject and
object increase. This results in less gas consumed and
hence, less cost. Moreover, when comparing the gas
cost for performing functions such as add user or add
policy, our proposed scheme consumes less gas for the
same functions in the scheme [45].

3) Time cost: The approximate time cost of executing the
Access Contract is 40 seconds in our proposal which
is, more than 36 seconds of average time for ABAC
shown in [45]. This is due to the time cost of invoking
token in our proposal scheme and the extra time needed
to check token validity and call other smart contracts.
However, the fresh onetime token generated during
each Access request is used for securing the session
and this ensures data confidentiality which worth the
few seconds’ difference. Note that the execution time
of the ABI fluctuates depending on several aspects such
as the system’s computing power, network architec-
ture, timing of mining, etc., so the execution time may
vary within different Ethereum network.

Furthermore, the time cost of deploying our access
smart contract seems less than 185.83 seconds of

HomeChain framework deployment [40] due to the
recorded result into smart contract which causes ad-
ditional smart contract invocations (i.e., getRequest,
getRL, uploadResponse, and getResult). Moreover, our
framework uses Differential privacy to further improve
the privacy and decrease information leak. Differential
Privacy is the most suitable technique for big data as it
doesn’t allow degradation of system’s speed compared
to other techniques [65].

E. DIFFERENTIAL PRIVACY ENHANCEMENT MODEL
EXPERIMENT RESULT

We utilize the confusion matrix as a way of comparing the
performance of both machine learning algorithms presented
in the previous section. As Fig.15 illustrates the possible
outcomes of a classification, which in our case is either ‘0,
for the PC, ‘1’ for the Temperature sensor or ‘2’ for the LED
sensor, against the actual values of the class feature already
present in the evaluation (testing) dataset.

Plain algorithm Private algorithm

Pc 1955 53 0 Pc 2018 35 0

Temperature | 253 7960 0
sensor

LED sensor 0 40 694

2 Temperatwre [~ 249 7997 0
° 1Isor

True label

v
£ LED sensor 0 22 724

pe Temperature  LED e Temperatre  LED
sensor sensor

sensor sensor

Predicted label Predicted label

FIGURE 15. The confusion matrix of device classification

Four conditions that can be shown in a confusion matrix,
True Positive (TP), where the classifier has correctly mea-
sured the number of packets that are correctly classified to a
device type, True Negative (TN), similar to TP but the value
of the class feature is negative, False Positive (FP), where the
classifier measures the number of packets that are incorrectly
classified as a device type. and False Negative (FN), which
measures the number of packets that are incorrectly not clas-
sified as a device type. One metric is created by combining
the TP, TN, FP, FN values, namely Accuracy which we
can use to evaluate the Classifiers. Accuracy represents the
probability that a record is correctly identified as one of the
device types. The calculation of Accuracy (Overall Success
Rate) calculated from the following equation:

OSR= (TN +TP)/(TP+FP+TN + FN) (2)

For the classification stage, we use the python in google
colab environment for applying a well-known machine learn-
ing algorithm. We illustrate the approach using k-fold cross-
validation on the neural network model, to ascertain the
efficiency of our proposed scheme.

Fig.16 shows the accuracy of the model before (plain
algorithm ) and after (private algorithm) adding the noise.

As shown in Table 3, the plain model, has an average
accuracy of close to 0.95 while in the private model the
accuracy close to 0.93.

Our experiment shows that the accuracy of our private
model is very close to that of plain one when the privacy
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FIGURE 16. 10-fold validation results
TABLE 3. Calculated accuracy
Classifier Accuracy
Plain algorithm 0.95
Private algorithm 0.93

budget is 0.7 because the private method with noise dis-
turbance is relatively small. Therefore, the accuracy of this
classification method is close to that of the plain classification
method. It is shown in the experiment that, the private model
has the same accuracy as the plain model in classifying the
device type. Thus, our results demonstrate the feasibility
of differential privacy guarantees without significant loss in
terms of accuracy. Thus, edge nodes aggregate noisy data to
the cloud while preserving smart home privacy and provide
accurate data for further analysis.

However, there is a trade-off between accuracy and pri-
vacy that directly links to the noise addition mechanism. To
increase the level of privacy, we increase the amount of noise.
But, on the other hand this may result in loss of data accuracy.
Therefore, efficient measurements are required to achieve the
best result. However, it is outside of the scope of this work
and we leave it for future work. In our future work, we will
conduct further analysis to measure the differential privacy
guarantee to reach improved privacy protection without los-
ing accuracy.

VI. CONCLUSION

This paper evaluates a real-time interaction model between
home users and a fully validating private blockchain node
through the use of attribute-based access control scheme to
authenticate smart home users and IoT devices. We also
integrate differential privacy scheme in our proposed model
to preserve data privacy. By combining the blockchain tech-
nology with attribute-based access control, differential pri-
vacy and edge computing, our proposed model solves the
problem of the traditional access control method which is
based on the centralized design to meet the access control
requirements in IoT. In this paper, we develop Ethereum
blockchain, multiple smart contracts and our implementation
demonstrates a better performance of our proposed scheme.
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Compared with the existing scheme, our proposed scheme
achieves more fine-grained access control with freshly token
generation and less computing cost with edge computing.
Our framework also achieves desired security and privacy
goals and is resilient against modification, DoS attacks, data
mining and linkage attacks. Our work is an ongoing research,
and we are currently working on testing our proposed model
with differential privacy in a wider scale with different clas-
sifier algorithms as a proof of concept. Also, we aim to
conduct further research to achieve a better privacy guarantee
to highly protected smart home data with better accuracy.
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