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Abstract 

Currently, monitoring of blood glucose level (BGL) is constrained by the invasive 
nature of BGL measures. We investigated heart rate variability (HRV) parameters as 
potential non-invasive markers of BGL. Healthy volunteers (n = 25; aged 27 ± 9 years) 
uninhibited by regular medications or chronic illness were recruited for this study. BGL 
and HRV were assessed during fasting (9:00am), postprandial (12:00pm), and 
postabsorptive (3:00pm) periods using self-monitoring of blood glucose techniques 
and ten-minute electrocardiogram, respectively. Frequency-domain HRV measures, 
which estimate contributions of sympathetic and parasympathetic systems to 
autonomic modulation of the heart, were correlated against BGL data with the 
following significant (p<0.05) findings. The change in BGL from fasting to postprandial 
levels was negatively correlated with fasting low frequency (LF) power and total power 
(TP). Postprandial BGL was negatively associated with fasting LF and TP, as well as 
with postprandial LF, high frequency (HF), and TP. The change in BGL from 
postprandial to postabsorptive levels was positively correlated with fasting LF power, 
as well as with postprandial LF, HF, and TP. Frequency-domain HRV parameters may 
be useful in predicting the magnitude and direction of acute fluctuations in BGL, and 
further research could develop them as non-invasive markers of BGL. 
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1 Introduction 

 

Diabetes is considered a leading epidemic of the 21st century, affecting an estimated 

451 million adults worldwide (1). It is a group of metabolic disorders characterised by 

chronically-high blood glucose level (BGL), a condition which is also known as 

hyperglycaemia (2). Although it is well-known that indulging in high-sugar, high-fat 

diets and sedentary lifestyles is associated with diabetes and other metabolic 

disorders, adherence to these ‘Westernised’ lifestyle behaviours remains high (3, 4). 

Complications such as renal failure, blindness, and neuropathy can arise from 

uncontrolled hyperglycaemia (5) as certain cells in the renal nephrons, eyes, and 

neurons of the autonomic nervous system (ANS) are susceptible to hyperglycaemic 

damage (6). Consequently, the progression of diabetes is associated with a decline in 

autonomic modulation of the heart and a corresponding increase in the risk for 

cardiovascular disease (7-9). The literature agrees that the most effective means of 

reducing complications of diabetes is stringent control of BGL (10, 11). 

Problematically, an estimated 45.8% of all people living with diabetes worldwide 

are undiagnosed or unaware of their condition, with higher prevalence in developing 

countries (12). Additionally, glycaemic control is not optimal even in populations of 

those who are aware of their condition; in one large-scale study, roughly half of a 

diabetes population did not maintain BGL at the recommended healthy level (13). 

Limitations such as the invasive nature of all commercially-successful measures of 

blood glucose may explain these alarming statistics (14). Invasive procedures, such 

as drawing a sample of blood using a lancet device and glucometer, are commonly 

used for their accuracy (15, 16). However, the associated pain presents a 

psychological barrier to self-monitoring of blood glucose (17). A non-invasive marker 

of BGL may improve patient compliance with self-monitoring of blood glucose and 

facilitate glycaemic control in diabetes (18, 19). 

Heart rate variability (HRV) parameters reflect ANS output and can be recorded 

using a non-invasive electrocardiogram (ECG) (20). In a healthy human, the ANS 

modulates control over the heart via two counterregulatory branches – the sympathetic 

and parasympathetic systems – though this control is reduced in diabetes (21-24). 

HRV is one of the most commonly used measures of ANS activity (25), and is studied 

widely as a marker for sudden cardiac death after myocardial infarction and as an 

assessment of diabetic neuropathy (26-28). HRV can be extrapolated from short-term 
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ECG recordings using advanced computational methods. Spectral techniques are 

used to determine the total power of HRV, and this in turn can be divided into different 

parameters based on predefined frequency bands, such as low frequency and high 

frequency. These two parameters reflect the contributions of sympathetic and 

parasympathetic systems to autonomic modulation of the heart. 

HRV measures are already appropriate for use in clinical settings as prognostic 

tools for cardiac autonomic neuropathy in diabetes (29). HRV may have further 

application in the evaluation of glycaemia as ANS regulation governs the cephalic 

phase of digestion, which primes the body for the inevitable rise in blood glucose after 

a meal. The long-term effects of abnormally-high BGL on HRV are well established in 

the literature, but the short-term relationship between BGL and HRV measures has 

only been investigated by a few cross-sectional studies (30-36). No study to date has 

successfully implemented autonomic markers alone as predictors of BGL. 

Previous research conducted by our research unit (33) has identified several key 

correlations between HRV parameters and BGL measured concurrently in a mixed 

sample of type 1 and type 2 diabetes, but found no correlations of significance within 

a healthy control group. This may be because healthy individuals experience only little 

glycaemic change over short-term periods. As such, the present study continues this 

research on healthy participants by assessing BGL and HRV across a longer time 

period and whilst participants were in different metabolic states, including fasting (at 

9:00am), postprandial (12:00pm), and postabsorptive (3:00pm) periods. It is 

hypothesised that the ingestion of a meal will be marked by a significant rise in BGL 

across the sample, and that BGL will be correlated with measures of ANS activity. In 

this exploratory, proof-of-concept study, we highlight the potential of HRV as a non-

invasive marker of BGL. 

 

2 Experimental 

 

2.1 Subjects 

A total of 25 healthy individuals were recruited from the local Sydney metropolitan area 

for this pilot study. Participants were excluded from the study if they suffered from a 

chronic health condition, were on regular medication, smoked > 10 cigarettes per day, 

consumed > 10 standard drinks per day, or were pregnant. To comply with the ethics 

protocol, participants were also screened for high blood pressure and were removed 
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from the study if systolic blood pressure exceeded 160 mmHg or if diastolic blood 

pressure exceeded 100 mmHg. All participants were required to sign a consent form, 

as well as abstain from food, drink (except water), nicotine, and alcohol for eight hours 

prior to study commencement (37, 38). The protocol was conducted in a controlled 

laboratory setting and was approved by the University of Technology Sydney Human 

Research Ethics Committee (HREC: 2014000110). 

 

2.2 Study procedure 

HRV and BGL were each assessed at fasting (9:00am), postprandial (12:00pm), and 

postabsorptive (3:00pm) periods using 10-minute ECG recordings and blood glucose 

‘fingerpicks’, respectively. The timing of these assessments was based loosely on 

previous literature (39, 40). The fasting assessment provided baseline measurements 

as participants were required to undergo at least 8 hours of caloric restriction prior to 

study commencement. The postprandial or postbreakfast assessment was recorded 

at 12:00pm when glucose levels were expected to peak. Participants were encouraged 

to prepare and bring their own breakfast or to at least eat a meal they would consider 

‘regular’ (41). Glucose peaks observed after a normal, daily meal are similar to glucose 

peaks after a two-hour glucose tolerance test (42). However, differences in meal 

composition between individuals can confound postprandial glucose profiles (43, 44) 

and, as such, participants were required to report all food and drink consumed during 

the study so that kilojoule intake could be used as a covariate in the correlation 

analysis. Finally, the assessment at 3:00pm recorded BGL when participants were in 

a postabsorptive state, when glucose levels were returning to baseline. 

At each of the three assessments, BGL was assessed using an ACCU-CHEK® 

Performa II glucometer (43) (Roche Diagnostics GmbH, Mannheim, Germany) with a 

finger prick test applied to the ring finger on the dominant hand (45). Blood pressure 

(BP) was measured pre-study and post-study using an OMRON HEM-7000 automated 

BP monitor (OMRON, Kyoto, Japan) after each participant had been allowed to rest in 

a seated position for five minutes (37). Due to the dynamic nature of BP, the mean of 

the three BP recordings was used to provide better accuracy, with a two-minute rest 

interval between each recording (37, 46). HRV was recorded for 10 minutes using a 

three-lead FlexComp Infiniti (SA7550) encoder (Thought Technology Ltd., Montreal, 

Canada) at a sampling rate of 2048 Hz, using the Einthoven electrode placement (47). 
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Of the various short-term measures of HRV, 10-minute ECG recordings have excellent 

reproducibility and provide an accurate representation of ANS activity (48). 

Frequency-domain HRV measures are a set of highly-reputable variables which 

are favoured in certain studies as they reflect specific types of autonomic modulation 

(32, 33). These HRV measures were extrapolated from each of the ECG recordings 

using Kubios HRV Premium, a program which was used to automatically detect R-

waves, which represent each contraction or main electrical depolarisation of the heart 

(49), as well as remove artefacts (50). A time-series graph was produced for each 

ECG trace by plotting the R-R intervals, which denote the distance in milliseconds 

between each R-wave. The time-series graph was converted to a power frequency 

spectrogram using Welch’s method, which is a periodogram based method to solve 

the discrete Fourier transform (38, 49, 51). Within the spectrogram, three predefined 

frequency bands were identified: low frequency (LF) power (0.04-0.15 Hz), high 

frequency (HF) power (0.15-0.4 Hz), and total power (TP), which was represented by 

the entire spectrogram (0.00-0.4 Hz) (51, 52). LF power and HF power estimate the 

contributions of sympathetic and parasympathetic activity to autonomic modulation of 

the heart. LF power reflects sympathetic activity, the branch of the ANS dedicated to 

the fight or flight response; HF power reflects parasympathetic activity, the opposing 

branch associated with the rest and digest phase; and TP reflects overall ANS activity 

(52, 53). LF, HF, and TP parameters were all natural logarithm transformed as their 

distribution was revealed to be highly skewed, though this is typical of HRV studies 

(37, 54, 55). 

 

2.3 Statistical analysis 

A paired-sample t-test (two-tailed) was used to determine whether BGL or HRV 

parameters changed significantly in the sample across each of the three assessments. 

A Partial Pearson’s correlation identified associations between HRV parameters and 

BGL, adjusting for kilojoule intake as a covariate. As no kilojoule information was 

available for the fasting assessment, Pearson’s correlation was used instead. 

Significance level was set at p<0.05. The HRV parameters used in the analysis 

included LF power, HF power, and TP. The BGL variables were defined as fasting 

(BGL1), postprandial (BGL2), postabsorptive (BGL3), the change from BGL1 to BGL2 

(∆BGL 1-2), and the change from BGL2 to BGL3 (∆BGL 2-3). Finally, multiple 

regression analysis was used in cases where three or more HRV measures were 
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found to be significantly correlated with BGL to determine the strongest individual 

predictor of BGL. 

 

3 Results 

 

Data was collected from 25 participants at three different time points across the day, 

though ECG data from two participants was excluded from the statistical analysis due 

to noisy ECG data. The mean age of the sample was 27 ± 9 years, with a sex 

breakdown of ~48% males, and the mean body mass index was 24 ± 3 kg/m2. The 

results of the t-tests are presented in Table 1. BGL increased significantly from Test 1 

(9:00am) to Test 2 (12:00pm) (p<0.01) after all participants consumed a regular meal. 

 

Table 1. Changes in mean HRV parameters and BGL between fasting, 

postprandial, and postabsorptive assessments 

     p  

Variable Test 1 (9:00am) 
Test 2 

(12:00pm) 

Test 3 

(3:00pm) 
Test 1 vs 2 Test 2 vs 3 Test 1 vs 3 

BGL (mmol/L) 4.9 ± 0.4 5.5 ± 0.7 5.3 ± 0.9 <0.01* 0.46 0.06 

LF (ms2) 7.0 ± 0.9 6.9 ± 1.1 7.0 ± 0.8 0.26 0.69 0.67 

HF (ms2) 5.9 ± 1.3 5.8 ± 1.2 5.9 ± 1.0 0.62 0.64 0.89 

TP (ms2) 7.5 ± 1.0 7.3 ± 1.0 7.4 ± 0.7 0.16 0.59 0.45 

 

Key: * = Statistically significant (p<0.05); BGL = Blood glucose level; HF = High frequency; LF = Low frequency; 

mmol/L = Millimoles per liter; ms2 = Millisecond squared; TP = Total power. Data presented as mean ± standard 

deviation. LF, HF, and TP values are presented as the natural logarithm. 

 

3.1. Correlation analysis 

The Partial Pearson’s correlation was used to determine associations between HRV 

parameters and BGL variables, in which kilojoule intake was applied as a covariate 

(Table 2). The mean kiljoule intake following the fasting assessment was 3072 kJ ± 

1517. Several correlations were observed between postabsorptive HRV parameters 

and fasting BGL, however these findings were omitted from Table 2 as they were not 

relevant to the aims of the present study, which is interested in the capacity for HRV 

to predict future or concurrent glucose levels or changes. 
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Consequently, we observed no significant correlations between any HRV 

parameter and fasting BGL, and no correlations between any HRV parameter and 

postabsorptive BGL. There were, however, multiple significant correlations between 

the various HRV parameters and postprandial BGLs, as well as the change in BGL 

from fasting to postprandial and from postprandial to postabsorptive. Postprandial BGL 

was found to be negatively associated with fasting LF power (r = -0.62, p<0.01) and 

fasting TP (r = -0.57, p<0.01), as well as postprandial LF power (r = -0.60, p<0.01), 

postprandial HF power (r = -0.49, p=0.02), and postprandial TP (r = -0.56, p=0.01).The 

change in BGL from fasting to postprandial was negatively correlated with fasting LF 

power (r = -0.52, p=0.02) and fasting TP (r = -0.50, p=0.02). Finally, the change in 

BGL from postprandial to postabsorptive was positively correlated with fasting LF 

power (r = 0.46, p=0.04), postprandial LF power (r = 0.51, p=0.02), postprandial HF 

power (r = 0.45, p=0.04), and postprandial TP (r = 0.51, p=0.02). 
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Table 2. Associations between heart rate variability parameters and blood 

glucose levels 

 

Parameter 
BGL1 

(9:00am) 
∆ BGL 1-2 

BGL2 

(12:00pm) 
∆ BGL 2-3 

BGL3 

(3:00pm) 

Test 1 

(9:00am) 

LF 

    r 

    p 

 

-0.23 

0.31 

 

-0.52 

0.02* 

 

-0.62 

<0.01* 

 

0.46 

0.04* 

 

0.09 

0.69 

HF 

    r 

    p 

 

-0.08 

0.74 

 

-0.41 

0.07 

 

-0.43 

0.05 

 

0.24 

0.29 

 

-0.03 

0.90 

TP 

    r 

    p 

 

-0.18 

0.44 

 

-0.50 

0.02* 

 

-0.57 

<0.01* 

 

0.42 

0.06 

 

0.07 

0.75 

Test 2 

(12:00pm) 

LF 

    r 

    p 

 

- 

- 

 

- 

- 

 

-0.60 

<0.01* 

 

0.51 

0.02* 

 

0.17 

0.47 

HF 

    r 

    p 

 

- 

- 

 

- 

- 

 

-0.49 

0.02* 

 

0.45 

0.04* 

 

0.18 

0.42 

TP 

    r 

    p 

 

- 

- 

 

- 

- 

 

-0.56 

0.01* 

 

0.51 

0.02* 

 

0.19 

0.40 

Test 3 

(3:00pm) 

LF 

    r 

    p 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

0.29 

0.20 

HF 

    r 

    p 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

-0.05 

0.82 

TP 

    r 

    p 

 

- 

- 

 

- 

- 

 

- 

- 

 

- 

- 

 

0.24 

0.29 

 

Key: * = Statistically significant (p<0.05). BGL = Blood glucose level; HF = High frequency; LF = Low frequency; 

TP = Total power; Δ = Change in. Retroactive findings were not presented in this table as this was a prospective 

analysis. The intention was to determine whether HRV parameters were related to concurrent or future BGL or 

BGL changes. Thus, it is not relevant to this study to observe correlations between HRV parameters and BGL 

that were recorded in earlier time points. 

 

 

 

As there were multiple significant correlations between postprandial BGL (BGL2) and 

HRV variables, a multiple regression analysis was performed to determine which HRV 

parameter was the strongest predictor of BGL (Table 3). The regression retained all 

five of the originally entered variables (fasting LF power, fasting TP, postprandial LF 

power, postprandial HF power, postprandial TP), and had an overall significance of 

p<0.019 (p<0.075). Together, these five variables explained 52% of the variance in 

postprandial BGL (F = 3.708; DF = 5, 17; p<0.019; R = 0.722; R2 = 0.522; AR2 = 

0.381). Furthermore, the retained variables did not present as independently 
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significant predictors, although fasting LF power approached statistical significance 

(p=0.084). 

Similarly, multiple HRV variables were significantly correlated to the change in 

BGL between postprandial and postabsorptive (Δ BGL 2-3); and, as such, a multiple 

regression analysis was performed to determine which HRV parameter was the 

strongest predictor (Table 4). The regression retained all four of the originally entered 

variables (fasting LF power, postprandial LF power, postprandial HF power, 

postprandial TP), but was found to be non-significant overall. 

 

Table 3. Regression analysis for postprandial glucose level (BGL2), and the 

significantly correlated HRV parameters 

 
Regression summary for dependant variable: BGL2 

R = 0.722; R2 = 0.522; AR2 = 0.381; F(5,17) = 3.708 
p<0.019, SE of Estimate = 0.517 

Variable β B SE of B t p 

Intercept  6.717 1.580 4.254 0.001 
Fasting LF -1.023 -0.719 0.392 -1.834 0.084 
Fasting TP 0.715 0.493 0.310 1.594 0.129 

Postprandial LF -1.234 -0.768 0.875 -0.878 0.392 

Postprandial HF -1.089 -0.608 0.365 -1.705 0.106 
Postprandial TP 1.804 1.214 1.159 1.048 0.309 

 

Key: BGL = Blood glucose level; HF = High frequency; LF = Low frequency; SE = Standard Error; TP = Total 

power 

 

 

Table 4. Regression analysis for change in BGL from postprandial to 

postabsorptive (Δ BGL 2-3), and significantly correlated HRV parameters 

 

Regression summary for dependant variable: Δ BGL 2-3 

R = 0.442; R2 = 0.195; AR2 = 0.017; F(4,18) = 1.093 

p=0.390, SE of Estimate = 1.114 
Variable β B SE of B t p 

Intercept  -2.335 3.395 -0.688 0.500 
Fasting LF 0.106 0.127 0.488 0.261 0.797 

Postprandial LF 1.003 1.066 1.765 0.604 0.553 
Postprandial HF 0.391 0.373 0.766 0.487 0.632 

Postprandial TP -0.979 -1.125 2.412 -0.466 0.646 

 

Key: BGL = Blood glucose level; HF= High frequency; LF = Low frequency; SE = Standard Error; TP = Total 

power; Δ = Change in 
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4 Discussion 

 

Our findings that HRV measures are inversely related to BGL are congruent with the 

literature (30, 35). Many studies in this area base this on pooled data from both healthy 

participants and participants with diabetes and impaired fasting glucose. Our study is 

one of few that have identified significant correlations in healthy participants alone and 

is the first to determine that HRV measures obtained during fasting and postprandial 

periods are associated with healthy ranges of BGL. In general, the literature has 

focused on applying HRV measures as the gold standard for assessing cardiac 

autonomic neuropathy in diabetes (56, 57), and so our findings may be considered 

novel. It is well-known that duration of diabetes is a strong predictor for autonomic 

neuropathy (58). Long-term hyperglycaemic damage in diabetes targets neurons of 

the vagus nerve and reduces autonomic tone (59), and this mechanism contributes to 

the consensus that higher BGL is associated with lower HRV measures. It is 

interesting to note, however, that HRV measures are inversely related to BGL even in 

the absence of this mechanism, or the absence of complications of diabetes. Our 

findings concur with the few studies that have focused on healthy people in that higher 

levels of blood glucose are related to lower levels of autonomic modulation of the heart, 

even in groups with normal glycaemia and normal autonomic function (35, 60). 

The values for LF power, HF power, and TP observed in this study were similar to 

those reported by other studies on healthy subjects (32-34), and all glucose levels 

were verified to be in the healthy range. The difference between fasting and 

postprandial values of LF power are natural and correlate with changes in blood 

glucose. Correlation analysis between HRV measures and BGL recorded at three 

different periods revealed multiple relationships of significance, particularly in regard 

to postprandial BGL. Of the six HRV measures that were correlated against 

postprandial BGL, five were statistically significant with moderate effect sizes, and the 

sixth (fasting HF power) was approaching significance (p<0.1). These findings indicate 

a promising relationship between autonomic activity and fluctuations in BGL, but do 

not infer a causal relationship. Instead, we conclude that HRV measures, which 

explained 52% of the variance in postprandial BGL (Table 3), may be useful in 

predicting the magnitude and direction of changes in BGL. This is also reinforced by 

our novel findings that HRV measures were correlated with the change in BGL from 

fasting to postprandial, and from postprandial to postabsorptive periods. 
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The literature proposes that a key link between autonomic activity and BGL 

fluctuations is the involvement of the ANS in the cephalic, or preabsorptive, phase of 

digestion. Research has shown that activation of the ANS during both the 

preabsorptive and absorptive phases of digestion is important in determining 

postprandial insulin activity (61, 62), which is a determinant of postprandial BGL. As 

such, changes in HRV, a measure of autonomic activity, precede the release of insulin 

(62). The cephalic phase is important in preparing the gastrointestinal tract for a meal, 

such as increasing gastric secretion, and involves parasympathetic input to the 

stomach via the vagus nerve before food even arrives in the stomach (61). This 

anticipatory response is required because food digested in the gastrointestinal tract is 

absorbed into the blood quickly, and there is a rapid demand for insulin to move 

glucose molecules into the cells of the body to maintain blood glucose homeostasis. 

Thus, to prevent glucose levels from accumulating rapidly in the blood, the ANS 

coordinates a release of insulin in anticipation of a meal, proportional to the quantity 

of ingested carbohydrate (63). This may explain why changes in HRV precede 

changes in BGL. This was evident in the present study as HRV measures were 

associated with postprandial BGL as well as the change in BGL before and after a 

meal. 

 

4.1 Postprandial state 

Although the literature agrees that HRV measures are inversely related to BGL, there 

are discrepancies concerning the association between specific HRV measures and 

BGL during certain periods. There are few studies which have investigated HRV 

measures in both fasting and postprandial states (31, 36), and even fewer that have 

assessed these in healthy individuals (33). Klimontov and colleagues determined that 

when BGL increases within the healthy range, both LF power and HF power are 

reduced in the postprandial state compared to fasting (31). They concluded that 

daytime LF power and HF power are inversely related to glucose concentration, 

though, in a similar study, Weissman and colleagues found that HF power, but not LF 

power, is lower in postprandial periods compared to fasting periods and that HF power 

is inversely related to BGL (36). Both studies were conducted on pregnant women 

between 24-28 weeks gestation, so discrepancies between their findings and the 

findings of the present study may be due to the number of confounders present during 

pregnancy. For one, an increase in insulin resistance normally occurs in pregnancy 
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(64), so it may not be relevant to compare their findings with a cohort of healthy people. 

Furthermore, our findings that postprandial BGL are inversely related to fasting LF 

power and TP, as well as postprandial LF power, HF power, and TP conflict with the 

previous study conducted by Rothberg and colleagues which identified no significant 

correlations between HRV measures and BGL in healthy participants (33). This may 

be because the previous study design did not incorporate kilojoule intake as a 

covariate in the statistical analysis and did not standardize the food content that 

participants consumed. We do agree with the previous study in that HRV measures 

are not significantly related to fasting BGL. However, in a similar study on 42 healthy 

participants, Lutfi and Elhakeem identified that fasting BGL is positively correlated with 

HF power (r = 0.33, p=0.03) (32). Inconsistencies in the findings of these studies may 

be due to the small effect size between fasting BGL and HRV measures. 

 

4.2 Fasting state 

Studies with larger sample sizes have consistently identified that fasting BGL is 

inversely correlated with both LF power and HF power in individuals with normal 

autonomic function (30, 34, 35). The findings from these studies were similar when 

they pooled data from their sample groups of different glycaemic statuses, including 

normal, impaired fasting glucose, and diabetes. A study of 2441 participants from a 

range of normal and abnormal glycaemic statuses found that fasting BGL was 

inversely correlated with LF power (r = -0.27, p<0.001) and HF power (r = -0.27, 

p<0.001)(30). The findings from the Framingham Heart Study were congruent with this 

as fasting BGL was inversely correlated with LF power (r = -0.26, p<0.0001) and HF 

power (r = -0.21, p<0.0001) in a sample of 1919 participants (34). The effect sizes 

between HRV measures and fasting BGL reported by these studies are similar, as well 

as small. Small effect sizes are more difficult to correctly detect with a small sample 

size such as the present study. The reason for these smaller effect sizes may be 

because levels of fasting blood glucose exist in a narrower range compared to 

postprandial glucose profiles, which demonstrate greater variability. This is supported 

by several studies in which fasting BGL had a smaller standard deviation compared to 

postprandial BGL (33, 40), and is also supported by this study (Table 1). It is possible 

that the greater range of physiological data seen in postprandial glucose profiles may 

correspond with a larger effect size when correlated against HRV measures. As such, 

future studies should also aim to assess BGL during postprandial periods, and not just 
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during fasting periods. Postprandial BGL also contributes more to overall glycaemia 

than fasting BGL, at least at lower levels of HbA1c or overall glycaemia (40), and thus 

may be more relevant to studies investigating glycaemia in the healthy range. 

The present study made certain improvements on the previous study design (33). 

Recording kilojoule intake in a food diary and applying it as a covariate in the analysis 

was an important method of controlling for the different diets of the participants, which 

can impact glucose profiles. Another strength was standardising the time points in 

which participants were assessed to reduce the effect of circadian rhythms on HRV, 

which can be substantial (65, 66). Future studies could attempt to expand on this by 

sampling a broader range of ages. As a requirement of the study, participants could 

not be living with any chronic health condition or be taking regular medication, and 

these increase in prevalence with age. As a result, the present sample was relatively 

young, which may limit the applications of our findings (67, 68). One of the concerns 

raised in this study was the limited ability of glucose meters to track changes in glucose 

profiles over time. If HRV measures were developed as a suitable replacement or 

supplement for current invasive self-monitoring of blood glucose techniques, it could 

also provide continuous glucose if recorded using a wearable ECG, such as a Holter 

monitor. 

 

 

5 Conclusions 

 

Current standards in BGL monitoring are inadequate considering the scope of 

diabetes and hyperglycaemia. As a leading epidemic of the 21st century, more rigorous 

technologies need to be developed to assist glycaemic control for people living with 

diabetes. There is a growing interest in the development of non-invasive, continuous 

markers of BGL that may aid in diabetes management. Generally, the aim of non-

invasive glucose markers is to combine data derived from biosensors with continuous 

glucose monitoring data to increase the precision of the glucose level prediction (69). 

For example, a novel algorithm presented by Cichosz and colleagues has shown 

promising results by combining information from a Holter monitor with concurrent 

values from a continuous glucose monitoring system. The algorithm detected 16/16 

hypoglycaemic events in a sample of type 1 diabetes patients with a sensitivity of 79% 

and a specificity of 99% (70). This study represents an appealing line of research, as 
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it aims to overcome some of the current problems people with diabetes face. Current 

self-monitoring of blood glucose is costly (17), though a portable ECG, such as a Holter 

monitor, may present a reduced financial burden and, at the very least, would provide 

a non-invasive option. The R-waves from an ECG, used in the determination of HRV 

parameters, have distinct profiles that make them suitable for detection by computer 

algorithms (71). Consequently, the commercialisation of an inexpensive portable ECG 

may be expanded. 

We observed numerous significant correlations between components of HRV and 

BGL. We conclude that HRV parameters derived from an ECG have the potential to 

be used in predicting the magnitude and direction of changes in BGL, though this 

needs to be confirmed in future studies. The scope of this area of study is not limited 

to diabetes – management of other metabolic diseases may be improved by the 

introduction of a non-invasive marker of BGL. Additionally, such a technology may 

interest professional athletes, cyclists, and marathon runners, as well as any group 

who might benefit from continuous, non-invasive glucose monitoring. The 

development of HRV parameters as non-invasive markers of BGL represents an 

optimistic line of research and could be critical in managing the diabetes epidemic. 

Such research could lead to the development of an algorithm capable of predicting 

BGL in real-time using purely non-invasive recordings from an ECG. 
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