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Abstract—The purpose for wireless sensor networks is
to deploy low cost sensors with sufficient computing and
communication capabilities to support networked sensing
applications. Even when the sensors are properly calibrated
at the time of their deployment, they develop drift in their
readings leading to biased sensor measurements. Noting
that a physical phenomenon in a certain area follows some
spatio-temporal correlation, we assume that the sensors
readings in that area are correlated. We also assume that
the instantiations of drifts are uncorrelated. Based on these
assumptions, and inspired by the resemblance of registration
problem in radar target tracking with the bias error problem
in wireless sensor networks, we follow a Bayesian framework
to solve the Drift/Bias problem in wireless sensor networks.
We present two methods for solving the drift problem in
a densely deployed sensor network, one for smooth drifts
and the other for unsmooth drifts. We also show that both
methods successfully detect and correct sensor errors and
extend the effective life time of the sensor network.

Index Terms—Wireless Sensor Networks, sensor calibra-
tion, drift and bias, error detection and correction.

I. INTRODUCTION

This poses a major problem for the end application, as
the data from the network becomes progressively useless.
Traditionally such errors are accounted for by calibrat-
ing the erroneous sensors against accurately calibrated
standard sensors. This process is manually intensive and
is only effective when the number of sensors deployed is
small and the calibration is infrequent. In a large scale
sensor network, constituted of cheap sensors, frequent
manual calibration is impractical and cost prohibitive.
Hence, there is a significant need for auto-calibration [4]

in sensor networks.

In this paper, we address the sensor measurement
drift/bias problem using the fact that neighbouring sessor
in a network, observe correlated data, i.e., the measure-
ments of one sensor are related to the measurements of
its neighbours. Furthermore, the physical phenomenon
that these sensors observe also follows some spatial
correlation. Hence, in principle, it is possible to predict
the data of one sensor using the data from other closely
situated sensors [5], [4]. This predicted data provides a
suitable basis to correct anomalies in a sensor’s reported

Recently, wireless sensor networks (WSN) havenformation. The early detection of anomalous data en-

emerged as an important research area [1]. This devehbles us not only to detect drift in sensor readings, but
opment has been encouraged by the dramatic advancesalso to correct it.
sensor technology, wireless communications, digital-elec The sensor bias and drift problems and their effects
tronics and computer networks, enabling the developmerin sensor inferences have not been addressed thoroughly
of low cost, low power, multi-functional sensor nodes thatin the sensor networks literature. On the other extreme,
are small in size and can communicate at short distanceke bias correction problem has been well studied in
[2]. When they work as a group, they can accomplish fathe context of multi-radar tracking problem. In target
more complex tasks and inferences than individual supeamacking literature the problem is usually referred to as
nodes. This led to a wide spectrum of possible militarythe Registration problem [6], [7]. When the same target
and civilian applications. is observed by two sensors (radars) from two different
On the down side, these wireless sensors are usualbngles, the data from those two sensors can be fused
left unattended for long periods of time in the field, whichto estimate the bias in both sensors. In the context
makes them prone to failures either due to running out obf image processing of moving objects, the problem is
energy or the harsh environmental conditions surroundingeferred to asmage Registration, which is the process of
them in the deployment area. Sensor nodes also tend tverlaying two or more images of the same scene taken
develop drift in their measurements as they age. The drifat different times, from different viewpoints, and/or by
we consider in this context is unidirectional long-termdifferent cameras. It geometrically aligns two images, the
change in the sensor measurement. In addition to drifeference and sensed images [8]. Image registration is a
sensor nodes suffer from bias in their measurements [3trucial step in all image analysis tasks in which the final
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information is gained from the combination of various ments was taken as a sensible estimation to be used by
data sources like in image fusion [9]. each sensor to self-assess. No assumptions regarding the

A straightforward approach to calibration is to apply alinearity of the drifts were made as in [10]. In this paper
known stimulus to the sensor network and measure th&e elaborate on the work of [15] by providing more
response [10]. Then comparing the ground truth input tdllustrations and evaluations for the IMM based unsmooth
the response will result in finding the gain and offset fordrift detection and correction algorithm. We also give
the linear drifts case [11]. The calibration problem of the@ formal derivation of the smooth drift detection and
sensor network was also tackled by [10] in a differentcorrection algorithm which was introduced in [14] using
way. They stated that after sensors are calibrated to thdayesian reasoning. In addition to that, we show that
factory settings when deployed, their measurements wilpoth algorithms not only detect and correct drifts, but
differ linearly from the ground truth by certain gains also they detect and correct sensors biases. A comparison
and offsets for each sensor. They presented a methdietween the algorithms is made to show that the IMM
for estimating these gains and offsets using subspade@sed detection and correction algorithm performs better
matching. The method only required routine measurebut at the cost of increased computational complexity.
ments to be collected by the sensors and did not require The rest of the paper is organised as follows. We
ground truth measurements for comparison. The estimate@resent our network structure and the problem statement
gains and offsets (which they assumed to be constant fdf section Il. Section Il presents a Bayesian approach for
each sensor) were used for calibrating the future sens@olving the smooth drift/bias problem in wireless sensor
readings to the true values. The method worked well imetworks. Section 1V formulates our IMM framework as
a controlled environment but not with noise and otheran upgrade of the last approach to solve the unsmooth
disturbances. drift problem. The evaluation of the proposed algorithm

An earlier work on blind calibration of sensor nodesiS 9iven in section V. Section VI concludes with future

in a sensor network was presented in [3]. They asWork.
sumed that the sensors of the network under consideration
were densely deployed that they observed the same phe- I
nomenon. They used the temporal correlation of signals
received by neighbouring sensors when the signals were
highly correlated to derive a function relating the bias Consider a WSN with a large number of sensors
in their amplitudes. Another method for calibration wasdistributed randomly in a certain area of deployment such
considered by [12]. They used geometrical and physicahs the one shown in Figure 1. The sensors are grouped in
constraints on the behaviour of a point light source taclusters (sub-networks) according to their spatial prexim
calibrate light sensors without the need of comparingty. Each sensor measures a phenomenon such as ambient
the measurement with an accurate sensor (ground truthtemperature, chemical concentration, noise or atmospheri
They assumed that light sensors under consideratiopressure. The measurement is considered to be a function
suffered form a constant bias with time. The authorof time. An example of a cluster is shown using a circle
in [13] described a method for in-situ blind calibration in Figure 1. The sensors within the cluster are considered
of moisture sensors in a sensor network. She used th® be capable of communicating their readings among
Ensemble Kalman Filter to correct the values measurethemselves.
by the sensors or in other words to estimate the true As time progresses, some nodes will start experiencing
moisture at each sensor. The state equation was governgglft in their readings. If these readings are collected as
by a physical model of moisture used in environmentakych at these nodes, it would cause the network to accept
and civil engineering and the measurement was assumeglroneous conclusions. After some level of unreliability,
to be related to the real state by a certain offset anghe network inferences become non trustworthy. At this
gain. The state (moisture) vector was augmented with thgoint, the network becomes useless as it is impractical and
calibration parameters (gain and offset) and then the gaingfeasible to manually recalibrate the sensors. In order
and offsets were estimated to recover the correct stai@ mitigate the drift problem, each sensor node in the
from the measurements. network has to detect and correct it's own drift using
The idea of drift aware wireless sensor networks washe feedback obtained from its neighbour nodes. This is
first introduced by Maen et al. [4]. We showed there thatased on the fact that the data from all the nodes within a
detecting drifting sensors and correcting their measurecluster are correlated and the faults or drifts instaroiegi
ments would increase the effective life of the network.are likely to be uncorrelated. The ability of the sensor
In [14], we introduced a formal statistical procedurenodes to auto-detect and correct their drifts helps to exten
for tracking and detecting smooth sensors drifts usindhe effective (useful) lifetime of the network. In addition
Kalman filters. We also introduced in [15], an algorithmto the drift problem, we also consider the inherent bias
for tracking and detecting unsmooth sensors drifts usinghat may exist within some sensor nodes. There exists a
the Interacting Multiple Model algorithm (IMM). The distinct difference between these two errors. The former
sensors of the network were close enough to have similathanges with time and often becomes accentuated, while
temperature readings and the average of their measurthe latter, is considered to be a constant error from the

. NETWORK STRUCTURE AND PROBLEM
STATEMENT
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o During this process, each nodefinds a predicted
ol ] value #;;, as a function of corrected measurements
s} . ) <Lt collected from its neighbour sensors usidg, =

e . ) . ce 1 f(neighbourdata). Similar to our previous work in [14],

§ wof C IR .. ] Z; 1 1s taken to be equal to the average of the neighbour
wb ' ) O sensors’ reported values, , = T = Y., x;x/n. In
o . ) T, ] an ideal situationgz; = T. In practice, each sensor
ot . L . < reading comes with an associated reading error, and drift
e e e e e e e e i d; ;. This drift may be null or insignificant during the

e initial period of deployment, depending on the nature of
Figure 1. Wireless sensor area with encircled sub-network the sensor and the deployment environment. The problem

we address here is how to account for the drift in each
beginning of the operation. This error is usually due to asensor node, using the predicted valug; ., which is
possible manufacturing defect or a faulty calibration.  obtained using information gathered from neighbouring

The sensor drift that we consider in this work is of nodes, so that the reading, is corrected and reported

two types. The first is slow smooth drift that we modelasz; j.
as linear and/or exponential function of time. The second In the following section we introduce a Bayesian for-
type is smooth drift with jumps. It is similar to the first; mulation for the drift problem in wireless sensor network.
however, it suffers from sudden changes, surges or shaffhis will lead us to derivation of our smooth drift cor-
peaks. Both of them are dependent on the environmentaéction algorithm using Kalman Filter (KF) given in [14].
conditions, and strongly related to the manufacturingiVe then upgrade that algorithm to become capable of
process of the sensor. This is what makes the instargealing with drift with sudden jumps by utilising the IMM
tiation of drift different from one sensor to another. It algorithm.
is highly unlikely that two electronic components fail
in a correlated manner unless they are from the same |Il. ESTIMATION AND CORRECTION OF SMOOTH
integrated circuit (IC). Figures 2 and 3 show examples of DRIFTS
the theoretical drift models for smooth drift and smooth |, this section we introduce a Bayesian approach to

drift with jumps, respectively. _ solve the sensor measurement errors problem in WSN,
Consider a sensor sub-network that consists 8en-  assuming that the drifts are smooth (see figure 2) and

sors deployed randomly in a certain area of interesthat sensor nodes are densely deployed. Under the dense

Without loss of generality, we choose a sensor networkjepoyment assumption, all the sensors nodes in a cluster

for measuring temperature, even though this is generallyye assumed to measure the same value. Therefore, the av-

applicable. to all other types of sensors that suffer fro”brage of corrected sensor measuremeptis considered

drift and bias problems. L&t be the ground truth temper- 55 3 good estimate for the expectation of the ground truth

ature. In this work?" is considered to vary only with time y51ye £{7}.} in the cluster. It is also considered as a good
inside the sub-network or the cluster. Therefore we denotgasis for the sensors to self-assess their measurements.

the temperature at a certain time instance and Sensor| et ys assume that at time instaht a measurement

Ipcatilon asli wheres is the sensor.number arkdis.the or a reading;  is made by node. Rather than sending
time index. Since the temperature in the cluster is Spacgat value to its neighbours, the node is aware of its drift,
invariant, we denote it &, whereT; ,=T; x=T}. Ateach  and has a predicted valu , for it at this time instant.
time instantk, a nodeq in the sub-network measures a it js taken to be equal to the estimate of the drift made
readingr; . of T}. It then reports adrift correctedvalue gt the previous time instantfi p = Cji k_1jk_1, as the

a;x 10 its neighbours. The corrected valug: should it is assumed to be slow. Using this estimate of the
ideally be equal to the ground truth temperatiiie If all - gyift, the nodei computes its corrected measuremepy
nodes are perfect;; » will be equal to theT}, and the  4nq sends it to its neighbouring nodes. This applies to all
reported values will ideally be equal to the readings, i.€.the nodes in the neighbourhood. Each node then collects
Tik = Tik- all the neighbourhood sensors corrected measurements

Drift
Diift

40 50 60
Time steps o 10 20 E a0 50 60 70 80 90 100

Time

Figure 2. Examples of smooth drifts Figure 3. Examples of drifts with jumps and sudden changes

© 2010 ACADEMY PUBLISHER



826 JOURNAL OF NETWORKS, VOL. 5,NO. 7, JULY 2010

{@;x}",, and computes the average = > ., z;x/n.  with the mean found by the weighted sum of the means
At this point each sensor computes the drift measurementf the orignal Gaussians:

We define the drift measurement as the difference between L&

the sensor measurement and the average value computed Tik = Mik — — Zﬂj,k =0

by that sensor. We denote the drift measurement of node N3

i at time instant by y; . The drift measurement is used

h i f :
by a KF to estimate the drift. The problem is formulatedanOI the variance found by

mathematically as follows: Sije = [Rig+ (i — i) (i — Tik)" ]
Assuming that the drift is slow and smooth, it is 10 .
. R R k= T k= T
modelled by: - ;[ ik + (e — i) (g e — k)" ]
dig =dig—1+vir vig~NQOQir) 1) 1
i e ) . = Rjp—— Z Rjk
where d, ;, is the drift/bias on sensor nodeat time ni

instant k, v; 5, is the process noise and is taken to be ) ) ]

a Gaussian noise with zero mean and variance equal to ASSuming that all sensors are neighbours in the cluster
Qi k- and that they can report to each other, then equation (1)
Since the sensor measuremen usually suffers from @nd equation (3) can be written in vector form for all the

random errorw; , and systematic error (drift/biag), ,, ~ S€nsors of the cluster as follows:
the reading or measurement of sensds given by: Dy =FDy_1+ Vi Vi~ N(0,Q) (4)

rik =T +dip +wip  wig ~ N(pik, Rix) Yy = HDj 4+ U, Uy ~ N(0,A) (5)

where T}, is the actual (ground truth) value of the where @, and A, are the process noise and
measured variable at sens@ndw; ; is the measurement measurement noise covariances, respectivély. =
noise and is taken here to be a Gaussian noise with 280y, ... dig... dup ]T is the vector of drifts of

mean fi; , = 0) and varianceR; . all sensors in the cluster at time instantSimilarly, Y3,

We also deﬁna’i’}c, the corrected measurement of Sen'Vk’ ‘Ilk are the vectors of drift measurements, process
sori at time instant. x; 5 is never sensed but calculated. ngise and drift measurement noise of all sensors in the
It is the difference between the sensor reading and th@luster at time instank, respective|y_F and H are the
estimated drift and is calculated by = rix — dix 10 state transition model matrix and the observation model
result inz; , = Ty + wi k. matrix, respectively. Both matrice$/ and I, are taken

Since the sensors are densely deployed and the instag this scenario to be equal to the identity matrix.
tiations of drifts in the sensors are random, we use the \we also definey* = {v;,Y;---Y;} as the set of all
average of corrected sensors’ measurements close to noggft measurements made up to tinke Accordingly, the
i as an approximate estimate for the expectation of actugjroblem can be stated as follows: given the set of drift
(ground truth) valuer, = E{Ti} + 5 > 7 w;r. We  measurements up until the current tirke what is the
also definey; . in equation (2) as the difference betweenpest estimate of the current drifty,.. Probabilistically, the
the measurement ;. and the average of corrected sensorssonditional density relating the state and the measurement
measurements;, and refer toy; , as the drift measure- yectors is expressed aéD;|Y'*) and the estimate would
ment of nodei at time instant:. be the expected valug Dyp(Dy|Y*)dDy,. This estimate
(2) s denoted byDy . Dyjx—1 denotes the estimate db,

given the measurements up until tinke— 1. p(Dy|Y*)

At early stages of deployment of the sensor networkcan be expanded by Bayes rule as follows:
when very few sensors have started to develop drift, and

Yik = Tik — Tk

given that the instantiations of drifts in all the sensoes ar (DY) = p (DilYe, Yk) )
random, we assume th@{T,} = T}. Substitutingr; _»p (Ye|Dy, Y1) - p (Dg[YF) ©)
into equation (2) results in: p (Yi|YH-1)
1 Assuming the measurement noise is white Gaussian;
Yik = Tp+dip+wip— E{Tp} — — ij,k i.e. not correlated in time, then the current measurements
nia do not depend on the previous measurements and (6)
13 reduces to:
= di,k + Wik — ﬁ Z Wik likelihood Predicted density
Jj=1 —_—~—
= dix + ik Vi~ N(0,6ik) 3) gy — P (elDy)- p (DeVF)
K+ Yk Y , p (DY) = AR ©
wherey; , = w;x — + Y7, w; x i the drift measure- AL

ment noise and is actually a mixture of Gaussians. It is normalisation
well known in literature [16], [17] that a Gaussian mixture  The Likelihoodp(Yy|Dy,) for sensor; can be obtained
can be approximated by a Gaussigfy, ~ N(m; ,, ;%)  from the measurement equation (5) whdrg is a noise
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vector, assumed to be Gaussian with zero means andwhere
covarianceA . Given Dy, the probability of obtaining Sy = HPk‘k,lHT + Ag a7
a drift measurement vectdr; should be equal to the

probability of the noise with mea#l Dj,: Putting all the terms together in (7) and evaluating

using an identity given in the appendix of [18] results
p (Ye|Dy) = N(HDy, Ag) 8 in:
N(HDy, Ax)N(Dyjg—1, Prj—1)
N(HDpy—1, Sk)

The predicted density predicts the current stBte of
the sensors based on the old measurements. We expand it!
here by Chapman-Kolmogorov identity (an approach used

(DrlY) =

= N(DDy,P, 18
by [18]) as follows: (DDy, Pyj) (18)
. - - where
p (Dp]Y* 1) = /p(Dlek_l,Y “Np(Dr_1|[Y*Y) dDy_y )
K = Pyu1H"(HPy— H" + Ay)™" (19)
Assuming the system obeys markov evolution, which f)klk - Dk\k—1 + K(Y, — ku‘k_l) (20)
implies that its current state directly depends on the Pui (l—KH)Pk‘k_l 21)

previous state, with any dependence on old measurements
encapsulated in that previous state, then the transition Equations sets (13-14) and (19-21) represent a KF
density can be simplified by neglecting the measuremerftamework [19], [20] forn sensor nodes in the cluster.
term as follows: Since F' and H are identity matrices, the system above
, can be solved as amdimensional KF (by a central node
p(DplY* ™) = /p(Dk|Dk—1)p(Dk—1|Yk71) dDk-1  and requires high computational capability) or rasl-
(9) dimensional KFs solved by each sensor in the cluster. The
To evaluate the predicted density D, |Y*~!) we have first solution is centralised, whereas the latter is decen-
to evaluatep(Dy|Dy_1) and p(Dy_1|Y*~!) and then tralised and requires no special processing power by the
substitute them into (9). From (4) and similar to thesensor nodes. We adopt the decentralised solution in this

likelihood: work. F'and H are taken to be equal to one. This leads to
the probabilistic solution for drift; ;, ~ N (d; kk, P; k|x)
P (Di|Dp—1) = N(FDy—1, Qw) (10) " with mean and variance: Z | |
p(Dy_1|Y*~1) is the prior and is also assumed to be d - d K(vi v — d- 29
Gaussian with a known mean and covariance from the Lklk R R i) (22)
last iteration: Pigre = (Pik-1jp—1+ Qip)(1 - K)  (23)
. P p—qjk—1 + Qi
p Dy Y1) = N(Dy—1jp—15 Pro1p—1) (11) K= Pik—1k—1+ Qi+ ik (24)
. Substituting into (9) and evaluating the integral as given The above equations are obtained by substituting the
in [18] we get: prediction equations of the KF (13-14) into the up-
o1 . date equations (19-21),;; is the predicted drift at
p(DpY") = /N(Dk—l\k—lvpk—llk—l) X the beginning of stagé, before the correction. In this
N(FDj_1,Qp) dDy_1 case,d;x = Fd;p_1jx—1 = djp—1x—1, @ straightfor-

ward prediction given by the KF solution. The variances
Qi k> i ks Pip—1x—1 and P; ,;, are numbers, and there-
where fore the solution is easy to compute. Ongg,;, is ob-

- tained, it is used as the predicted drift;, ; for the next
D1 = FDi—aje—s 13) " gtage. This allows for th ion of readi

o’ ge. This allows for the correction of reading;.
Pep—1 = FPeqp—1 F7 +Qx (14)  The solution is implemented in a decentralised iterative

Using total probability lemma and assuming that meglProcedure i.e. it is run in each node and at each time step

surement noise is white Gaussian, the normalisation teri estimate its drifid; ;. Using this estimations; ;.1 is
can then be expanded as follows: corrected tar; 41 and the driftd; .1 is estimated again

i and so on. The block diagram shown in figure 4, with KF
p (V|YF ) = /p(Yk|Dk,Y’“*l)p(Dk.|Y’€*1)de as the last sub-block, describes the smooth drift detection
and correction algorithm. The algorithm is summarised as

= /p(Yk|Dk)p(Dk|Yk_l)de (15) follows:

= N(Dyp—1, Prp—1) (12)

Substituting the likelihood and the predicted density inDecentransgj error correction algorithm for smooth drifts

the integral of (15) results in: For each nodé

p (Yk|Yk71) — /N(HDkaAk)N(Dk|k—1aPk\k—l)de o At step k'., the predicted drlftde = di_,k—1|k—1 and
. the previous time step process varlada@_l‘k_l
= N(HDpj-1,Sk) (16) are available.
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k—= OR

{x/.k};:l.jxi Sonsor belong to the set of models defined by (25):
e {dig = dipor+uf +ofi JpLy ol ~ N(0,Q5) (25)
T - KF 5 — d i i i _
v | X, %ol < v §d,-,k‘k whered = 1,2,... M, u¢ is the input or jump correspond

| ik Average ——|'i ing to 6, model for sensot. vf & IS the process noise for
r mm | ik each model. It is taken to be Gaussian with zero mean
‘ and variancel?,. We assume that all models have the
| same variance. Therefore, we denote the process variance
~ for all the modes a$); .
d;y Equation (25) represents dd number of possible drift

Figure 4. A block diagram for the drift detection and correet  models for each node. Each model differs from the others
algorithms in the size of the jumps?. The resultant estimated drift

. Each node obtains its reading;; for nodei at time instantk, cii,k‘k, would be a weighted

« The corrected reading is calculateqy = r; x —d; & combination of the estimated drift of eaf:h mod%k‘k.
and then transmitted to the neighbouring nodes.  The resultant estimated drift for each nadlg, ;. is found

« Each node computes the average as will be shown later in this section by:

 The Drift measuremeny; , = r; , — Ty, iS computed. M

. ituting i - i [ 7 Z 0 0
Substituting into (22-24) results in the current time di ke = 1 e A

step estimated; ;| and P ;.-
« The projected driftd; 1 = d; 1, is obtained and

the algorithm iterates. whereﬂf_’m is the model probability. It is the probabil-

ity that the estimated drifﬁi7k|k follows the drift model
J?,klk given the measured values until the time skep
V. ESTIMATION AND CORRECTION OF UNSMOOTH A source of information is needed to provide input to
DRIFTS a statistical model such as equation (25). Since the sen-
sor measurement; ;, usually suffers from random error
x and systematic error (drift/biag), », the reading or
easurement of sensoiis given by:

In this section we present a probabilistic approach that -
accounts for errors in sensors measurements and instan
captures drifts that have surges and sudden escalations.
Such drift behaviour is not followed well by the KF rikg=Tr+dix+wir Wi~ Nk Rir)
algorithm given in the previous section. The standard KF
with single drift model is limited in performance since it Where T}, is the actual (ground truth) value of the
does not efficiently respond to changes in the dynamicgeasured variable at sengandw; ;. is the measurement
as the drift changes abruptly at some points. Therefordloise and is taken here to be a Gaussian noise with zero
we make use of the Interacting Multiple Model (IMM) Mean fi; , = 0) and variancerz; .
in our solution since it is designed to deal with abrupt Similar to the previous section, we denote the corrected

changes in the estimated states. The IMM approach ig€asurement of sensomt time instantc asx; . z; x is
origina”y used in target tracking to track manoeuvringnever sensed but calculated. It is the difference between
objects that show sudden changes in their dynamics [16{he sensor reading and the estimated drift and is calculated
[17], [21], [22]. In accordance with the IMM algorithm, bY ik = 7ix — d; to result inz; x = Ty + w; k.

each sensor is assigned &ihnumber of modes to account ~ We also definey; ;; in (2) as the difference between the
for the possible jumps in the drift. Our solution for measurement; , and the average of corrected sensors
the sudden step drift problem (also works for smoothmeasurements; and refer toy; , as the drift measure-
drift) consists of the following iterative steps: As for the ment of nodei at time instant.

case of smooth drift, at time stefp, a readingr; ; is
made by node. Rather than sending the reading as it

is to it's neighbours, the node is aware of its dufty, Since the sensors are densely deployed and the instan-
and has a predicted valug ;; for it at this stage. It is tiations of drifts in the sensors are random, we use the
taken to be equal to the estimate of the drift made ahverage of corrected sensors’ measurements close to node
the previous time instant; j, = d; ;_1j—1. Using this  ; as an approximate estimate for the expectation of actual
estimate of the drift, the node computes the correctegground truth) valuer), = E{T},} + + ZJ L W)k

sensor reading; , and sends it to it's neighbours. Each ~ Following the same reasoning given in the case of

sensor computes the average = >_;_, i /1 0 self-  smooth drift in the previous chaptey, . is also expressed
assess it's measurements. To account for the possm[g,

jumps, the drift with abrupt changes is modelled as a jump Yin =dip+Vix Yin ~ N(0,8;1) 27)
markovian linear system. It is a system whose parameters ” ” ’

evolve according to the realisation of a finite state markov wherey; ,, = w; 1, — % 2?21 w1 is the drift measure-
chain [23]. Mathematically, we model the drift; , to  ment noise and is actually a mixture of Gaussians that can

Yik = Ti,k — Tk (26)
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The block diagram shown in figure 4, with IMM as
‘ the last sub-block, describes the unsmooth drift detection

_ jl P
dll.k 1k-1° N ke
= — 1 "| Filter 1
B by
5 .. 7 A
1P | Mixing 2 . d, | mmeg »
MHH\H Stage | » =2 Filter 2 P Output [ 5
: k-1 Hik ik i.klk
O=1--M Stage
JM
UL Filter M ]
Py Bl d B,
.
Vik

Figure 5. The IMM step

be approximated by a Gaussi@ny, ~ N (m; i, d; 1) With
meanm; ,, = 0 and variancey; , = R; j — %Z;;l Rj k. .
Referring to equations (25) and (27) we notice that °
they represent ad/ number of kalman filter equations  *
corresponding td/ number of drift models (jumps). This
leads according to the IMM algorithm td/ number of
Kalman filters working in parallel to result ind number
of estimations for drift and covariance. Each model has ,
a probability yif . = p (model;x = 0]y;) depending
on the measured values until that time step. Switching
between models is governed by a pre-defined Markov
transition matrixI" of dimensionM x M for M models.

Y11 Yim

(28)

M1 YM M

wherevy,s = p (model; ,, = 0|model; ,—1 = «) which is
the probability of switching from model to modelé in
single time step.

The IMM step of our drift tracking algorithm is ex-
plained as follows: At time stef each node is sup-
posed to know the previous time step models probabil-
ities {11!, ,_1 }9L,, estimated drifts{d?, _, , _,}},
and associated covariancé@i?k_l‘k_l}gfzi. Unlike our
standard Kalman Filter drift tracking algorithm, the
previous estimates are not used as priors for e
Kalman Filters. Instead, the predicted models probabditi
(7= Yas 155 k10~ are calculated. Then
the previous estimates together wifm ¢, 157, are
used in the mixing stage to calculafe /, ,, ,};L,
and{P 7, ,, ,}yL,. The mixing stage drift estimates
and the associated covariances are then fed as pri-
ors to the corresponding/ filters (substituted in KF
equations(22-24)) to result in the posterior models esti-
mates{df,k‘k}é\/il,{ng‘k}é\/lzl.

The output of the IMM algorithm is then found by first
updating the models probabilitiqsuf’klk}gil, which are
used then together with the outputs of thé Kalman
filters to find cfwk and P; i . The algorithm then re- .
iterates taking the predicted drift at time step+ 1 to

and correction algorithm. The IMM block in figure 4 is
further explained in figure 5. The full derivation of the
IMM algorithm can be found in [16], [17].The steps of
P our unsmooth drift tracking algorithm are stated below:

Decentralised Unsmooth Drift Correction Algorithm
For each nodé

At step k, a predicted driftd;x = d; 11 IS
available.

The prior model probabilitie;aifllki1 are available.
Each node obtains its reading; . ~
The corrected reading is calculated,, = r; ,—d;
and then transmitted to the neighbouring nodes.
Each node computes the average..

The drift measuremeny; , = r; , — Ty, iS obtained.
The predicted model probabilities are calculated

M
— 0 _ «
Hikx = Yab Hil—1]k—1
a=1
Mixing stage
M e}

70 _ Voo Hi k—1]k—1 34
ik—1k—1 = §:7f9 ik—1|k—1
a=1 H ik
M e}

ik _ Voo Fi k—1]k—1 , 0
ik—1k—1 = §:—f9 (i,k71|k71
a=1 Miak

0
A1k — d i,k71|k71}2)

Kalman Filter update stage

d?,k“c = d ?,k71|k71 +ul + K(yip —d ?,kfl\kfl)

Pl = (Pli i1 +Qin)(1-K)

0
P i k—1|k—1 + szz
P po T Qi+ i

K

IMM output stage
The Model probabilities are updated

_ 0 7(911-,1«’3 ?,k—l\k—1*“§>2
o Al &
/’Li,k|k - M g _(yi.k*E ?,k71|k71_u?>2
D=1 H ik € 24

where A = PY, | + Qix + dix. The resultant
estimated drift and its associated covariance are
updated as follows:

M

7 _ a Jo

dipe = E i kol Dok
a=1

M
Z ik Do (P + [ ke — di kx]?)

a=1

P 1k

The projected drifﬁi,kﬂ = di,k|k is obtained and
the algorithm reiterates.

be equal to the estimated drift at the previous time stefhe systems described in this section and the previous

di k1 = di )k
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section are completely observable at the deployment stage
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of the sensor network, when no sensors are drifting.
However, as the sensors start to develop drift the sys-
tem becomes partially observable. When employing our
algorithm, the drifts are detected and consequently the
readings of the sensors are corrected to become close to £
the ground truth. This together with that the probability of

many sensors start drifting simultaneously is low, enhance
our ability to extend the period of observability of the

system. Hence, extending the useful time of the sensor

network. Thus, giving us the opportunity for making the
most use of the network. Figure 7. Actual and estimated drifts in nodes 1 and 2 for KF

Time

units when the IMM or the KF algorithms is applied
(Corrected reading curve). This applies to all of the
Our aim is to evaluate the ability of our proposed network’s sensors that develop drift. Hence, the life of the
framework to correct the drift experienced in a sensofetwork will be extended by applying the drift detection
node using the information gathered from the nearestnd correction algorithms. It is also worth noting from
neighbouring nodes. We simulate a small sub-networlfigures 8 and 6 that the difference between the actual and
of 10 densely deployed sensor nodes measuring theorrected reading curves tend to be on average smaller
temperature in a certain area. We assume that 2 sensdf$ the IMM algorithm results. This indicates that the
are developing smooth drifts with jumps of the forms error accumulation in the case of IMM is less and so
shown in figure 3. We compare the IMM drift tracking it is expected to give longer life for the network.
algorithm with the plain KF drift tracking algorithm under ~ In addition to the drift, we consider the bias problem.
the same drift and random error (noise) scenarios. ThAS we mentioned earlier, the bias is the starting reading
drift measurement variancg ;, for each node is chosen error or in other words, the drift at time zero. We
from [0.005-0.01] and the state variancg ;, is taken —assume that the sensor nodes are factory calibrated before
to be 0.001. The number of models we consider in ougleployment and so it is unlikely that a high percentage of
evaluation of IMM algorithm isM = 11. the sensors will suffer from bias. In a sensible situation,
The results of the KF drift tracking algorithm are if most of the sensors are without bias at time 0, then
shown in figures 6 and 7, whereas, the results of théuch a bias can be captured by both of the proposed
IMM drift tracking algorithm are shown in figures 8 solutions as a constant drift of a certain amplitude. Figure
and 9. Comparing figures 9 and 7, it is clear that bothlO and 11 show the KF and IMM algorithms results
algorithms follow the drift in node 1. However, the IMM When both sensors 1 and 2 suffer from bias and drift.
drift algorithm performs considerably better. It follows It is obvious from both figures that the two algorithms
the drift with jumps instantly with minimal errors and efficiently capture and correct the bias. However, the
more efficiently than the plain KF drift tracking algorithm. IMM algorithm catches and corrects the bias faster. It
Hence, the IMM drift tracking algorithm outperforms the is important to note here that if many sensors suffer from
KF drift tracking algorithm in terms of speed and accuracythe bias, then both solutions will not be accurate. Having
of following the drift. many sensors with initial bias, highly contradicts with
Looking at figures 8 and 6, It is clear that both the IMM ©One of our main assumptions that one sensor will start
and the KF drift tracking a|gorithms extend the eﬁectivedrifting at a time. Furthermore, it is unrealistic to have
operational life time for node 1. If we assume that formany sensors with initial bias as the sensors have to be
our application that the maximum tolerable temperaturdactory calibrated before deployment.
error in node’s 1 reading is £°, then the life of node Other comparisons between the two algorithms can be
1 is extended from 20 time units when there is no driftmade by looking at figure 12 and figure 13 which show
correction (Reading of node 1 curve) to at least 100 timéhe RMS error for both algorithms when 2 sensors in the

V. EVALUATION

Temperature(C)
N »
wure (€)

Temperal

rrrrr

Figure 6. The reading of node 1, the actual temperature an&fhe Figure 8. The reading of node 1, the actual temperature antMie
estimated (corrected) reading. estimated (corrected) reading.

© 2010 ACADEMY PUBLISHER



JOURNAL OF NETWORKS, VOL. 5, NO. 7, JULY 2010 831

Time Time

Figure 9. Actual and estimated drifts in nodes 1 and 2 for IMM Figure 11. Actual and estimated bias/drift in nodes 1 and 2Nt

sub-network are subject to smooth drifts and unsmootfgrror. Adding another component to the state vector,
drifts, respectively. It is clear, in both scenarios, thathamely, the speed of the drift while maintaining the same
the IMM drift tracking algorithm performs better than value of @; x, will result in faster tracking of the drift
simple KF drift tracking algorithm in terms of speed of With less RMS error. Unfortunately, this will increase the
following the drift and in terms of the RMS error between mathematical complexity, as the problem of estimating
the estimated and actual drifts. However, the improvedhe drift will then involve matrix multiplications and
performance of IMM is at the cost of the increasedinversions, which is undesirable in a wireless sensor with
computational complexity. We use the processing timdimited computational capability.

required by each algorithm as a measure of its compu- We conducted several simulation scenarios and ob-
tational complexity. Table | shows the average processingerved that the method worked as long as not all sensor
time required by the KF based algorithm and the IMMstart drifting at the same instant of time. Generally speak-
based algorithm (for different number of models) asing, we noticed that the performance of both algorithms
reported by our MatLab simulations. ThHutio column is dependent on the number of drifting sensors, the
clearly shows that the IMM based algorithm requiresamplitude of drifts or biases and the instantiations of
approximately2M the time required by the KF based drifts. If all the sensors suffer from considerable biases a
algorithm. Obviously, the computational complexity cantime zero the method will not work accurately.

be reduced by reducing the number of mod&lsused

in the IMM algorithm. Figure 14 shows the RMS error VI. CONCLUSION AND FUTURE RESEARCH

in the estimated drift for the KF based algorithm and the | this paper we have proposed a formal Bayesian

IMM based algorithm for different number of models. framework for estimating sensor errors in a WSN based
We notice that the RMS error reduces with. However,  on the assumption that neighbouring sensors have corre-
the rate of change in the RMS error also decreases Witlyted measurements and that the instantiation of drift in a
M; the difference between the RMS errors fof = 7 sensor is uncorrelated with other sensors. The sensors in
and M = 11 is very small. In fact, it is well known in  the neighbourhood are assumed to be densely deployed.
target tracking literature that using more models does nQtience, the average of their corrected readings is taken as
necessarily lead to better estimation, whereas it definitel pasis for each sensor to self assess it measurements. We
increases the computational complexity [24]. Thereforephaye introduced two probabilistic procedures that capture
M should be chosen carefully. Alternatively, a model suchyrifts: the first captures smooth drifts, whereas the other,
as the variable structure IMM (VSIMM) which adaptively captures both smooth drifts and unsmooth drifts (drifts
determines the minimal number models for estimating theyith jumps). The solutions are computationally simple
state may be used [25]. and scalable as they are decentralised dealing with one
It is important here to note that the speed of followingstate KF in the case of smooth drifts and one state IMM
the drift for the KF based algorithm can be increasedn the case of unsmooth drifts. The IMM based algorithm
by increasing@; . However, this will lead to more performs better in both the smooth and unsmooth cases
oscillatory response and will result in increasing the RMSput at the cost of increased computational complexity.

—r
p—

RMS Eror in Sensor 1
° o

Time Time

Figure 10. Actual and estimated bias/drift in nodes 1 and Xifer Figure 12. RMS error for both algorithms under smooth drifnsc®
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Table |
PROCESSING TIMES REQUIRED BYKF BASED AND IMM BASED DRIFT ESTIMATION AND CORRECTION ALGORITHMS

Drift estimation and correction algorithr# Processing time/iterationAT’) | Ratio = %

KF 1.4 ms 1

IMM (M = 3) 8.51 ms 6.079

IMM (M = 7) 19.83 ms 14.16

IMM (M = 11) 32.49 ms 23.21

In future, we will address the drift/bias problem in [9]
sparsely deployed WSNSs. In this case, the temperature
(or any other measured phenomenon) is considered &°
vary with distance and time. Therefore, the average ofti1]
the neighbours’ readings cannot be used by any sens
to self asses its own measurements. Alternatively, w
will use machine learning and regression techniques t@i3]
predict the measurement of a sensor in terms of its
neighbours readings as a first step for detecting the drif[g4]
and correcting the readings. Moreover, we are planning
to implement and test our solutions in WSNs deployed in
outdoor environment.

r
12]
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