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ABSTRACT (111 words) 

Heterogeneity is an intrinsic property of the lungs. Structurally, it is evident in the complex 

branching of the airways and the spatial distribution of tissue throughout the lung. Functionally, this 

translates to variation in the distribution of airway resistance and lung compliance, resulting in 

disparity in the filling and emptying rates between individual compartments, and consequently 

heterogeneous distribution of ventilation. Disease causes pathological alterations to structure and 

function, causing corresponding changes to heterogeneity, which can be measured via functional 

imaging, oscillometry or gas washout methods. This review presents established and recent 

evidence for the significance of heterogeneity as a marker of disease severity and potential predictor 

of treatment or intervention response. 

  



 

3 

1. Heterogeneity characterises lung structure and function 

Heterogeneity is an intrinsic property of the lung. Structurally, the branching of the airways is 

complex and asymmetric, having evolved following a fractal pattern to maximise space filling 

within a finite space[1]. There is wide variation in the number of branching generations before an 

airway path terminates in an alveolar sac, as well as in length and diameter between airways of the 

same generation[1]. There is also variation in the regional distribution of tissue throughout the 

lung[2], and heterogeneity in airway smooth muscle pathology across lung lobes, in terms of 

smooth muscle mass and reticular basement membrane thickness[3]. Consequently, regional 

variations in mechanical properties would be expected.  

 

Functionally, these factors translate to disparities between individual lung regions or compartments 

in the rate at which they fill and empty with air during breathing. The rate of emptying can be 

quantified by the time constant, i.e. the slope of exponential decay in flow during emptying. A short 

time constant indicates a lung compartment with fast/good ventilation, conversely a long time 

constant indicates one with slow/poor ventilation. The time constant links structural mechanics with 

function, as it is also the product of airway resistance and lung compliance associated with the 

compartment.  

 

Of the two factors contributing to the time constant, compliance is thought to be dominant in 

determining heterogeneity in ventilation distribution between regions[2, 4], along with overall 

determinants such as gravity, shape of the lung, and interaction with chest wall and diaphragm[2, 4]. 

Regional lung compliance is dependent on tissue mechanical properties as well as the amount of 

communicating lung units[5]. An additional physiological complexity is the role of collateral 

ventilation between lung units, but this effect is difficult to measure[6]. As a result, a diverse range 

of pathophysiological processes which cause loss of communicating lung units, e.g. gas trapping, 
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small airway closure, expiratory flow limitation etc, can result in mild to dramatic changes in 

ventilation heterogeneity.  

 

Studying heterogeneity may help us link single airway mechanics and the behaviour of the airway 

tree, as heterogeneity may manifest as variations in airway calibre or as changes to airway-

interdependence and parenchymal tethering exerting different mechanical stresses to  airways 

located at different depths of the airway tree. Multiscale modelling would allow these relationships 

to be explored in an integrative manner, and reconcile in vitro investigations of airway smooth 

muscle properties with in vivo mechanics studies[7].  

 

2. Measuring of heterogeneity in vivo 

Much of the current empirical evidence relating to heterogeneity in the lung stems from functional 

measures. Functional imaging methods allow us to visualise heterogeneity in terms of 

topographical distribution of ventilation. Single-photon emission computed tomography (SPECT) 

measures the distribution of inhaled Technegas, an ultrafine, carbon particle aerosol labelled with 

99mTc that emits radiation, to reflect ventilation within the lung. Regions with low Technegas 

activity indicate non- or poorly-ventilated lung units (i.e. ventilation defects), the size, number and 

location of which can be quantified. Oxygen and hyperpolarised xenon (129Xe) or hyperpolarised 

helium (3He) magnetic resonance imaging (MRI) can also be used to determine ventilation 

distribution in three-dimensional space, without requiring ionising radiation. Similar to SPECT, 

regions with low signal are reflective of ventilation defects - often quantified by the Ventilation 

Defect Percentage (VDP), i.e. the ventilation defect volume as a percentage of thoracic cavity 

volume. Parametric Response Mapping (PRM) is a voxel-based image-analysis technique that uses 

co-registered inspiratory and expiratory computed tomography (CT) scans. Although PRM does not 
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measure ventilation heterogeneity per se, it can identify topological areas of normal parenchyma, 

small airways disease and emphysema[8].  

 

The multiple breath washout (MBW) measures heterogeneity in terms of temporal distribution of 

flow, resulting from distribution of time constants within the lung. By tracking flow and 

concentration at the airway opening of a tracer gas (nitrogen, helium or sulfur hexafluoride) as it is 

progressively washed out of the lungs, we can derive a measure of global ventilation heterogeneity 

(lung clearance index, LCI). Modelling of the gas flow contributions from fast versus slow 

compartments enables us to partition heterogeneity into convective (predominant in the conductive 

airways, Scond) and convective-diffusive interactions (predominant in the acinar airways, Sacin)[4]  

 

Oscillometry (also known as the forced oscillation technique, FOT) measures respiratory 

mechanics, i.e. resistance Rrs and reactance Xrs (inversely related to elastance), as a function of 

frequency. Theoretically, this enables us to assess heterogeneity because lung regions of different 

time constants characteristically respond to forcing pressure at different oscillation frequencies - the 

peripheral airways and lung parenchyma, which have slower time constants, have the greatest 

contributions at lower frequencies, whereas the more proximal airways, which have fast time 

constants, contribute mostly to higher frequencies. Different parallel pathways along the airway tree 

also have disparities in time constants and consequently dependence on frequency. The frequency 

dependence of resistance, in particular, is often quantified by the difference in resistance at 5 and 20 

(or 19) Hz (Rrs5-20 or Rrs5-19). Multiple other factors contribute to frequency dependence, such as 

tissue viscoelasticity, central airway wall shunting[9] even intrinsic variations in mechanics over 

time[10]. Elastance, derived from Xrs, has also been related to small airway heterogeneity[9], while 

the area under the reactance-frequency curve (AX) could be considered an integrated measure of 

frequency dependence of reactance, that is often sensitive to disease. 
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3. Heterogeneity worsens with bronchoconstriction and determines airway 

hyperresponsiveness 

Earlier modelling studies revealed a critical role for heterogeneity in explaining the effects of 

bronchoconstriction[11, 12]. Mild constriction applied heterogeneously in the peripheral airways 

results in massive changes in airway resistance and its dependence on frequency[12], provided 

constriction was sufficient to close or nearly close a small number of airways[11, 12]. The effect of 

heterogeneous constriction was more pronounced than homogeneous or more central constriction.   

 

The seminal work of Venegas, Winkler et al allowed us to visualise the patchiness of ventilation 

using PET, with clusters of poorly ventilated airways evident during bronchoconstriction in mild-to-

moderate asthmatics[13]. Importantly, using modelling they showed that these clusters can arise in 

a catastrophic manner even from the presence of mild structural heterogeneity, e.g. a small variation 

in the distribution of wall thickness across the airway tree, in response to smooth muscle activation. 

The emergence and persistence of these ventilation defect clusters can be attributed to the 

underlying structural asymmetry of the airway tree[14].  

 

The mechanistic role of heterogeneity in bronchoconstriction and airway hyperresponsiveness has 

been validated in multiple physiological studies in health and asthma. Functional measures of 

ventilation heterogeneity at baseline determines extent of airway narrowing[15] and closure[16] 

with bronchoconstriction, and the degree of airway hyperresponsiveness in both health[17] and 

asthma[18, 19], independently of the effect of airway inflammation[19]. Furthermore asthmatic 

airways narrow more heterogeneously than healthy airways during bronchoconstriction, 

contributing to even greater airway closure[20].  
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The worsening of heterogeneity with bronchoconstriction is apparent whether assessed via 

imaging[15, 21], MBW[22] or oscillometry[15, 22]. The relationship between changes in these 

measures can be variable but may provide further insight, e.g. worsening Xrs5 but not Rrs5-19 

correlated with Sacin changes, which may suggest Xrs5 is more sensitive to pathological chances in 

the acinar airways or distal lung[22]. It has been posited that MBW may be more sensitive to 

severity of constriction, while FOT may be more useful for determining depth (i.e. proximal vs 

distal) of constriction[23]. 

  

4. Heterogeneity is a predictor of disease severity  

Correspondingly, functional measures of heterogeneity have been related to clinical measures of 

disease severity. In doing so they provide us with a better understanding of the disease process. In 

this review, we will limit our discussion to asthma and chronic obstructive pulmonary disease 

(COPD), where most of the evidence has been gathered.  

 

In mild-to-moderate asthma, Scond (and to a lesser extent, Sacin) was greater both in patients with 

poor or partly-controlled asthma control compared to those who had well-controlled asthma[24], 

while elevated Sacin has been observed in higher proportions in severe asthma[25]. Both MRI-

derived VDP[26] and CT-based markers of heterogeneity, as well as Rrs5-19 from oscillometry[27], 

have been strongly related to Asthma Quality of Life Questionnaire (AQLQ) and Asthma Control 

Questionnaire (ACQ) scores. Reversibility of X5 and AX is better than spirometry in identifying 

patients with poor ACQ[28]. VDP and Rrs5-19 have also been significantly related to St. George 

Respiratory Questionnaire (SGRQ) in COPD[29].  

 

Correlations between the different functional measures of heterogeneity can reveal further insights 

into disease pathophysiology. For example, VDP is more strongly related to Rrs5-19 in COPD 
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without emphysema, and to Xrs5 in COPD with emphysema, suggesting different mechanisms in 

the emergence of ventilation defects and heterogeneity in COPD[30].  

 

Recently, there has been renewed interest in characterising small airways dysfunction (SAD) as a 

distinct disease phenotype, partly facilitated by the increasing use of Rrs5-20 in cohort studies, where 

cut-offs have been derived to define SAD[31, 32]. Rrs5-20 was found to be a strong contributor to 

SAD[31], and related to asthma severity[31] and control[33]. Another emerging marker for SAD 

comes from the use of CT-based PRM to distinguish between air trapping due to SAD (PRMfSAD) 

versus emphysema (PRMEmph) in COPD[34], where SAD has been identified as the stronger 

determinant of FEV1 decline in COPD. Both PRMfSAD and PRMEmph affect MBW-derived 

ventilation heterogeneity in smokers[35]. 

 

There has also been renewed interest in the loss of terminal bronchioles as a disease 

mechanism[36]: with the availability of high-resolution micro-CT scans, we now know that loss of 

terminal bronchioles occurs early in the disease process in COPD, preceding the development of 

emphysema[37] and becoming worse with severity of GOLD stage[38]. Loss of terminal 

bronchioles has also been related to PRMfSAD in COPD[39]. Increased ventilation heterogeneity has 

been previously observed in established COPD[40]; recent simulations suggest that gradual loss of 

terminal bronchioles is associated with an increase in Sacin, and matches observations in smokers 

with COPD exhibiting impaired diffusion capacity[41]. More recently, loss of small airways 

determined by CT imaging has also been documented with increasing severity of asthma, and 

related to increased wall thickness as well as MRI-derived VDP[42]. 
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5. Heterogeneity predicts response to therapy 

In asthma, both Sacin and Scond improve following the administration of a short-acting β2-agonist 

(SABA). However, these parameters may remain abnormal even in patients with mild disease[43, 

44] perhaps suggestive of early structural changes that are difficult to reverse. MBW and 

oscillometry indices are also responsive to combination inhaled corticosteroids (ICS) and long-

acting β2-agonist (LABA) treatment, both in mild-to-moderate asthma and severe uncontrolled 

asthma[19, 24, 45, 46]. Improvements in Scond and Sacin have been associated with parallel 

improvements in asthma symptoms[24]. 

  

Heterogeneity is also an important predictor of treatment response. Baseline Scond, Rrs5 and Rrs5-19 

predicted improvement in asthma control following ICS uptitration in uncontrolled asthma[45, 46], 

while baseline Sacin correlated with loss of asthma control with ICS downtitration, suggesting that 

patients who are well-controlled but have abnormal Sacin may not tolerate stepping down of their 

asthma treatment[45]. More recently, Sacin and LCI in patients with severe eosinophilic asthma 

improved rapidly following treatment with the anti-IL5 biologic, mepolizumab[47]; the early 

improvement in Sacin was associated with the improvement in symptoms and may indicate a more 

sustained symptomatic response to these treatments. Oscillometry indices including Xrs have also 

been shown to improve early with mepolizumab along with symptoms, and continued to do so 

despite no further improvements in spirometry or eosinophil counts[48]. Meanwhile, improvements 

in LCI but not Scond or Sacin have been shown following bronchial thermoplasty (BT)[49], 

suggesting that while overall ventilation heterogeneity is improved via alterations to the large 

airways, the effects on the smaller airways are minimal.  

 

MRI measures of heterogeneity also improve following BD treatment. Like oscillometry, MRI 

imaging can identify the presence of a significant BD response in asthma despite a negative 
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spirometric response[50]. Furthermore, ventilation defects at baseline in mild-to-moderate asthma 

may predict risk of developing BD irreversibility over 6 years[51]. In severe asthma, VDP 

abnormalities persisted post BD in patients in whom eosinophilic inflammation was not adequately 

controlled, suggesting BD-nonresponsive ventilation defects may help distinguish airway 

inflammation from non-inflammatory smooth muscle response, thus guiding treatment 

decisions[52]. Furthermore, patients with prednisone-dependent asthma showed improved VDP 

following biologic treatments; greater improvement was found among patients with worse airway 

eosinophilia at baseline[53]. VDP has also been shown to improve following BT. Importantly, when 

BT treatment was guided by MRI (to prioritize the most involved airways), there was a greater 

reduction in the percentage of poorly and non-ventilated lung when compared with unguided BT, as 

well as number of patients experiencing exacerbations [54]. The utility of SPECT imaging is less 

established; a recent case-series demonstrated that improvements in ventilation distribution with 

mepolizumab can be detected, though these were heterogeneous and not always concordant with 

symptoms[55]. 

 

In COPD, oscillometry and MRI indices are responsive to SABA, LABA or LABA/LAMA 

treatment, and similar to asthma, may be more sensitive than spirometry in detecting a 

bronchodilator response[50, 56]. Baseline oscillometry indices (Rrs, Xrs and R5-19) predicted 

improvements in gas trapping following LABA treatment[57]. In moderate-to-severe COPD, BD 

treatment improved respiratory conductance as measured by oscillometry, which was associated 

with an improvement in exertional dyspnoea[58]. Most recently, a study of patients with stable 

COPD showed significant improvements in oscillometry indices at 6 weeks following ultrafine 

ICS/LABA treatment that were maintained at 12 weeks; the improvement in Rrs5-20 was related to 

the improvements in gas trapping and health status[59]. Thus, there is good evidence for the ability 

of oscillometry to predict which COPD patients might benefit from BD treatment.  
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In contrast, Scond and Sacin do not improve following SABA or LABA in COPD, despite reported 

improvements in FEV1[60, 61]. We speculate that the lack of sensitivity of MBW to treatment in 

COPD may reflect the irreversibility by BD of loss of terminal bronchioles or emphysema, which 

are likely dominant contributors to Scond and Sacin.  

 

In smokers with normal spirometry (i.e. without clinical COPD), however, MBW may have 

utility in identifying treatment responsiveness. While most smokers with abnormal Scond are able 

to reverse their abnormal Scond values with BD treatment, most with abnormal Sacin failed to 

normalise their Sacin values, implicating irreversible structural damage to the acinar airways which 

were correlated with smoking history[62]. This is corroborated by observations following smoking 

cessation, where Sacin and Scond were shown to improve rapidly, but only Scond showed 

persistent improvement after 12 months[63]. 

 

6. Conclusions and future directions 

In summary, heterogeneity in the lung has a profound impact on its function and plays a key role in 

determining airway hyperresponsiveness. In addition to providing insight into disease mechanisms, 

functional measures of heterogeneity derived from imaging, washout and oscillometry are 

associated with clinical markers of disease severity, often with greater sensitivity than spirometry. 

These measures also help predict response to therapy and may guide treatment decisions in specific 

patient groups. Aided by new tools and emerging data from large cohorts allowing us to establish 

thresholds for clinical applicability, physiologic characterisation of heterogeneity will increasingly 

form an important and novel dimension to disease phenotyping, potentially becoming another 

treatable trait in airways disease. 
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